Got your 3D glasses handy? Then prepare for the most realistic views of Ultima Thule yet! Yes, it seems that every few weeks, there’s a new image of the Kuiper Belt Object (KBO) that promises the same thing. But whereas all the previous contenders were higher-resolution images that allowed for a more discernible level of detail, these images are the closest we will get to seeing the real thing up close!
Continue reading “Now You Can See MU69 in Thrilling 3D”A Newer, More Accurate Measurement Sets the Mass of the Milky Way at 1.5 Trillion Solar Masses
Astronomers keep trying to measure the mass of the Milky Way and they keep coming up with different numbers. But it’s not that they’re bad at math. Measuring the mass of something as enormous as the Milky Way is confounding. Plus, we’re embedded in it; it takes some very clever maneuvering to constrain its mass.
Continue reading “A Newer, More Accurate Measurement Sets the Mass of the Milky Way at 1.5 Trillion Solar Masses”Astronomy Cast Ep. 521: The Deep Space Network
We always focus on the missions, but there’s an important glue that holds the whole system together. The Deep Space Network. Today we’re going to talk about how this system works and how it communicates with all the spacecraft out there in the Solar System.
Continue reading “Astronomy Cast Ep. 521: The Deep Space Network”
Messier 80 – the NGC 6093 Globular Cluster
Welcome back to Messier Monday! Today, we continue in our tribute to our dear friend, Tammy Plotner, by looking at the globular cluster known as Messier 80!
During the 18th century, famed French astronomer Charles Messier noticed the presence of several “nebulous objects” while surveying the night sky. Originally mistaking these objects for comets, he began to catalog them so that others would not make the same mistake. Today, the resulting list (known as the Messier Catalog) includes over 100 objects and is one of the most influential catalogs of Deep Space Objects.
One of these objects is Messier 80, a globular star cluster located about 32,600 light years from Earth in the constellation Scorpius. This cluster is one of the most densely populated in our galaxy and is located about halfway between the bright stars Antares, Alpha Scorpii, Akrab and Beta Scorpii – making it relatively easy to find.
Continue reading “Messier 80 – the NGC 6093 Globular Cluster”
Massive Photons Could Explain Dark Matter, But Don’t
I’ll be the first to admit that we don’t understand dark matter. We do know for sure that something funny is going on at large scales in the universe (“large” here meaning at least as big as galaxies). In short, the numbers just aren’t adding up. For example, when we look at a galaxy and count up all the hot glowing bits like stars and gas and dust, we get a certain mass. When we use any other technique at all to measure the mass, we get a much higher number. So the natural conclusion is that not all the matter in the universe is all hot and glowy. Maybe some if it is, you know, dark.
But hold on. First we should check our math. Are we sure we’re not just getting some physics wrong?
Continue reading “Massive Photons Could Explain Dark Matter, But Don’t”Pluto and Charon Don’t Have Enough Small Craters
In 2015, the New Horizons mission became the first robotic spacecraft to conduct a flyby of Pluto. In so doing, the probe managed to capture stunning photos and valuable data on what was once considered to be the ninth planet of the Solar System (and to some, still is) and its moons. Years later, scientists are still poring over the data to see what else they can learn about the Pluto-Charon system.
For instance, the mission science team at the Southwest Research Institute (SwRI) recently made an interesting discovery about Pluto and Charon. Based on images acquired by the New Horizons spacecraft of some small craters on their surfaces, the team indirectly confirmed something about the Kuiper Belt could have serious implications for our models of Solar System formation.
Continue reading “Pluto and Charon Don’t Have Enough Small Craters”It Took 10 Years to Confirm the First Planet Ever Found by Kepler
Even though astronomy people are fond of touting the number of exoplanets found by the Kepler spacecraft, those planets aren’t actually confirmed. They’re more correctly called candidate exoplanets, because the signals that show something’s out there, orbiting a distant star, can be caused by something other than exoplanets. It can actually take a long time to confirm their existence.
Continue reading “It Took 10 Years to Confirm the First Planet Ever Found by Kepler”Ho-Hum. More Boring Success for SpaceX as Crew Dragon Splashes Down
A few hours ago, the SpaceX Crew Dragon splashed down in the Atlantic Ocean, about 200 miles off the coast of Florida. The splashdown is the last act in what has been a successful first flight for the Crew Dragon. The flight, called Demo-1, was launched on March 2nd and spent five days at the International Space Station (ISS).
Continue reading “Ho-Hum. More Boring Success for SpaceX as Crew Dragon Splashes Down”This is an Actual Photograph of the Shock Waves from Supersonic Jets Interacting with Each Other
After more than 10 years of hard work, NASA has reached another milestone. We’re accustomed to NASA reaching milestones, but this one’s a little different. This one’s all about a type of photography that captures images of the flow of fluids.
Continue reading “This is an Actual Photograph of the Shock Waves from Supersonic Jets Interacting with Each Other”Weekly Space Hangout: Mar 06, 2019 – Dr. Jeff Morgenthaler of the Planetary Science Institute
Hosts:
Dr. Morgan Rehnberg (MorganRehnberg.com / @MorganRehnberg & ChartYourWorld.org)
Dr. Kimberly Cartier (KimberlyCartier.org / @AstroKimCartier )
Dr. Pamela Gay (astronomycast.com / cosmoquest.org / @starstryder)
Jeff Morgenthaler, a senior scientist at the Planetary Science Institute, likes to think of himself as an experimental physicist whose laboratory opens to the sky. He has used a comet to measure the ionization lifetime of carbon, is using Io’s atmosphere as a probe of conditions in Jupiter’s magnetosphere and has constructed a small-aperture coronagraph to monitor measure Jupiter’s magnetospheric response to a large volcanic eruption on Io.