The Sun is Actually One of the Most Difficult Places to Reach in the Solar System. Here’s how the Parker Solar Probe Will Do It

The launch of the Parker Solar Probe atop a ULA Delta IV Heavy rocket from Cape Canaveral Air Force Station on August 12th, 2018. Credit: Glenn Davis

When it comes to exploring our Solar System, there are few missions more ambitious than those that seek to study the Sun. While NASA and other space agencies have been observing the Sun for decades, the majority of these missions were conducted in orbit around Earth. To date, the closest any mission has ever come to the Sun was with the Helios 1 and 2 probes, which studied the Sun during the 1970s from inside of Mercury’s orbit at perihelion.

NASA intends to change all that with the Parker Solar Probe, the space probe that recently launched from Cape Canaveral, which will revolutionize our understanding of the Sun by entering its atmosphere (aka. the corona). Over the next seven years, the probe will use Venus’ gravity to conduct a series of slingshots that will gradually bring it closer to the Sun than any mission in the history of spaceflight!

Continue reading “The Sun is Actually One of the Most Difficult Places to Reach in the Solar System. Here’s how the Parker Solar Probe Will Do It”

As the Martian Dust Storm Subsides, There’s Still No Word From Opportunity

Artist's impression of the Opportunity Rover, part of NASA's Mars Exploration Program. NASA/JPL-Caltech

Martian dust storms are a pretty common occurrence, and generally happen whenever the southern hemisphere is experiencing summer. Though they can begin quite suddenly, these storms typically stay contained to a local area and last only about a few weeks. However, on occasion, Martian dust storms can grow to become global phenomena, covering the entire planet.

One such storm began back in May, starting in the Arabia Terra region and then spreading to become a planet-wide dust storm within a matter of weeks. This storm caused the skies over the Perseverance Valley, where the Opportunity rover is stationed, to become darkened, forcing the rover into hibernation mode. And while no word has been heard from the rover, NASA recently indicated that the dust storm will dissipate in a matter of weeks.

The update was posted by NASA’s Mars Exploration Program, which oversees operations for the Opportunity and Curiosity rovers, as well as NASA’s three Mars orbiters (Mars Odyssey, MRO, and MAVEN) and the Insight lander (which will land on Mars in 109 days). According to NASA, the storm is beginning to end, though it may be weeks or months before the skies are clear enough for Opportunity to exit its hibernation mode.

This global map of Mars shows a growing dust storm as of June 6, 2018. The map was produced by the Mars Color Imager (MARCI) camera on NASA’s Mars Reconnaissance Orbiter spacecraft. The blue dot indicates the approximate location of Opportunity. Image Credit: NASA/JPL-Caltech/MSSS

As noted, dust storms occur on Mars when the southern hemisphere experiences summer, which coincides with the planet being closer to the Sun in its elliptical orbit. Due to increased temperatures, dust particles are lifted higher into the atmosphere, creating more wind. The resulting wind kicks up yet more dust, creating a feedback loop that NASA scientists are still trying to understand.

Since the southern polar region is pointed towards the Sun in the summer, carbon dioxide frozen in the polar cap evaporates. This has the effect of thickening the atmosphere and increasing the surface pressure, which enhances the process by helping suspend dust particles in the air. In some cases, the dust clouds can reach up to 60 km (40 mi) or more in elevation.

Planet-wide dust storms are a relatively rare occurrence on Mars, taking place every three to four Martian years (the equivalent of approximately 6 to 8 Earth years). Such storms have been viewed many times in the past by missions like Mariner 9 (1971), Viking I (1971) and the Mars Global Surveyor (2001). In 2007, a similar storm took place that darkened the skies over where Opportunity was stationed – which led to two weeks of minimal operations and no communications.

While smaller and less intense the storm that took place back in 2007, the current storm intensified to the point where it led to a level of atmospheric opacity that is much worse than the 2007 storm. In effect, the amount of dust in the atmosphere created a state of perpetual night over the rover’s location in Perseverance Valley, which forced the rover’s science team to suspend operations.

Simulated views of a darkening Martian sky blotting out the Sun from NASA’s Opportunity rover’s point of view, with the right side simulating Opportunity’s view in the global dust storm as of June 2018. Credit: NASA/JPL-Caltech/TAMU

This is due to the fact that Opportunity – unlike the Curiosity rover, which runs on nuclear-powered battery – relies on solar panels to keep its batteries charged. But beyond suspending operations, the prolonged dust storm also means that the rover might not be to keep its energy-intensive survival heaters running – which protect its batteries from the extreme cold of Mars’ atmosphere.

Luckily, NASA scientists who have been observing the global event indicated that, as of last Monday (July 23rd), more dust was falling out of the planet’s thin air than was being raised into it. This means that the global weather event has reached its decay phase, where dust-raising events either become confined to smaller areas or stop altogether.

Using its Mars Color Imager (MARCI) and Mars Climate Sounder (MCS), NASA’s Mars Reconnaissance Orbiter (MRO) also noted surface features were beginning to reappear and that temperatures in the middle atmosphere were no longer rising – which indicates less solar heating by dust. The Curiosity rover also noted a decline in dust above its position in the Gale Crater on the other side of the planet.

This is certainly good new for the Opportunity rover, though scientists expect that it will still be a few weeks or months before its solar panels can draw power again and communications can be reestablished. The last time communications took place with the rover was on June 10th, but if there’s one thing the Opportunity rover is known for, it’s endurance!

When the rover first landed on Mars on January 25th, 2004, its mission was only expected to last ninety Martian days (sols), which is the equivalent of about 92.5 Earth days. However, as of the writing of this article, the rover has endured for 14 years and 195 days, effectively exceeding its operational lifespan 55 times over. So if any rover can survive this enduring dust storm, its Opportunity!

In the meantime, multiple NASA missions are actively monitoring the storm in support of Opportunity and to learn more about the mechanics of Martian storms. By learning more about what causes these storms, and how smaller ones can merge to form global events, future robotic missions, crewed missions and (quite possibly) Martian colonists will be better prepared to deal with them.

Further Reading: NASA

TESS Practices on a Comet Before Starting on its Science Operations

An artist’s illustration of the Transiting Exoplanet Survey Satellite. Credits: NASA Goddard Space Flight Center
An artist’s illustration of the Transiting Exoplanet Survey Satellite. Credits: NASA Goddard Space Flight Center

On April 18th, 2018, NASA deployed the Transiting Exoplanet Survey Satellite (TESS), a next-generation exoplanet hunting telescope that is expected to find thousands of planets in the coming years. Alongside other next-generation telescopes like the James Webb Space Telescope (JWST), TESS will effectively pick up where space telescopes like Hubble and Kepler left off.

The mission recently started science operations (on July 25th, 2018) and is expected to transmit its first collection of data back to Earth this month. But before that, the planet-hunting telescope took a series of images that featured a recently-discovered comet known as C/2018 N1. These images helped demonstrate the satellite’s ability to collect images over a broad region of the sky – which will be critical when it comes to finding exoplanets.

As the name would suggest, the TESS mission is designed to search for planets around distant stars using the Transit Method (aka. Transit Photometry). For this method, distant stars are monitored for periodic dips in brightness, which are indications that a planet is passing in front of the star (aka. transiting) relative to the observer. From these dips, astronomers are able to estimate a planet’s size and orbital period.

This method remains the most effective and popular means for finding exoplanets, accounting for 2,951 of the 3,774 confirmed discoveries made to date. To test its instruments before it began science operations, TESS took images of C/2018 N1 over a short period near the end of the mission’s commissioning phase – which occurred over the course of 17 hours on July 25th.

The comet that it managed to capture, C/2018 N1, was discovered by NASA’s Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) satellite on June 29th. This comet is located about 48 million km (29 million mi) from Earth in the southern constellation Piscis Austrinus. In these pictures, which were compiled into a video (shown below), the comet is seen as a bright dot against a background of stars and other objects.

As it moves across the frame (from right to left), the comet’s tail can be seen extending to the top of the frame, and gradually changes direction as the comet glides across the field of view. The images also reveal a considerable amount of astronomical activity in the background. For instance, image processing causes the stars to shift between white and black, which highlights some variable stars visible in the images.

These are stars that change brightness as a result of pulsation, rapid rotation, or being eclipsed by a binary neighbor. A number of Solar System asteroids are also visible as small white dots moving across the field of view. Last, but not least, some stray light that was reflected from Mars is also visible near the end of the video. This light appears as a faint broad arc that moves across the middle section of the frame, from left to right.

This effect was due to the fact that Mars was at its brightest at the time since it was near opposition (i.e. at the closest point in its orbit to Earth). These images showcase the capabilities of the TESS mission, even though they only show a fraction of the instrument’s active field of view.

In the coming weeks and months, TESS science team will continue to fine-tune the spacecraft’s performance as it searches for extra-solar planets. As noted, it is expected that TESS will find thousands of planets in our galaxy, vastly increasing our knowledge of exoplanets and the kinds of worlds that exist beyond our Solar System!

And be sure to check out the video of the images TESS captured, courtesy of NASA’s Goddard Space Flight Center:

Further Reading: NASA

170 Years Ago, Eta Carinae Erupted Dramatically. Astronomers Now Think They Know Why

Illustration of a possible scenario for the powerful blast seen 170 years ago from the star system Eta Carinae. Credit: HubbleSite.com

Eta Carinae, a double star system located 7,500 light years away in the constellation Carina, has a combined luminosity of more than 5 million Suns – making it one of the brightest stars in the Milky Way galaxy. But 170 years ago, between 1837 and 1858, this star erupted in what appeared to be a massive supernova, temporarily making it the second brightest star in the sky.

Strangely, this blast was not enough to obliterate the star system, which left astronomers wondering what could account for the massive eruption. Thanks to new data, which was the result of some “forensic astronomy” (where leftover light from the explosion was examined after it reflected off of interstellar dust) a team of astronomers now think they have an explanation for what happened.

The studies which describe their findings – titled “Exceptionally fast ejecta seen in light echoes of Eta Carinae’s Great Eruption” and “Light echoes from the plateau in Eta Carinae’s Great Eruption reveal a two-stage shock-powered event” – recently appeared in the Monthly Notices of the Royal Astronomical Society.

Eta Carinae, one of the most massive stars known. Image credit: NASA
Eta Carinae, one of the most massive stars known and one of the brightest in the night sky. Credit: NASA

Both studies were led by Nathan Smith of the University of Arizona’s Steward Observatory, and included members from the Space Telescope Science Institute (STSI), the National Optical Astronomy Observatory (NOAO), the Millennium Institute of Astrophysics, the Harvard-Smithsonian Center for Astrophysics (CfA), the Cerro Tololo Inter-American Observatory and multiple universities.

In their first study, the team indicates how they studied the “light echoes” produced by the explosion, which were reflected off of interstellar dust and are just now visible from Earth. From this, they observed that the eruption resulted in material expanding at speeds that were up to 20 times faster than with any previously-observed supernova.

In the second study, the team studied the evolution of the echo’s light curve, which revealed that it experienced spikes before 1845, then plateaued until 1858 before steadily declining over the next decade. Basically, the observed velocities and light curve were consistent with the blast wave of a supernova explosion rather than the relatively slow and gentle winds expected from massive stars before they die.

The light echoes were first detected in images obtained in 2003 by telescopes at the Cerro Tololo Inter-American Observatory in Chile. For the sake of their study, the team consulted spectroscopic data from the Magellan telescopes at the Las Campanas Observatory and the Gemini South Observatory, both located in Chile. This allowed the team to measure the light and determine the ejecta’s expansion speeds – more than 32 million km/h (20 million mph).

Based on this data, the team hypothesized that the eruption may have been triggered by a prolonged battle between three stars, which destroyed one star and left the other two in a binary system. This battle may have culminated with a violent explosion when Eta Carinae devoured one of its two companions, sending more than 10 Solar masses into space. This ejected mass created the gigantic bipolar nebula (aka. “the Homunculus Nebula”) which is seen today.

As Smith explained in a recent HubbleSite press release:

“We see these really high velocities in a star that seems to have had a powerful explosion, but somehow the star survived. The easiest way to do this is with a shock wave that exits the star and accelerates material to very high speeds.”

In this scenario, Eta Carinae started out as a trinary system, with two massive stars orbiting close to each other and the third orbiting further away. When the most massive of the binary neared the end of its life, it began to expand and then transfer much of its material onto its slightly smaller companion. This caused the smaller star to accumulate just enough energy to cause it to eject its outer layers, but not enough to completely annihilate it.

The companion star would have then grown to become about 100 times the mass of our Sun and extremely bright. The other star, now weighing only 30 Solar masses, would have been stripped of its hydrogen layers, exposing its hot helium core – which represent an advanced stage of evolution in the lives of massive stars. As Armin Rest – a researcher from the STSI, The John Hopkins University and a co-author on the paper – explained:

“From stellar evolution, there’s a pretty firm understanding that more massive stars live their lives more quickly and less massive stars have longer lifetimes. So the hot companion star seems to be further along in its evolution, even though it is now a much less massive star than the one it is orbiting. That doesn’t make sense without a transfer of mass.”

The Homunculus Nebula, surrounding Eta Carinae. Credit: ESO, IDA, Danish 1.5 m, R. Gendler, J-E. Ovaldsen, C. Thöne, and C. Feron

This transfer of mass would have altered the gravitational balance of the system, causing the helium-core star to move farther away from its now-massive companion and eventually travel so far that it would interact with the outermost third star. This would cause the third star to move towards the massive star and eventually merge with it, producing an outflow of material.

Initially, the merger caused ejecta that expanded relatively slowly, but as the two stars finally joined together, they produced an explosive event that blasted material off 100 times faster. This material caught up to the slow ejecta, pushing it forward and heating the material until it glowed. This glowing material was the main light source that was viewed by astronomers 170 years ago.

In the end, the smaller helium-core star settled into an elliptical orbit around around its massive counterpart, passing through the star’s outer layers every 5.5 years and generating X-ray shock waves. According to Smith, while this explanation cannot account for everything observed in Eta Carinae, it does explain both the brightening and the fact that the star remains:

“The reason why we suggest that members of a crazy triple system interact with each other is because this is the best explanation for how the present-day companion quickly lost its outer layers before its more massive sibling.”

These studies have provided new clues as to the mystery of how Eta Carinae appeared to explode in a massive supernova, but left behind a massive star and nebula. In addition, a better understanding of the physics behind the Eta Carinae explosion could help astronomers to learn more about the complicated interactions that govern binary and multiple star systems – which are critical to our understanding of the evolution and death of massive stars.

Further Reading: HubbleSite, MNRAS, MNRAS (2)

Is it a Massive Planet or a Tiny Brown Dwarf. This Object is Right at the Border Between Planet and Star

Artist's conception of SIMP J01365663+0933473, an object with 12.7 times the mass of Jupiter, but a magnetic field 200 times more powerful than Jupiter's. This object is 20 light-years from Earth. Credit: Caltech/Chuck Carter; NRAO/AUI/NSF

Rogue planets are a not-too-uncommon occurrence in our Universe. In fact, within our galaxy alone, it is estimated that there are billions of rogue planets, perhaps even more than there are stars. These objects are basically planet-mass objects that have been ejected from their respective star systems (where they formed), and now orbit the center of the Milky Way. But it is especially surprising to find one orbiting so close to our own Solar System!

In 2016, scientists detected what appeared to be either a brown dwarf or a star orbiting just 20 light years beyond our Solar System. However, using the National Science Foundation’s Karl G. Jansky Very Large Array (VLA), a team of astronomers recently concluded that it is right at the boundary between a massive planet and a brown dwarf. This, and other mysterious things about this object, represent a mystery and an opportunity to astronomers!

The study which describes their findings recently appeared the Astrophysical Journal under the title “The Strongest Magnetic Fields on the Coolest Brown Dwarfs.” The team was led by Melodie Kao – who led this study while a graduate student at Caltech, and is now a Hubble Postdoctoral Fellow at Arizona State University – and included members from Arizona State University, the University of Colorado Boulder, the California Institute of Technology, and the University of California San Diego.

To summarize, brown dwarfs are objects that are too massive to be considered planets, but not massive enough to become stars. Originally, such objects were not thought to emit radio waves, but in 2001, a team using the VLA discovered a brown dwarf that exhibited both strong radio emissions and magnetic activity. Ongoing observations also revealed that some brown dwarfs have strong auroras, similar to the gas giants in our Solar System.

This particular object, known as SIMP J01365663+0933473, was first discovered in 2016 by the Caltech team as one of five brown dwarfs. This survey was part of VLA study to gain new knowledge about magnetic fields and the mechanisms by which the coolest astronomical objects can produce strong radio emissions. Since brown dwarfs are incredibly difficult to measure, the object was initially though to be too old and too massive to be a brown dwarf.

However, last year, an independent team of scientists discovered that SIMP J01365663+0933473 was part of a very young group of stars whose age, size and mass indicated that it was likely to be a free-floating (aka. rogue) planet rather than a star. In short, the object was determined to be 200 million years old, 1.22 times the radius of Jupiter and 12.7 times its mass.

It was also estimated to have a surface temperature of about 825 °C (1500 °F) – compared to the Sun’s, which is 5,500 °C (9932 °F). Simultaneously, the Caltech team that originally detected its radio emission in 2016 observed it again in a new study at even higher radio frequencies. From this, they confirmed that its magnetic field was even stronger than first measured, roughly 200 times stronger than Jupiter’s.

As Dr. Kao explained in a recent NRAO press release, this all presents a rather mysterious find:

“This object is right at the boundary between a planet and a brown dwarf, or ‘failed star,’ and is giving us some surprises that can potentially help us understand magnetic processes on both stars and planets… When it was announced that SIMP J01365663+0933473 had a mass near the deuterium-burning limit, I had just finished analyzing its newest VLA data.”

In short, the VLA observations provided both the first radio detection and the first measurement of the magnetic field of a planetary-mass object beyond our Solar System. The presence of a such a strong magnetic field represents a huge challenge to astronomers’ understanding of the dynamo mechanisms that create magnetic fields in brown dwarfs, not to mention the mystery of what drives their auroras.

Ever since brown dwarfs were observed to have auroral activity, scientists have wondered what could be powering them. On Earth, as with Jupiter and the other Solar planets that experience them, aurorae are the result of solar wind interacting with a planet’s magnetic field. But in the case of brown dwarfs, which have no parent star, some other mechanism must be involved. As Kao explained:

“This particular object is exciting because studying its magnetic dynamo mechanisms can give us new insights on how the same type of mechanisms can operate in extrasolar planets — planets beyond our Solar System. We think these mechanisms can work not only in brown dwarfs, but also in both gas giant and terrestrial planets.”

An artist’s conception of a T-type brown dwarf. Credit: Wikipedia Commons/Tyrogthekreeper

Kao and her team think that one possibility is that this object has an orbiting planet or moon that is interacting with its magnetic field, similar to what happens between Jupiter and its moon Io. Given its proximity to our Solar System, scientists will have the opportunity to address this and other questions, and to learn a great deal about the mechanics that power gas giants and brown dwarfs.

Studying this object will also help astronomers place more accurate constraints on the dividing line between massive planets and brown dwards. And last, but not least, it also presents new opportunities as far exoplanet research is concerned. As Gregg Hallinan, who was Dr. Kao’s advisor and a co-author on the Caltech study, explained:

“Detecting SIMP J01365663+0933473 with the VLA through its auroral radio emission also means that we may have a new way of detecting exoplanets, including the elusive rogue ones not orbiting a parent star.”

Between finding planets that orbit distant stars to planetary-mass objects that orbit the center of the Milky Way, astronomers are making exciting discoveries that are pushing the boundaries of what we know about planetary formation and the different types that can exist. And with next-generation instruments coming online, they plan to learn a great deal more!

Further Reading: NRAO, The Astrophysical Journal

New Canadian Radio Telescope is Detecting Fast Radio Bursts

The CHIME Telescope, located at the Dominion Radio Astrophysical Observatory (DRAO), in British Columbia. Credit: chime-experiment.ca

Since they were first detected in 2007, Fast Radio Bursts (FRBs) have been a source of mystery to astronomers. In radio astronomy, this phenomenon refers to transient radio pulses coming from distant sources that typically last a few milliseconds on average. Despite the detection of dozens of events since 2007, scientists are still not sure what causes them – though theories range from exploding stars, black holes, and magnetars to alien civilizations!

To shed light on this mysterious phenomena, astronomers are looking to new instruments to help search for and study FRBs. One of these is the Canadian Hydrogen Intensity Mapping Experiment (CHIME), a revolutionary new radio telescope located at the Dominion Radio Astrophysical Observatory (DRAO) in British Columbia. On July 25th, still in its first year, this telescope made its first-ever detection, an event known as FRB 180725A.

The detection of FRB 180725A was announced online in a “Astronomer’s Telegram” post, which is intended to alert the astronomical community about possible new finds and encourage follow-up observations. The detection of FRB 180725A is very preliminary at this point, and more research is needed before its existence as an FRB can be confirmed.

As they stated in the Astronomers Telegram announcement, the radio was signal was detected on July 25th, at precisely 17:59:43.115 UTC (09:59.43.115 PST), and at a radio frequency of 400 MHz:

“The automated pipeline triggered the recording to disk of ~20 seconds of buffered raw intensity data around the time of the FRB. The event had an approximate width of 2 ms and was found at dispersion measure 716.6 pc/cm^3 with a signal-to-noise ratio S/N ~20.6 in one beam and 19.4 in a neighboring beam. The centers of these, approximately 0.5 deg wide and circular beams, were at RA, Dec = (06:13:54.7, +67:04:00.1; J2000) and RA, Dec = (06:12:53.1, +67:03:59.1; J2000).”

Research into Fast Radio Bursts is still in its infancy, being a little more than a decade old. The first ever to be detected was the famous Lorimer Burst, which was named after it discoverer – Duncan Lorimer, from West Virginia University. This burst lasted a mere five milliseconds and appeared to be coming from a location near the Large Magellanic Cloud, billions of light years away.

So far, the only FRB that has been found to be repeating was the mysterious signal known as FRB 121102, which was detected by the Arecibo radio telescope in Puerto Rico in 2012. The nature of this FRB was first noticed by a team of students from McGill University (led by then-PhD Student Paul Scholz), who sifted through the Arecibo data and determined that the initial burst was followed by 10 additional burst consistent with the original signal.

The NSF’s Arecibo Observatory, which is located in Puerto Rico, is the world largest radio telescope. Arecibo detected 11 FRBs over the course of 2 months. Credit: NAIC

In addition to being the first time that this Canadian facility detected a possible FRB coming from space, this is the first time that an FRB has been detected below the 700 MHz range. However, as the CHIME team indicate in their announcement, other signals of equal intensity may have occurred in the past, which were simply not recognized as FRBs at the time.

“Additional FRBs have been found since FRB 180725A and some have flux at frequencies as low as 400 MHz,” they wrote. “These events have occurred during both the day and night and their arrival times are not correlated with known on-site activities or other known sources of terrestrial RFI (Radio Frequency Identification).”

As a result, this most-recent detection (if confirmed) could help astronomers shed some additional light on what causes FRBs, not to mention place some constraints on what frequencies they can occur at. Much like the study of gravitational waves, the field of study is new but rapidly growing, and made possible by the addition of cutting-edge instruments and facilities around the world.

Further Reading: CNET

A Partial Solar Eclipse and the Perseids Round Out August

A partially eclipsed Sun rising over the Vehicle Assembly Building along the Florida Space Coast. Credit: Dave Dickinson

A partial solar eclipse rising over the Vehicle Assembly Building along the Florida Space Coast. Credit: Dave Dickinson

How about that Total Lunar Eclipse this past July 13th? It has been a busy year for astronomy for sure, with two total lunar eclipses, a comet fading out from an unexpected burst of glory, and Saturn, Jupiter and Mars reaching opposition in quick succession.

Now, watch for a rare event this weekend, with the final eclipse for 2018 coming up on Saturday, August 11th, with a partial solar eclipse spanning northern Europe and the Arctic.

Circumstances for the August 11th, 2018 partial solar eclipse. Credit: NASA/GSFC/Fred Espenak

What’s so unique about this eclipse? Well, not only is it the last one for 2018, but it’s part of three eclipses in the second eclipse season of the year. Most seasons only feature two eclipses (one lunar and one solar) but every few years or so, it is possible to have a season with three: either lunar-solar-lunar (such as occurred in 2013) or solar-lunar-solar.

This is only possible when the middle eclipse occurs very near ascending or descending node along the ecliptic. The nodes are where the path of the Moon, inclined 5.1 degrees relative to the ecliptic plane intersect it—when these nodes are occupied by an alignment of the Earth, Sun and Moon (known as a syzygy, a fine word in Scrabble to land on a triple word score, though you’ll need a blank tile for the third ‘y’) a solar or lunar eclipse occurs. For an eclipse triple play, the middle eclipse needs to happen very near a node crossing, producing a fairly long eclipse. That’s exactly what happened on July 28th, when the Moon crossed through descending node just over an hour after crossing out of the Earth’s umbral shadow after the longest lunar eclipse for the 21st century.

This also leaves the Moon close enough to the opposite ascending node two weeks post and prior to July 28th on July 13th and August 11th to just nick the Sun for a partial solar eclipse, one over the Antarctic and one over the Arctic.

The animated path for the August 11th partial solar eclipse. Credit: A.T. Sinclair/NASA/GSFC

Eclipse Circumstances

Saturday’s partial eclipse touches down over the eastern coast of Canada at sunrise. From there, it sweeps eastward over Greenland, Iceland and the North Atlantic, with the Moon’s penumbra just grazing the northern United Kingdom before crossing over Scandinavia. Then, the shadow crosses over Asia, with a photogenic partial solar eclipse wrapping up at sunset over eastern China, the Koreas and the Russian far east.

Note that this eclipse is also a relative newcomer for its particular saros 155, as it is member 6 of a series of 71 eclipses. The saros just began less than a century ago on June 17th, 1928, and won’t produce its first total solar eclipse until September 12th, 2072 AD.

As of this writing, we’ve yet to see evidence of anyone carrying the eclipse live, though we’ll note it here if any webcast(s) surface.

When is the next one? Well, the next partial solar eclipse is on January 6th 2019, and the next total solar eclipse occurs on July 2nd, 2019.

Enter the Perseids

This weekend’s eclipse at New Moon also sets us up for a fine display of the Perseid meteors for 2018. This year, the Perseids are expected to peak on the morning of August 12th and August 13th. Watch for a zenithal hourly rate of 100 meteors per hour at the peak. A dependable annual favorite, the Perseids are debris remnants of period comet 109/P Swift-Tuttle.

The live webcast for the 2018 Perseid meteor shower. Credit: The Virtual Telescope Project.

Astronomer Gianluca Masi and the Virtual Telescope Project 2.0 will host a live webcast for the 2018 Perseids on August 12th starting at 20:30 UT.

Don’t miss the astronomical action worldwide this weekend, either live or online.

It Looks Like Plate Tectonics Aren’t Required to Support Life

Artist's concept of Kepler-69c, a super-Earth-size planet in the habitable zone of a star like our sun, located about 2,700 light-years from Earth in the constellation Cygnus. Credit: NASA

When looking for potentially-habitable extra-solar planets, scientists are somewhat restricted by the fact that we know of only one planet where life exists (i.e. Earth). For this reason, scientists look for planets that are terrestrial (i.e. rocky), orbit within their star’s habitable zones, and show signs of biosignatures such as atmospheric carbon dioxide – which is essential to life as we know it.

This gas, which is the largely result of volcanic activity here on Earth, increases surface heat through the greenhouse effect and cycles between the subsurface and the atmosphere through natural processes. For this reason, scientists have long believed that plate tectonics are essential to habitability. However, according to a new study by a team from Pennsylvania State University, this may not be the case.

The study, titled “Carbon Cycling and Habitability of Earth-Sized Stagnant Lid Planets“, was recently published in the scientific journal Astrobiology. The study was conducted by Bradford J. Foley and Andrew J. Smye, two assistant professors from the department of geosciences at Pennsylvania State University.

The Earth’s Tectonic Plates. Credit: msnucleus.org

On Earth, volcanism is the result of plate tectonics and occurs where two plates collide. This causes subduction, where one plate is pushed beneath the other and deeper into the subsurface. This subduction changes the dense mantle into buoyant magma, which rises through the crust to the Earth’s surface and creates volcanoes. This process can also aid in carbon cycling by pushing carbon into the mantle.

Plate tectonics and volcanism are believe to have been central to the emergence of life here on Earth, as it ensured that our planet had sufficient heat to maintain liquid water on its surface. To test this theory, Professors Foley and Smye created models to determine how habitable an Earth-like planet would be without the presence of plate tectonics.

These models took into account the thermal evolution, crustal production and CO2 cycling to constrain the habitability of rocky, Earth-sized stagnant lid planets. These are planets where the crust consists of a single, giant spherical plate floating on mantle, rather than in separate pieces. Such planets are thought to be far more common than planets that experience plate tectonics, as no planets beyond Earth have been confirmed to have tectonic plates yet. As Prof. Foley explained in a Penn State News press release:

“Volcanism releases gases into the atmosphere, and then through weathering, carbon dioxide is pulled from the atmosphere and sequestered into surface rocks and sediment. Balancing those two processes keeps carbon dioxide at a certain level in the atmosphere, which is really important for whether the climate stays temperate and suitable for life.”

Map of the Earth showing fault lines (blue) and zones of volcanic activity (red). Credit: zmescience.com

Essentially, their models took into account how much heat a stagnant lid planet’s climate could retain based on the amount of heat and heat-producing elements present when the planet formed (aka. its initial heat budget). On Earth, these elements include uranium which produces thorium and heat when it decays, which then decays to produce potassium and heat.

After running hundreds of simulations, which varied the planet’s size and chemical composition, they found that stagnant lid planets would be able to maintain warm enough temperatures that liquid water could exist on their surfaces for billions of years. In extreme cases, they could sustain life-supporting temperatures for up to 4 billion years, which is almost the age of the Earth.

As Smye indicated, this is due in part to the fact that plate tectonics are not always necessary for volcanic activity:

“You still have volcanism on stagnant lid planets, but it’s much shorter lived than on planets with plate tectonics because there isn’t as much cycling. Volcanoes result in a succession of lava flows, which are buried like layers of a cake over time. Rocks and sediment heat up more the deeper they are buried.”

Image of the Sarychev volcano (in Russia’s Kuril Islands) caught during an early stage of eruption on June 12, 2009. Taken by astronauts aboard the International Space Station. Credit: NASA

The researchers also found that without plate tectonics, stagnant lid planets could still have enough heat and pressure to experience degassing, where carbon dioxide gas can escape from rocks and make its way to the surface. On Earth, Smye said, the same process occurs with water in subduction fault zones. This process increases based on the quantity of heat-producing elements present in the planet. As Foley explained:

“There’s a sweet spot range where a planet is releasing enough carbon dioxide to keep the planet from freezing over, but not so much that the weathering can’t pull carbon dioxide out of the atmosphere and keep the climate temperate.”

According to the researchers’ model, the presence and amount of heat-producing elements were far better indicators for a planet’s potential to sustain life. Based on their simulations, they found that the initial composition or size of a planet is very important for determining whether or not it will become habitable. Or as they put it, the potential habitability of a planet is determined at birth.

By demonstrating that stagnant lid planets could still support life, this study has the potential for greatly extending the range of what scientists consider to be potentially-habitable. When the James Webb Space Telescope (JWST) is deployed in 2021, examining the atmospheres of stagnant lid planets to determine the presence of biosignatures (like CO2) will be a major scientific objective.

Knowing that more of these worlds could sustain life is certainly good news for those who are hoping that we find evidence of extra-terrestrial life in our lifetimes.

Further Reading: PennState, Astrobiology

Five Teams Compete to Design a 3D Printed Mars Habitat for NASA

Team Zopherus of Rogers, Arkansas, is the first-place winner in NASA’s 3D-Printed Habitat Challenge, Phase 3: Level 1 competition. Credit: NASA

If and when we decide to go to Mars (and stay there), the Martian settlers will face some serious challenges. For one, the planet is extremely cold compared to Earth, averaging at about -63 °C (-82°F), which is comparable to cold night in Antarctica. On top of that, there’s the incredibly thin atmosphere that is unbreathable to humans and terrestrial creatures. Add to that the radiation, and you begin to see why settling Mars will be difficult.

But as the saying goes, necessity is the mother of invention. And to stimulate the invention process, NASA has partnered with Bradley University of Peoria to launch the 3D-Printed Habitat Centennial Challenge competition. As part of NASA’s Centennial Challenges, which are sponsored by the Space Technology Mission Directorate, this competition recently awarded $100,000 in prize money to five teams for their design concepts.

The NASA Centennial Challenges were initiated in 2005 to directly engage the public, and produce revolutionary applications for space exploration challenges. The program offers incentive prizes to stimulate innovation in basic and applied research, technology development, and prototype demonstration. To administer the competition, Bradley University also partnered with sponsors Caterpillar, Bechtel and Brick & Mortar Ventures.

For the competition, participants were tasked with creating digital representations of the physical and functional characteristics of a Martian habitat using specialized software tools. A panel of NASA, academic and industry experts awarded the team points based on various criteria, which determined how much prize money each winning team got. Out of 18 submissions from all over the world, 5 teams were selected.

In order of how much prize money they were awarded, the winning teams were:

  1. Team Zopherus of Rogers, Arkansas – $20,957.95
  2. AI. SpaceFactory of New York – $20,957.24
  3. Kahn-Yates of Jackson, Mississippi – $20,622.74
  4. SEArch+/Apis Cor of New York – $19,580.97
  5. Northwestern University of Evanston, Illinois – $17,881.10

The design competition emphasizes all the challenges that building a life-supporting habitat on Mars would entail, which includes the sheer distances involved and the differences in atmosphere and landscapes. In short, the teams needed to create habitats that would be insulated and air-tight and could also be built using local materials (aka. in-situ resource utilization).

The competition began in 2014 and has been structured in three phases. For Phase 1, the Design Competition (which was completed in 2015 with $50,000 prize purse), the teams were required to submit a rendering of their proposed habitat. Phase 2, the Structural Member Competition, focused on material technologies and required teams to create structural components. This phase was completed in 2017 with a $1.1 million prize purse.

For Phase 3, the On-Site Habitat Competition – which is the current phase of the competition – competitors were tasked with fabricated sub-scale versions of their habitats. This phase has five levels of competition, which consist of two virtual levels and three construction levels. For the former, the teams were tasked with using Building Information Modeling (BIM) software to design a habitat that combines all the structural requirements and systems it must contain.

For the construction levels, the teams will be required to autonomously fabricate 3D-printed elements of the habitat, culminating with a one-third-scale printed habitat for the final level. By the end of this phase, teams will be awarded prize money from a $2 million purse. As Monsi Roman, the program manager for NASA’s Centennial Challenges, said in a recent NASA press statement:

“We are thrilled to see the success of this diverse group of teams that have approached this competition in their own unique styles. They are not just designing structures, they are designing habitats that will allow our space explorers to live and work on other planets. We are excited to see their designs come to life as the competition moves forward.”

The winning entries included team Zorphues’ concept for a modular habitat that was inspired by biological structures here on Earth. The building-process begins with a lander (which is also a mobile print factory) reaching the surface and scanning the environment to find a good “print area”. It then walks over this area and deploys rovers to gather materials, then seals to the ground to provide a pressurized print environment.

The main module is then assembled using pre-fabricated components (like airlocks, windows, atmospheric control, toilets, sinks, etc), and the structure is printed around it. The printer then walks itself to an adjacent location, and prints another module using the same method. In time, a number of habitats are connected to the main module that provide spaces for living, recreation, food production, scientific studies, and other activities.

For their concept, the second place team (Team AI. SpaceFactory) selected a vertically-oriented cylinder as the most efficient shape for their Marsha habitat. According to the team, this design is not only the ideal pressure environment, but also maximizes the amount of usable space, allows for the structure to be vertically-divided based on activities, is well-suited to 3-D printing and takes up less surface space.

The team’s also designed their habitat to deal with temperature changes on Mars, which are significant. Their solution was to design the entire structure as a flanged shell that moves on sliding bearings at its foundation in response to temperature changes. The structure is also a double shell, with the outer (pressure) shell separate from the inner habitat entirely. This optimizes air flow and allows for light to filters in to the entire habitat.

Next up is the Khan-Yates habitat, which the team designed to be specifically-suited to withstand dust storms and harsh climates on the Red Planet. This coral-like dome consists of a lander that would set down in the equatorial region, then print a foundation and footing layer using local materials. The print arm would then transition vertically to begin printing the shell and the floors.

The outer shell is studded with windows that allow for a well-lit environment, the outer shell is separate from the core, and the shape of the structure is designed to ensure that dust storms flow around the structure. In fourth place was SEArch+/Apis Cor’s Mars X house, a habitat designed to provide maximum radiation protection while also ensuring natural light and connections to the Martian landscape.

The habitat is constructed by mobile robotic printers, which are deployed from a Hercules Single-Stage Reusable Lander. The design is inspired by Nordic architecture, and uses “light scoops” and floor-level viewing apertures to ensure that sunlight in the northern latitudes makes it into the interior. The two outer (and overlapping) shells house the living areas, which consist of two inflatable spaces with transparent CO2 inflated window pockets.

Fifth place went to the team from Northwestern University for their Martian 3Design habitat, which consists of an inner sphere closed-shell and an outer parabolic dome. According to the team, this habitat provides protection from the Martian elements through three design features. The first is the internal shape of the structure, which consists of a circular foundation, an inflatable pressure vessel that serves as the main living area, and the outer shell.

The second feature is the entryway system, which extend from opposite ends of the structure and serves as entrances and exits and could provide junctions with future pods. The third feature is the cross-beams that are the structural backbone of the dome and are optimized for pressure-loading under Martian gravity and atmospheric conditions, and provide continuous protection from radiation and the elements.

The interior layout is based on the NASA Hawai’i Space Exploration Analog and Simulation (HI-SEAS) habitat, and is divided between “wet areas” and “dry areas”. These areas are placed on opposite sides of the habitat to optimize the use of resources by concentrated in them on one side (rather than have them running throughout that habitat), and space is also divided by a central, retractable wall that separates the interior into public and private areas.

Together, these concepts embody the aims of the 3D-Printed Habitat Centennial Challenge, which is to harness the talents of citizen inventors to develop the technologies necessary to build sustainable shelters that will one-day allow humans to live on the Moon, Mars and beyond. As Lex Akers, dean of the Caterpillar College of Engineering and Technology at Bradley University, said of the competition:

“We are encouraging a wide range of people to come up with innovative designs for how they envision a habitat on Mars. The virtual levels allow teams from high schools, universities and businesses that might not have access to large 3D printers to still be a part of the competition because they can team up with those who do have access to such machinery for the final level of the competition.”

Carrying on in the tradition of the Centennial Prizes, NASA is seeking public engagement with this competition to promote interest in space exploration and address future challenges. It also seeks to leverage new technologies in order to solve the many engineering, technical and logistical problems presented by space travel. Someday, if and when human beings are living on the Moon, Mars, and other locations in the Solar System, the habitats they call home could very well be the work of students, citizen inventors and space enthusiasts.

For more information on the 3-D Pinrted Habitat Challenge, check out the competition web page.

Further Reading: NASA