NASA used Curiosity’s Sensors to Measure the Gravity of a Mountain on Mars

Panoramic image of the Curiosity rover, from September 2016. The pale outline of Aeolis Mons can be seen in the distance. Credit: NASA/JPL-Caltech/MSSS
Panoramic image of the Curiosity rover, from September 2016. The pale outline of Aeolis Mons can be seen in the distance. Credit: NASA/JPL-Caltech/MSSS

Some very clever people have figured out how to use MSL Curiosity’s navigation sensors to measure the gravity of a Martian mountain. What they’ve found contradicts previous thinking about Aeolis Mons, aka Mt. Sharp. Aeolis Mons is a mountain in the center of Gale Crater, Curiosity’s landing site in 2012.

Gale Crater is a huge impact crater that’s 154 km (96 mi) in diameter and about 3.5 billion years old. In the center is Aeolis Mons, a mountain about 5.5 km (18,000 ft) high. Over an approximately 2 billion year period, sediments were deposited either by water, wind, or both, creating the mountain. Subsequent erosion reduced the mountain to its current form.

Now a new paper published in Science, based on gravity measurements from Curiosity, shows that Aeolis Mons’ bedrock layers are not as dense as once thought.

Continue reading “NASA used Curiosity’s Sensors to Measure the Gravity of a Mountain on Mars”

Astronomers Process Hubble’s Deepest Image to get Even More Data, and Show that Some Galaxies are Twice as big as Previously Believed

It allowed us to spot auroras on Saturn and planets orbiting distant suns. It permitted astronomers to see galaxies in the early stages of formation, and look back to some of the earliest periods in the Universe. It also measured the distances to Cepheid variable stars more accurately than ever before, which helped astrophysicists constrain how fast the Universe is expanding (the Hubble Constant).

It did all of this and more, which is why no space telescope is as recognized and revered as the Hubble Space Telescope. And while it’s mission is currently scheduled to end in 2021, Hubble is still breaking new ground. Thanks to the efforts of a research team from the Instituto de Astrofísica de Canarias (IAC), Hubble recently obtained the deepest images of the Universe ever taken from space.

Continue reading “Astronomers Process Hubble’s Deepest Image to get Even More Data, and Show that Some Galaxies are Twice as big as Previously Believed”

Newborn Stars in the Orion Nebula Prevent Other Stars from Forming

The Orion Nebula, one of the most studied objects in the sky. It's likely that many of its protostars and their planetary disks contain water in some form. Image: NASA
The Orion Nebula, one of the most studied objects in the sky. It's likely that many of its protostars and their planetary disks contain water in some form. Image: NASA

The Orion Nebula is one of the most observed and photographed objects in the night sky. At a distance of 1350 light years away, it’s the closest active star-forming region to Earth.

This diffuse nebula is also known as M42, and has been studied intensely by astronomers for many years. From it, astronomers have learned a lot about star formation, planetary system formation, and other bedrock topics in astronomy and astrophysics. Now a new discovery has been made which goes against the grain of established theory: stellar winds from newly-formed massive stars may prevent other stars from forming in their vicinity. They also play a much larger role in star formation, and in galaxy evolution, than previously thought.

Continue reading “Newborn Stars in the Orion Nebula Prevent Other Stars from Forming”

Uh oh, a Recent Study Suggests that Dark Energy’s Strength is Increasing

The concept of accelerating expansion does get you wondering just how much it can accelerate. Theorists think there still might be a chance of a big crunch, a steady-as-she-goes expansion or a big rip. Or maybe just a little rip?

Staring into the Darkness

The expansion of our universe is accelerating. Every single day, the distances between galaxies grows ever greater. And what’s more, that expansion rate is getting faster and faster – that’s what it means to live in a universe with accelerated expansion. This strange phenomenon is called dark energy, and was first spotted in surveys of distant supernova explosions about twenty years ago. Since then, multiple independent lines of evidence have all come to the same morose conclusion: the universe is getting fatter and fatter faster and faster.

Continue reading “Uh oh, a Recent Study Suggests that Dark Energy’s Strength is Increasing”

Weekly Space Hangout: Jan 30, 2019: Rod Pyle talks “Space 2.0”

Hosts:
Fraser Cain (universetoday.com / @fcain)
Dr. Morgan Rehnberg (MorganRehnberg.com / @MorganRehnberg & ChartYourWorld.org)

Tonight we welcome author Rod Pyle who will be discussing his new book, Space 2.0: How Private Spaceflight, a resurgent NASA, and International Partners Are Creating a New Space Age (BenBella Books, February 2019), written in collaboration with the National Space Society.

Continue reading “Weekly Space Hangout: Jan 30, 2019: Rod Pyle talks “Space 2.0””

Crew Dragon Rolls Out to the Launch Pad. Demo-1 Flight Should Happen Shortly

An artist's illustration of the SpaceX Dragon lifting off. Image Credit: SpaceX
An artist's illustration of the SpaceX Dragon lifting off. Image Credit: SpaceX

The long-anticipated first flight of the SpaceX Crew Dragon is almost here. Early in January, the Crew Dragon was rolled out of its hangar at Kennedy Space Center, and on January 24th it performed a brief static firing as part of its testing. The Crew Dragon’s inaugural flight, called Demo-1, is not far off.

Neither NASA nor SpaceX has given us a date for Demo-1, but we’re getting close.

Continue reading “Crew Dragon Rolls Out to the Launch Pad. Demo-1 Flight Should Happen Shortly”

One of the Oldest Earth Rocks Turned up on the Moon, of all Places

An artist's rendering of the early Moon and Earth, which sustained many asteroid impacts. Many of those asteroids and possibly dark comets contributed their water to the infant Earth. As it cooled, the water outgassed as vapor. Credit: Simone Marchi (SwRI)/SSERVI/NASA
An artist's rendering of the early Moon and Earth, which sustained many asteroid impacts. Many of those asteroids and possibly dark comets contributed their water to the infant Earth. As it cooled, the water outgassed as vapor. Credit: Simone Marchi (SwRI)/SSERVI/NASA

According the Giant Impact Hypothesis, the Earth-Moon system was created roughly 4.5 billion years ago when a Mars-sized object collided with Earth. This impact led to the release of massive amounts of material that eventually coalesced to form the Earth and Moon. Over time, the Moon gradually migrated away from Earth and assumed its current orbit.

Since then, there have been regular exchanges between the Earth and the Moon due to impacts on their surfaces. According to a recent study, an impact that took place during the Hadean Eon (roughly 4 billion years ago) may have been responsible for sending the Earth’s oldest sample of rock to the Moon, where it was retrieved by the Apollo 14 astronauts.

Continue reading “One of the Oldest Earth Rocks Turned up on the Moon, of all Places”

Tiny Object Found at the Edge of the Solar System for the First Time. A Kuiper Belt Object that’s Only 2.6 km Across

An artist's illustration of the newly-detected object. Image Credit: Ko Arimatsu

The Kuiper Belt, or the Edgeworth-Kuiper Belt, is home to ancient rocks. Kuiper Belt Objects, or KBOs, are remnants of the early planet-formation days of our Solar System. Small KBOs, in the 1 km. diameter range, have been theorized about for decades, but nobody’s every found one.

Until now.

Continue reading “Tiny Object Found at the Edge of the Solar System for the First Time. A Kuiper Belt Object that’s Only 2.6 km Across”