In the course of exploring Mars, the many landers, rovers and orbiters that have been sent there have captured some truly stunning images of the landscape. Between Spirit, Opportunity,Curiosity, the Mars Reconnaissance Orbiter (MRO) and others, we have treated to some high-definition images over the years of sandy dunes, craters and mountains – many of which call to mind places here on Earth.
However, if one were to describe the region where NASA’s Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) lander will be landing (on Nov. 26th, 2018), the word “plain” would probably come to mind (and it would be appropriate). This region is known as Elysium Planitia, and it is where InSight will spend the next few years studying Mars’ interior structure and tectonic activity for the sake of learning more about its history.
That stunning rectangular iceberg that was photographed in mid-October by NASA scientist Jeremy Harbeck had a much more harrowing journey than we thought. Scientists looked back through satellite images to retrace the ‘berg’s journey. They found that it calved from the Larsen C Ice Shelf in November 2017.
“Tonight Fraser interviews Colin Stuart, author of How to Live in Space, which is available now. Visit https://www.penguinrandomhouse.com/books/580109/how-to-live-in-space-by-colin-stuart/9781588346384/ for information about buying your own copy.
Colin is a science speaker and author, as well as a Fellow of the Royal Astronomical Society. He has written articles for the London Mathematical Society and the Institute for Mathematics and its Applications, and has spoken to more than 250k people about the wonders of the universe in which we live.
You can learn more about Colin by visiting his website at http://www.colinstuart.net/”
If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!
If you’d like to join Dr. Paul Sutter and Dr. Pamela Gay on their Cosmic Stories in the SouthWest Tour in August 2019, you can find the information at astrotours.co/southwest.
We record the Weekly Space Hangout every Wednesday at 5:00 pm Pacific / 8:00 pm Eastern. You can watch us live on Universe Today, or the Weekly Space Hangout YouTube page – Please subscribe!
The Weekly Space Hangout is a production of CosmoQuest.
Our universe is capable of some truly frightening scenarios, and in this case we have an apparent tragedy: two stars, lifelong companions, decide to move away from the Milky Way galaxy together. But after millions of years of adventure into intergalactic space, one star murders and consumes the other. It now continues its journey through the universe alone, much brighter than before, surrounded by a shell of leftover remnants.
At least, we think. All we have to go on right now is a crime scene.
Since the 1970s, astronomers have theorized that at the center of our galaxy, about 26,000 light-years from Earth, there exists a supermassive black hole (SMBH) known as Sagittarius A*. Measuring an estimated 44 million km (27.3 million mi) in diameter and weighing in at roughly 4 million Solar masses, this black hole is believed to have had a profound influence on the formation and evolution of our galaxy.
And yet, scientists have never been able to see it directly and its existence has only been inferred from the effect it has on the stars and material surrounding it. However, new observations conducted by the GRAVITY collaboration** has managed to yield the most detailed observations to date of the matter surrounding Sagittarius A*, which is the strongest evidence yet that a black hole exists at the center of the Milky Way. Continue reading “Astronomers Get as Close as They Can to Seeing the Black Hole at the Heart of the Milky Way”
In the summer of 2020, NASA’s Mars 2020rover will launch from Cape Canaveral and commence its journey towards the Red Planet. Once it arrives on the Martian surface, the rover will begin building on the foundation established by the Opportunity and Curiosityrovers. This will include collecting samples of Martian soil to learn more about the planet’s past and determine if life ever existed there (and still does).
Up until now, though, NASA has been uncertain as to where the rover will be landing. For the past few years, the choice has been narrowed down to three approved sites, with a fourth added earlier this year for good measure. And after three days of intense debate at the recent fourth Landing Site Workshop, scientists from NASA’s Mars Exploration Program held a non-binding vote that has brought them closer to selecting a landing site.
When it comes to the search for extra-terrestrial life, scientists have a tendency to be a bit geocentric – i.e. they look for planets that resemble our own. This is understandable, seeing as how Earth is the only planet that we know of that supports life. As result, those searching for extra-terrestrial life have been looking for planets that are terrestrial (rocky) in nature, orbit within their stars habitable zones, and have enough water on their surfaces.
In the course of discovering several thousand exoplanets, scientists have found that many may in fact be “water worlds” (planets where up to 50% of their mass is water). This naturally raises some questions, like how much water is too much, and could too much land be a problem as well? To address these, a pair of researchers from the Harvard Smithsonian Center for Astrophysics (CfA) conducted a study to determine how the ratio between water and land masses can contribute to life.
To really study something, you want to reach out and touch it. But what can you do if you’re separated by a huge distance? You reach out with electromagnetic or sound waves and watch how they bounce back. Thanks to radar, sonar and lidar.
If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!