Two Newly-Discovered Exoplanets are Probably the Result of a Catastrophic Collision

Simulation of a collision between two 10 Earth-mass planets. Image Credit: Zoe Leinhardt and Thomas Denman, University of Bristol
Simulation of a collision between two 10 Earth-mass planets. Image Credit: Zoe Leinhardt and Thomas Denman, University of Bristol

How can two planets so similar in some respects have such different densities? According to a new study, a catastrophic collision may be to blame.

In our Solar System, all the inner planets are small rocky worlds with similar densities, while the outer planets are gas giants with their own similar densities. But not all solar systems are like ours.

Continue reading “Two Newly-Discovered Exoplanets are Probably the Result of a Catastrophic Collision”

How The Sun’s Scorching Corona Stays So Hot

corona
The view of the corona during totality? This computational model was derived from NASA SDO data during the last solar rotation. Credit: Predictive Science Inc.

We’ve got a mystery on our hands. The surface of the sun has a temperature of about 6,000 Kelvin – hot enough to make it glow bright, hot white. But the surface of the sun is not its last later, just like the surface of the Earth is not its outermost layer. The sun has a thin but extended atmosphere called the corona. And that corona has a temperature of a few million Kelvin.

How does the corona have such a higher temperature than the surface?

Like I said, a mystery.

Continue reading “How The Sun’s Scorching Corona Stays So Hot”

Elon Musk’s New Plan is to Get to the Moon as Fast as Possible

The first test-firing of SpaceX's Raptor Engine. Credit: Elon Musk/Twitter

For Elon Musk and SpaceX, the company he founded to reignite space exploration, a great deal hinges on the creation of the Starship. This super-heavy launch vehicle, which was has evolved considerably in the past few years, will eventually replace the Falcon 9 and Falcon Heavy as the mainstay of the SpaceX fleet. Once operational, it will also facilitate missions to the Moon and eventually Mars.

Once again, Elon Musk has used his social media platform of choice to share the latest details about the Starship‘s progress. As he shared in a series of tweets, which began on Thursday, Jan. 31st, the company has commenced test-firing the Raptor engine at their Rocket Development and Test Facility in McGregor, Texas, and is pushing towards the Starship’s first mission.

Read more

Astronomy Cast Ep. 516: Polar Vortices

It’s cold right now. Okay, fine, here on Vancouver Island, it’s actually pretty warm. But for the rest of Canada and big parts of the US, it’s terrifyingly cold. Colder than Mars or the North Pole cold. This is all thanks to the break up of the polar vortex. What are polar vertices, how do they form, and where else to we find them in the Solar System?

Continue reading “Astronomy Cast Ep. 516: Polar Vortices”

Eta Carinae is Getting Brighter Because a Dust Cloud was Blocking our View

Eta Carinae, one of the most massive stars known. Image credit: NASA
Eta Carinae, one of the most massive stars known. Credit: NASA

In addition to being one of the most beautiful and frequently photographed objects in the night sky, Eta Carinae also has also had the honor of being one of the sky’s most luminous stars for over a century and a half. In addition, it has been a scientific curiosity since its giant ejected nebula (Homunculus) contains information about its parent star.

It is therefore sad news that within a decade or so, we will no longer be able to see the Homunculus nebula clearly. That was the conclusion reached in a new study by an international team of researchers. According to their findings, the nebula will be obscured by the growing brightness of Eta Carinae itself, which will be ten times brighter by about 2036.

Continue reading “Eta Carinae is Getting Brighter Because a Dust Cloud was Blocking our View”

Oumuamua Could be the Fragment of a Disintegrated Interstellar Comet

Artist’s impression of the first interstellar asteroid/comet, "Oumuamua". This unique object was discovered on 19 October 2017 by the Pan-STARRS 1 telescope in Hawaii. Credit: ESO/M. Kornmesser

Since it was first detected hurling through our Solar System, the interstellar object known as ‘Oumuamua has been a source of immense scientific interest. Aside from being extrasolar in origin, the fact that it has managed to defy classification time and again has led to some pretty interesting theories. While some have suggested that it is a comet or an asteroid, there has even been the suggestion that it might be an interstellar spacecraft.

However, a recent study may offer a synthesis to all the conflicting data and finally reveal the true nature of ‘Oumuamua. The study comes from famed astronomer Dr. Zdenek Sekanina of the NASA Jet Propulsion Laboratory, who suggests that ‘Oumuamua is the remnant of an interstellar comet that shattered before making its closest pass to the Sun (perihelion), leaving behind a cigar-shaped rocky fragment.

Continue reading “Oumuamua Could be the Fragment of a Disintegrated Interstellar Comet”

NASA used Curiosity’s Sensors to Measure the Gravity of a Mountain on Mars

Panoramic image of the Curiosity rover, from September 2016. The pale outline of Aeolis Mons can be seen in the distance. Credit: NASA/JPL-Caltech/MSSS
Panoramic image of the Curiosity rover, from September 2016. The pale outline of Aeolis Mons can be seen in the distance. Credit: NASA/JPL-Caltech/MSSS

Some very clever people have figured out how to use MSL Curiosity’s navigation sensors to measure the gravity of a Martian mountain. What they’ve found contradicts previous thinking about Aeolis Mons, aka Mt. Sharp. Aeolis Mons is a mountain in the center of Gale Crater, Curiosity’s landing site in 2012.

Gale Crater is a huge impact crater that’s 154 km (96 mi) in diameter and about 3.5 billion years old. In the center is Aeolis Mons, a mountain about 5.5 km (18,000 ft) high. Over an approximately 2 billion year period, sediments were deposited either by water, wind, or both, creating the mountain. Subsequent erosion reduced the mountain to its current form.

Now a new paper published in Science, based on gravity measurements from Curiosity, shows that Aeolis Mons’ bedrock layers are not as dense as once thought.

Continue reading “NASA used Curiosity’s Sensors to Measure the Gravity of a Mountain on Mars”

Astronomers Process Hubble’s Deepest Image to get Even More Data, and Show that Some Galaxies are Twice as big as Previously Believed

It allowed us to spot auroras on Saturn and planets orbiting distant suns. It permitted astronomers to see galaxies in the early stages of formation, and look back to some of the earliest periods in the Universe. It also measured the distances to Cepheid variable stars more accurately than ever before, which helped astrophysicists constrain how fast the Universe is expanding (the Hubble Constant).

It did all of this and more, which is why no space telescope is as recognized and revered as the Hubble Space Telescope. And while it’s mission is currently scheduled to end in 2021, Hubble is still breaking new ground. Thanks to the efforts of a research team from the Instituto de Astrofísica de Canarias (IAC), Hubble recently obtained the deepest images of the Universe ever taken from space.

Continue reading “Astronomers Process Hubble’s Deepest Image to get Even More Data, and Show that Some Galaxies are Twice as big as Previously Believed”

Newborn Stars in the Orion Nebula Prevent Other Stars from Forming

The Orion Nebula, one of the most studied objects in the sky. It's likely that many of its protostars and their planetary disks contain water in some form. Image: NASA
The Orion Nebula, one of the most studied objects in the sky. It's likely that many of its protostars and their planetary disks contain water in some form. Image: NASA

The Orion Nebula is one of the most observed and photographed objects in the night sky. At a distance of 1350 light years away, it’s the closest active star-forming region to Earth.

This diffuse nebula is also known as M42, and has been studied intensely by astronomers for many years. From it, astronomers have learned a lot about star formation, planetary system formation, and other bedrock topics in astronomy and astrophysics. Now a new discovery has been made which goes against the grain of established theory: stellar winds from newly-formed massive stars may prevent other stars from forming in their vicinity. They also play a much larger role in star formation, and in galaxy evolution, than previously thought.

Continue reading “Newborn Stars in the Orion Nebula Prevent Other Stars from Forming”