According to current cosmological theories, the Milky Way started to form approximately 13.5 billion years ago, just a few hundred million years after the Big Bang. This began with globular clusters, which were made up of some of the oldest stars in the Universe, coming together to form a larger galaxy. Over time, the Milky Way cannibalized several smaller galaxies within its cosmic neighborhood, growing into the spiral galaxy we know today.
Many new stars formed as mergers added more clouds of dust and gas and caused them to undergo gravitational collapse. In fact, it is believed that our Sun was part of a cluster that formed 4.6 billion years ago and that its siblings have since been distributed across the galaxy. Luckily, an international team of astronomers recently used a novel method to locate one of the Sun’s long-lost “solar siblings“, which just happens to be an identical twin!
Jezero crater is the landing spot for NASA’s upcoming 2020 rover. The crater is a rich geological site, and the 45 km wide (28 mile) impact crater contains at least five different types of rock that the rover will sample. Some of the landform features in the crater are 3.6 billion years old, making the site an ideal place to look for signs of ancient habitability.
This week, we are joined by Dr. Bruce Betts, Chief Scientist and LightSail Program Manager for The Planetary Society. Prior to working on the LightSail program, Dr. Betts managed a number of flight instrument projects at the Planetary Society, including silica glass DVDs on the Mars Exploration Rovers and Phoenix lander, the LIFE biology experiment that flew on the Russian Phobos sample return mission, and he led a NASA grant studying microrovers assisting human exploration. Dr. Betts new children’s book, “”Astronomy for Kids: How to Observe Outer Space with a Telescope, Binoculars, or Just Your Eyes!”” is now available in time for holiday gift giving.
Prior to joining the Planetary Society, Dr. Betts, a planetary scientist, studied planetary surfaces, including Mars, the Moon, and Jupiter’s moons, using infrared and other data, during his time at San Juan Institute/Planetary Science Institute. Additionally, Dr. Betts spent three years at NASA headquarters managing planetary instrument development programs to design spacecraft science instruments.
If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!
If you’d like to join Dr. Paul Sutter and Dr. Pamela Gay on their Cosmic Stories in the SouthWest Tour in August 2019, you can find the information at astrotours.co/southwest.
We record the Weekly Space Hangout every Wednesday at 5:00 pm Pacific / 8:00 pm Eastern. You can watch us live on Universe Today, or the Weekly Space Hangout YouTube page – Please subscribe!
The Weekly Space Hangout is a production of CosmoQuest.
UPDATE – SpaceX has now set a firm date and time for the Spaceflight SSO-A launch from Vandenberg Air Force Base for Monday, December 3nd at 18:31 Universal Time (UT).
A unique smallsat mission promises to be the latest satellite “brighter than a Full Moon!” in the night sky… or not.
They say there’s more than one way to skin an interstellar cat, and in astronomy there’s more than one way to find alien exoplanets orbiting a distant star. With the recent shut-down of NASA’s prolific Kepler mission and its windfall of discoveries, it’s time to look towards the future, and towards alternatives.
As astronomical phenomena go, supernovae are among the most fascinating and spectacular. This process occurs when certain types of stars reach the end of their lifespan, where they explode and throw off their outer layers. Thanks to generations of study, astronomers have been able to classify most observed supernovae into one of two categories (Type I and Type II) and determine which kinds of stars are the progenitors for each.
However, to date, astronomers have been unable to determine which type of star eventually leads to a Type Ic supernova – a special of class where a star undergoes core collapse after being stripped of its hydrogen and helium. But thanks to the efforts of two teams of astronomers that pored over archival data from the Hubble Space Telescope, scientists have now found the long sought-after star that causes this type of supernova.
Fusion power has been the fevered dream of scientists, environmentalists and futurists for almost a century. For the past few decades, scientists have been attempting to find a way to create sustainable fusion reactions that would provide human beings with clean, abundant energy, which would finally break our dependence on fossil fuels and other unclean methods.
In recent years, many positive strides have been made that are bringing the “fusion era” closer to reality. Most recently, scientists working with the Experimental Advanced Superconducting Tokamak (EAST) – aka. the “Chinese artificial sun” – set a new record by super-heating clouds of hydrogen plasma to over 100 million degrees – a temperature which is six times hotter than the Sun itself!
An international team of scientists have discovered what lay hidden under Arctic ice for thousands or even hundreds of thousands of years. Using data primarily from NASA’s Operation IceBridge, they discovered one of the 25 largest impact craters anywhere on Earth. And its discovery may re-ignite an old climate debate.