Messier 74 – the NGC 628 Spiral Galaxy

The location of Messier 74. Credit: Wikisky

Welcome back to Messier Monday! Today, we continue in our tribute to our dear friend, Tammy Plotner, by looking at the “Phantom Galaxy” known as Messier 74!

During the 18th century, famed French astronomer Charles Messier noticed the presence of several “nebulous objects”  while surveying the night sky. Originally mistaking these objects for comets, he began to catalog them so that others would not make the same mistake. Today, the resulting list (known as the Messier Catalog) includes over 100 objects and is one of the most influential catalogs of Deep Space Objects.

One of these objects is the spiral galaxy known as Messier 74 (aka. the Phantom Galaxy) which appears face-on to observers from Earth. Located about 30 million light years from Earth in the direction of the Pisces constellation, this galaxy measures around 95,000 light years in diameter (almost as big as the Milky Way) and is home to about 100 billion stars. Continue reading “Messier 74 – the NGC 628 Spiral Galaxy”

Just discovered! “Farout”, the Farthest Object Ever Seen in the Solar System

Artist concept of 2018 VG18 "Farout". Credit Roberto Molar Candanosa/Carnegie Institution for Science.
Artist concept of 2018 VG18 "Farout". Credit Roberto Molar Candanosa/Carnegie Institution for Science.

Astronomers have discovered a distant body that’s more than 100 times farther from the Sun than Earth is. Its provisional designation is 2018 VG18, but they’ve nicknamed the planet “Farout.” Farout is the most distant body ever observed in our Solar System, at 120 astronomical units (AU) away.

The International Astronomical Union’s Minor Planet Center announced Farout’s discovery on Monday, December 17th, 2018. This newly-discovered object is the result of a team of astronomers’ search for the elusive “Planet X” or “Planet 9,” a ninth major planet thought to exist at the furthest reaches of our Solar System, where its mass would shape the orbit of distant planets like Farout. The team hasn’t determined 2018 VG18’s orbit, so they don’t know if its orbit shows signs of influence from Planet X.

Continue reading “Just discovered! “Farout”, the Farthest Object Ever Seen in the Solar System”

Here are 20 Protoplanetary Disks, With Newly Forming Planets Carving Out Gaps in the Gas and Dust

ALMA's high-resolution images of nearby protoplanetary disks, which are results of the Disk Substructures at High Angular Resolution Project (DSHARP). The observatory is often used to look for planet birth clouds like these and the one around HD 169142. Credit: ALMA (ESO/NAOJ/NRAO), S. Andrews et al.; NRAO/AUI/NSF, S. Dagnello
ALMA's high-resolution images of nearby protoplanetary disks, which are results of the Disk Substructures at High Angular Resolution Project (DSHARP). The observatory is often used to look for planet birth clouds like these and the one around HD 169142. Credit: ALMA (ESO/NAOJ/NRAO), S. Andrews et al.; NRAO/AUI/NSF, S. Dagnello

The hunt for other planets in our galaxy has heated up in the past few decades, with 3869 planets being detected in 2,886 systems and another 2,898 candidates awaiting confirmation. Though the discovery of these planets has taught scientists much about the kinds of planets that exist in our galaxy, there is still much we do not know about the process of planetary formation.

To answer these questions, an international team recently used the Atacama Large Millimeter/submillimeter Array (ALMA) to conduct the first large-scale, high-resolution survey of protoplanetary disks around nearby stars. Known as the Disk Substructures at High Angular Resolution Project (DSHARP), this program yielded high-resolution images of 20 nearby systems where dust and gas was in the process of forming new planets.

Continue reading “Here are 20 Protoplanetary Disks, With Newly Forming Planets Carving Out Gaps in the Gas and Dust”

Here’s the First Image of the Sun from the Parker Solar Probe

The Parker Solar Probe's WISPR (Wide-field Imager for Solar Probe) instrument captured this image of a coronal streamer on Nov. 8th, 2018. Coronal streamers are structures of solar material within the Sun's atmosphere, the corona, that usually overlie regions of increased solar activity. The fine structure of the streamer is very clear, with at least two rays visible. The bright object near the center of the image is Mercury, and the dark spots are a result of background correction. Credits: NASA/Naval Research Laboratory/Parker Solar Probe
The Parker Solar Probe's WISPR (Wide-field Imager for Solar Probe) instrument captured this image of a coronal streamer on Nov. 8th, 2018. Coronal streamers are structures of solar material within the Sun's atmosphere, the corona, that usually overlie regions of increased solar activity. The fine structure of the streamer is very clear, with at least two rays visible. The bright object near the center of the image is Mercury, and the dark spots are a result of background correction. Credits: NASA/Naval Research Laboratory/Parker Solar Probe

It’s been 124 days since the Parker Solar Probe was launched, and several weeks since it made the closest approach any spacecraft has ever made to a star. Now, scientists are getting their hands on the data from the close approach. Four researchers at the recent meeting of the American Geophysical Union in Washington, D.C. shared what they hope they can learn from the probe. They hope that data from the Parker Solar Probe will help them answer decades-old question about the Sun, its corona, and the solar wind.

Scientists who study the Sun have been anticipating this for a long time, and the waiting has been worth it.

“Heliophysicists have been waiting more than 60 years for a mission like this to be possible. The solar mysteries we want to solve are waiting in the corona.” – Nicola Fox, director of the Heliophysics Division at NASA Headquarters.

Continue reading “Here’s the First Image of the Sun from the Parker Solar Probe”

Rosetta Flew Through the Bow Shock of Comet 67P Several Times During its Mission

Rosetta mission poster showing the deployment of the Philae lander to comet 67P/Churyumov-Gerasimenko.. Credit: ESA/ATG medialab (Rosetta/Philae); ESA/Rosetta/NavCam (comet)

In 2014 , the European Space Agency’s (ESA) Rosetta spacecraft made history when it rendezvoused with Comet 67P/Churyumov-Gerasimenko. This mission would be the first of its kind, where a spacecraft intercepted a comet, followed it as it orbited the Sun, and deployed a lander to its surface. For the next two years, the orbiter would study this comet in the hopes of revealing things about the history of the Solar System.

In this time, Rosetta’s science team also directed the orbiter to look for signs of the comet’s bow shock – the boundary that forms around objects as a result of interaction with solar wind. Contrary to what they thought, a recent study has revealed that Rosetta managed to detect signs of a bow shock around the comet in its early stages. This constitutes the first time in history that the formation of a bow shock has been witnessed in our Solar System. Continue reading “Rosetta Flew Through the Bow Shock of Comet 67P Several Times During its Mission”

Of Course You’ll Want to See InSight’s First Selfie.

InSight's first full selfie on Mars. The selfie was taken on Dec. 6th, and is a mosaic of 11 images taken with its Instrument Deployment Camera on the elbow of its robotic arm. Image Credit: NASA/JPL-Caltech
InSight's first full selfie on Mars. The selfie was taken on Dec. 6th, and is a mosaic of 11 images taken with its Instrument Deployment Camera on the elbow of its robotic arm. Image Credit: NASA/JPL-Caltech

InSight has been on the Martian surface for almost three weeks, prepping itself for all the science it’s going to do. But in the meantime, it’s doing what any self-respecting, modern robotic lander does: Taking pictures of itself. And now NASA has released InSight’s first selfie for all the lander’s adoring fans and Instagram followers.

InSight is on Mars to study the interior of the rocky planet, and provide clues into how rocky planets form, both here in our Solar System, and in distant systems. It’s got a suite of instruments to do that with, including a device that will drill 5m (16 ft.) deep into the planet to measure how heat flows through the core of Mars. But it’s taking a cautious approach to that, using its time wisely to select the perfect spot to deploy its instruments.

In the meantime, holiday snaps!

Continue reading “Of Course You’ll Want to See InSight’s First Selfie.”

You’re Looking at an Actual Image of a White Dwarf Feeding on Material from a Larger Red Giant, 650 Light Years from Earth.

This image is from the SPHERE/ZIMPOL observations of R Aquarii, and shows the binary star itself, with the white dwarf feeding on material from the Mira variable, as well as the jets of material spewing from the stellar couple. Image Credit: ESO/Schmid et al.
This image is from the SPHERE/ZIMPOL observations of R Aquarii, and shows the binary star itself, with the white dwarf feeding on material from the Mira variable, as well as the jets of material spewing from the stellar couple. Image Credit: ESO/Schmid et al.

The SPHERE planet-hunting instrument on the European Southern Observatory’s Very Large Telescope captured this image of a white dwarf feeding on its companion star, a type of Red Giant called a Mira variable. Most stars exist in binary systems, and they spend an eternity serenely orbiting their common center of gravity. But something almost sinister is going on between these two.

Astronomers at the ESO have been observing the pair for years and have uncovered what they call a “peculiar story.” The Red Giant is a Mira variable, meaning it’s near the end of its life, and it’s pulsing up to 1,000 times as bright as our Sun. Each time it pulses, its gaseous envelope expands, and the smaller White Dwarf strips material from the Red Giant.

Continue reading “You’re Looking at an Actual Image of a White Dwarf Feeding on Material from a Larger Red Giant, 650 Light Years from Earth.”

Exactly How We Would Send our First Laser-Powered Probe to Alpha Centauri

Artist's impression of the Dragonfly spacecraft concept. Credit and Copyright: David A Hardy (2015)

The dream of traveling to another star system, and maybe even finding populated worlds there, is one that has preoccupied humanity for many generations. But it was not until the era of space exploration that scientists have been able to investigate various methods for making an interstellar journey. While many theoretical designs have been proposed over the years, a lot of attention lately has been focused on laser-propelled interstellar probes.

The first conceptual design study, known as Project Dragonfly was hosted by the Initiative for Interstellar Studies (i4iS) in 2013. The concept called for the use of lasers to accelerate a light sail and spacecraft to 5% the speed of light, thus reaching Alpha Centauri in about a century. In a recent paper, one of the teams that took part in the design competition assessed the feasibility of their proposal for a lightsail and magnetic sail.

Continue reading “Exactly How We Would Send our First Laser-Powered Probe to Alpha Centauri”

There’s a Surprising Amount of Life Deep Inside the Earth. Hundreds of Times More Mass than All of Humanity

A nematode (eukaryote) in a biofilm of microorganisms. This unidentified nematode (Poikilolaimus sp.) from Kopanang gold mine in South Africa, lives 1.4 km below the surface. Image courtesy of Gaetan Borgonie (Extreme Life Isyensya, Belgium).
A nematode (eukaryote) in a biofilm of microorganisms. This unidentified nematode (Poikilolaimus sp.) from Kopanang gold mine in South Africa, lives 1.4 km below the surface. Image courtesy of Gaetan Borgonie (Extreme Life Isyensya, Belgium).

Scientists with the Deep Carbon Observatory (DCO) are transforming our understanding of life deep inside the Earth, and maybe on other worlds. Their discoveries suggest that abundant life could exist in the sub-surface of other planets and moons, even where temperatures are extreme, and energy and nutrients are scarce. They’ve also discovered that all of the life hidden in the deep Earth contains hundreds of times more carbon than all of humanity, and that the deep biosphere is almost twice the volume of all Earth’s oceans.

“Existing models of the carbon cycle … are still a work in progress.” – Dr. Mark Lever, DCO Deep Life Community Steering Committee.”

The DCO is not a facility, but a group of over 1,000 scientist from 52 countries, including geologists, chemists, physicists, and biologists. They’re nearing the end of a 10-year project to investigate how the Deep Carbon Cycle affects Earth. 90 % of Earth’s carbon is inside the planet, and the DCO is our first effort to really understand it.

Continue reading “There’s a Surprising Amount of Life Deep Inside the Earth. Hundreds of Times More Mass than All of Humanity”

Every Few Hours There’s a Flash of Light Coming From the Moon. Another Impact.

Locations of lunar impact flashes detected by the NELIOTA project. Credit: NELIOTA project

Ever since the Apollo missions explored the lunar surface, scientists have known that the Moon’s craters are the result of a long history of meteor and asteroid impacts. But it has only been in the past few decades that we have come to understand how regular these are. In fact, every few hours, an impact on the lunar surface is indicated by a bright flash. These impact flashes are designed as a “transient lunar phenomena” because they are fleeting.

Basically, this means that the flashes (while common) last for only a fraction of a second, making them very difficult to detect. For this reason, the European Space Agency (ESA) created the NEO Lunar Impacts and Optical TrAnsients (NELIOTA) project in 2015 to monitor the moon for signs of impact flashes. By studying them, the project hopes to learn more about the size and distribution of near-Earth objects to determine if they pose a risk to Earth.

Continue reading “Every Few Hours There’s a Flash of Light Coming From the Moon. Another Impact.”