Astronomy Cast Ep. 493: Mars Update 2018

If there’s one place we’ve learned more about in the last 10 years, it’s Mars. Thanks to all those rovers, orbiters, landers which are flying overhead, crawling around the surface, and digging into the rich Martian regolith. What have we learned about Elon Musk’s future home?

We usually record Astronomy Cast every Friday at 3:00 pm EST / 12:00 pm PST / 20:00 PM UTC. You can watch us live on AstronomyCast.com, or the AstronomyCast YouTube page.

Visit the Astronomy Cast Page to subscribe to the audio podcast!

If you would like to support Astronomy Cast, please visit our page at Patreon here – https://www.patreon.com/astronomycast. We greatly appreciate your support!

If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!

Two Spacecraft Will Get Closer to the Sun Than Ever Before

ESA's Solar Orbiter will capture the very first images of the Sun’s polar regions, where magnetic tension builds up and releases in a lively dance. Credits: Spacecraft: ESA/ATG medialab; Sun: NASA/SDO/P. Testa (CfA)

Our understanding of distant stars has increased dramatically in recent decades. Thanks to improved instruments, scientists are able to see farther and clearer, thus learning more about star systems and the planets that orbit them (aka. extra-solar planets). Unfortunately, it will be some time before we develop the necessary technology to explore these stars up close.

But in the meantime, NASA and the ESA are developing missions that will allow us to explore our own Sun like never before. These missions, NASA’s Parker Solar Probe and the ESA’s (the European Space Agency) Solar Orbiter, will explore closer to the Sun than any previous mission. In so doing, it is hoped that they will resolve decades-old questions about the inner workings of the Sun.

These missions – which will launch in 2018 and 2020, respectively – will also have significant implications for life here on Earth. Not only is sunlight essential to life as we know it, solar flares can pose a major hazard for technology that humanity is becoming increasingly dependent on. This includes radio communications, satellites, power grids and human spaceflight.

And in the coming decades, Low-Earth Orbit (LEO) is expected to become increasingly crowded as commercial space stations and even space tourism become a reality. By improving our understanding of the processes that drive solar flares, we will therefore be able to better predict when they will occur and how they will impact Earth, spacecraft, and infrastructure in LEO.

As Chris St. Cyr, the Solar Orbiter project scientist at NASA’s Goddard Space Flight Center, explained in a recent NASA press release:

“Our goal is to understand how the Sun works and how it affects the space environment to the point of predictability. This is really a curiosity-driven science.”

Both missions will focus on the Sun’s dynamic outer atmosphere, otherwise known as the corona. At present, much of the behavior of this layer of the Sun is unpredictable and not well understood. For instance, there’s the so-called “coronal heating problem”, where the corona of the Sun is so much hotter than the solar surface. Then there is the question of what drives the constant outpouring of solar material (aka. solar wind) to such high speeds.

As Eric Christian, a research scientist on the Parker Solar Probe mission at NASA Goddard, explained:

“Parker Solar Probe and Solar Orbiter employ different sorts of technology, but — as missions — they’ll be complementary. They’ll be taking pictures of the Sun’s corona at the same time, and they’ll be seeing some of the same structures — what’s happening at the poles of the Sun and what those same structures look like at the equator.”

Illustration of the Parker Solar Probe spacecraft approaching the Sun. Credits: Johns Hopkins University Applied Physics Laboratory

For its mission, the Parker Solar Probe will get closer to the Sun than any spacecraft in history – as close as 6 million km (3.8 million mi) from the surface. This will replace the previous record of 43.432 million km (~27 million mi), which was established by the Helios B probe in 1976. From this position, the Parker Solar Probe will use its four suites of scientific instruments to image the solar wind and study the Sun’s magnetic fields, plasma and energetic particles.

In so doing, the probe will help clarify the true anatomy of the Sun’s outer atmosphere, which will help us to understand why the corona is hotter than the Sun’s surface. Basically, while temperatures in the corona can reach as high as a few million degrees, the solar surface (aka. photosphere), experiences temperatures of around 5538 °C (10,000 °F).

Meanwhile, the Solar Orbiter will come to a distance of about 42 million km (26 million mi) from the Sun, and will assume a highly-tilted orbit that can provide the first-ever direct images of the Sun’s poles. This is another area of the Sun that scientists don’t yet understand very well, and the study of it could provide valuable clues as to what drives the Sun’s constant activity and eruptions.

Both missions will also study solar wind, which is the Sun’s most pervasive influence on the solar system. This steam of magnetized gas fills the inner Solar System, interacting with magnetic fields, atmospheres and even the surfaces of planets. Here on Earth, it is what is responsible for the Aurora Borealis and Australis, and can also play havoc with satellites and electrical systems at times.

Artist’s impression of a solar flare erupting from the Sun’s surface. Credit: NASA Goddard Space Flight Center

Previous missions have led scientists to believe that the corona contributes to the process that accelerates solar wind to such high speeds. As these charged particles leave the Sun and pass through the corona, their speed effectively triples. By the time the solar wind reaches the spacecraft responsible for measuring it – 148 million km (92 million mi) from the Sun – it has plenty of time to mix with other particles from space and lose some of its defining features.

By being parked so close to the Sun, the Parker Solar Probe will able to measure the solar wind just as it forms and leaves the corona, thus providing the most accurate measurements of solar wind ever recorded. From its perspective above the Sun’s poles, the Solar Orbiter will complement the Parker Solar Probe’s study of the solar wind by seeing how the structure and behavior of solar wind varies at different latitudes.

This unique orbit will also allow the Solar Orbiter to study the Sun’s magnetic fields, since some of the Sun’s most interesting magnetic activity is concentrated at the poles. This magnetic field is far-reaching largely because of solar wind, which reaches outwards to create a magnetic bubble known as the heliosphere. Within the heliosphere, solar wind has a profound effect on planetary atmospheres and its presence protects the inner planets from galactic radiation.

In spite of this, it is still not entirely clear how the Sun’s magnetic field is generated or structured deep inside the Sun. But given its position, the Solar Orbiter will be able to study phenomena that could lead to a better understanding of how the Sun’s magnetic field is generated. These include solar flares and coronal mass ejections, which are due to variability caused by the magnetic fields around the poles.

In this way, the Parker Solar Probe and Solar Orbiter are complimentary missions, studying the Sun from different vantage points to help refine our knowledge of the Sun and heliosphere. In the process, they will provide valuable data that could help scientists to tackle long-standing questions about our Sun. This could help expand our knowledge of other star systems and perhaps even answer questions about the origins of life.

As Adam Szabo, a mission scientist for Parker Solar Probe at NASA Goddard, explained:

“There are questions that have been bugging us for a long time. We are trying to decipher what happens near the Sun, and the obvious solution is to just go there. We cannot wait — not just me, but the whole community.”

In time, and with the development of the necessary advanced materials, we might even be able to send probes into the Sun. But until that time, these missions represent the most ambitious and daring efforts to study the Sun to date. As with many other bold initiatives to study our Solar System, their arrival cannot come soon enough!

Further Reading: NASA

Uh oh, the EMDrive Could be Getting Its “Thrust” From Cables and Earth’s Magnetic Field

A model of the EmDrive, by NASA/Eagleworks. Credit: NASA Spaceflight Forum/emdrive.com

Ever since NASA announced that they had created a prototype of the controversial Radio Frequency Resonant Cavity Thruster (aka. the EM Drive), any and all reported results have been the subject of controversy. Initially, any reported tests were the stuff of rumors and leaks, the results were treated with understandable skepticism. Even after the paper submitted by the Eagleworks team passed peer review, there have still been unanswered questions.

Hoping to address this, a team of physicists from TU Dresden – known as the SpaceDrive Project – recently conducted an independent test of the EM Drive. Their findings were presented at the 2018 Aeronautics and Astronautics Association of France’s Space Propulsion conference, and were less than encouraging. What they found, in a nutshell, was that much of the EM’s thrust could attributable to outside factors.

The results of their test were reported in a study titled “The SpaceDrive Project – First Results on EMDrive and Mach-Effect Thrusters“, which recently appeared online. The study was led by Martin Tajmar, an engineer from the Institute of Aerospace Engineering at TU Dresden, and included TU Dresden scientists Matthias Kößling, Marcel Weikert and Maxime Monette.

EMDrive Thruster: Cavity (Left), Antenna (Middle) and On Balance (Right). Credit: Martin Tajmar, et al.

To recap, the EM Drive is a concept for an experimental space engine that came to the attention of the space community years ago. It consists of a hollow cone made of copper or other materials that reflects microwaves between opposite walls of the cavity in order to generate thrust. Unfortunately, this drive system is based on principles that violate the Conservation of Momentum law.

This law states that within a system, the amount of momentum remains constant and is neither created nor destroyed, but only changes through the action of forces. Since the EM Drive involves electromagnetic microwave cavities converting electrical energy directly into thrust, it has no reaction mass. It is therefore “impossible”, as far as conventional physics go.

As a result, many scientists have been skeptical about the EM Drive and wanted to see definitive evidence that it works. In response, a team of scientists at NASA’s Eagleworks Laboratories began conducting a test of the propulsion system. The team was led by Harold White, the Advanced Propulsion Team Lead for the NASA Engineering Directorate and the Principal Investigator for NASA’s Eagleworks lab.

Despite a report that was leaked in November of 2016 – titled “Measurement of Impulsive Thrust from a Closed Radio Frequency Cavity in Vacuum“ – the team never presented any official findings. This prompted the team led by Martin Tajmar to conduct their own test, using an engine that was built based on the same specifications as those used by the Eagleworks team.

According to tests conducting by a team from TU Dresden, the EM Drive’s thrust may be the result of interaction with Earth’s magnetic field. Credit: ESA/ATG medialab

In short, the TU Dresden team’s prototype consisted of a cone-shaped hollow engine set inside a highly shielded vacuum chamber, which they then fired microwaves at. While they found that the EM Drive did experience thrust, the detectable thrust may not have been coming from the engine itself. Essentially, the thruster exhibited the same amount of force regardless of which direction it was pointing.

This suggested that the thrust was originating from another source, which they believe could be the result of interaction between engine cables and the Earth’s magnetic field. As they conclude in their report:

“First measurement campaigns were carried out with both thruster models reaching thrust/thrust-to– power levels comparable to claimed values. However, we found that e.g. magnetic interaction from twisted-pair cables and amplifiers with the Earth’s magnetic field can be a significant error source for EMDrives. We continue to improve our measurement setup and thruster developments in order to finally assess if any of these concepts is viable and if it can be scaled up.”

In other words, the mystery thrust reported by previous experiments may have been nothing more than an error. If true, it would explain how the “impossible EM Drive” was able to achieve small amounts of measurable thrust when the laws of physics claim it shouldn’t be. However, the team also emphasized that more testing will be needed before the EM Drive can be dismissed or validated with confidence.

What will it take before human beings can travel to the nearest star system within their own lifetimes? Credit: Shigemi Numazawa/ Project Daedalus

Alas, it seems that the promise of being able to travel to the Moon in just four hours, to Mars in 70 days, and to Pluto in 18 months – all without the need for propellant – may have to wait. But rest assured, many other experimental technologies are being tested that could one day allow us to travel within our Solar System (and beyond) in record time. And additional tests will be needed before the EM Drive can be written off as just another pipe dream.

The team also conducted their own test of the Mach-Effect Thruster, another concept that is considered to be unlikely by many scientists. The team reported more favorable results with this concept, though they indicated that more research is needed here as well before anything can be conclusively said. You can learn more about the team’s test results for both engines by reading their report here.

And be sure to check out this video by Scott Manley, who explains the latest test and its results

Further Reading: ResearchGate, Phys.org

Oumuamua was Just the Beginning. Astronomers Find an Interstellar Asteroid Orbiting Retrograde near Jupiter.

Artist’s impression of the first interstellar asteroid/comet, "Oumuamua". This unique object was discovered on 19 October 2017 by the Pan-STARRS 1 telescope in Hawaii. Credit: ESO/M. Kornmesser

On October 19th, 2017, the Panoramic Survey Telescope and Rapid Response System-1 (Pan-STARRS-1) telescope in Hawaii announced the first-ever detection of an interstellar asteroid – I/2017 U1 (aka. ‘Oumuamua). Originally mistaken for a comet, follow-up observations conducted by the European Southern Observatory (ESO) and others confirmed that ‘Oumuamua was actually a rocky body that had originated outside of our Solar System.

News of this interstellar asteroids, the first to ever be detected by astronomers, raised a lot of excitement. And according to a new study by an international pair of astronomers, ‘Oumuamua was not the Solar System’s first interstellar visitor. Whereas ‘Oumuamua was an interloper on its way to another star system, this latest object – known as Asteroid (514107) 2015 BZ509 – appears to be a long-term resident.

The study, titled “An interstellar origin for Jupiter’s retrograde co-orbital asteroid“, recently appeared in the Monthly Notices of Royal Astronomical Society: Letters. The study team consisted of Fathi Namouni, a researcher at Université Côte d’Azur and the Observatoire de la Côte d’Azur; and Maria Helena Moreira Morais, a researcher from the Instituto de Geociências e Ciências Exatas at the Universidade Estadual Paulista (UNESP).

Images of 2015 BZ509 obtained at the Large Binocular Telescope Observatory (LBTO) that established its retrograde co-orbital nature (click on the image to see the animation). Credit: C. Veillet / Large Binocular Telescope Observatory.

After locating this asteroid, the team noticed something very interesting about it. All planets in our Solar System, and the vast majority of objects as well, orbit the Sun in the same direction. However, upon observing 2015 BZ509, the team concluded that it had a retrograde orbit – i.e. it rotated in the opposite direction as the other planets and objects. As Dr. Fathi Namouni, the lead author of the study, explained:

“How the asteroid came to move in this way while sharing Jupiter’s orbit has until now been a mystery. If 2015 BZ509 were a native of our system, it should have had the same original direction as all of the other planets and asteroids, inherited from the cloud of gas and dust that formed them.”

Using a high-resolution statistical search for stable orbits, the team found that 2015 BZ509 has been in its current orbital state since the formation of the Solar System – ca. 4.5 billion years ago. From this, they determined that the asteroid could not be indigenous to the Solar System since it would not have been able to assume its current large-inclination orbit – not when the nearby planets had early coplanar orbits and interacted with coplanar debris.

The only conclusion they could reach from these results was that this asteroid was captured from the interstellar medium 4.5 billion years ago. As Dr. Maria Helena Moreira Morais, the second author on the paper, added:

“Asteroid immigration from other star systems occurs because the Sun initially formed in a tightly-packed star cluster, where every star had its own system of planets and asteroids. The close proximity of the stars, aided by the gravitational forces of the planets, help these systems attract, remove and capture asteroids from one another.”

Based on their study, the team determined that 2015 BZ509  was acquired by our Solar System early in its history. Credit: NASA

The discovery of the first interstellar asteroid was certainly excited and led to multiple proposals for sending a mission to study it up close. The discovery of an interstellar asteroid that became a permanent resident in our system, however, has important implications for the study of planet formation, the evolution of the Solar System, and maybe even the origin of life itself – all of which remain open questions at this point.

Looking ahead, Dr. Namouni and Dr. Moraiswant hope to obtain more information on 2015 BZ509 so they might be able to determine exactly when it how it settled in the Solar System. In so doing, they will be able to provide clues about the Sun’s original star nursery, and about how our Early Solar System might have been enriched with components necessary for the appearance of life on Earth.

And who knows? We may soon discovery many more asteroid interlopers and long-term residents in the future. The study of these could provide even more information on the early history of our Solar System, how it interacted with neighboring systems, and how the basic ingredients for life (as we know it) came to be distributed. Perhaps the Rama enthusiasts had a point when they reminded us that the Ramans “do everything in threes”!

Further Reading: RAS, MNRAS

The Ant Nebula Actually has Intense Laser Emissions Coming From its Core

From ground-based telescopes, the so-called "ant nebula" (Menzel 3, or Mz 3) resembles the head and thorax of a garden-variety ant. This dramatic NASA/ESA Hubble Space Telescope image, showing 10 times more detail, reveals the "ant's" body as a pair of fiery lobes protruding from a dying, Sun-like star. Credit: NASA/ESA/Hubble Heritage Team (STScI/AURA)

When low- to middleweight stars like our Sun approach the end of their life cycles they eventually cast off their outer layers, leaving behind a dense, white dwarf star. These outer layers became a massive cloud of dust and gas, which is characterized by bright colors and intricate patterns, known as a planetary nebula. Someday, our Sun will turn into such a nebula, one which could be viewed from light-years away.

This process, where a dying star gives rise to a massive cloud of dust, was already known to be incredibly beautiful and inspiring thanks to many images taken by Hubble. However, after viewing the famous Ant Nebula with the European Space Agency’s (ESA) Herschel Space Observatory, a team of astronomers discovered an unusual laser emission that suggests that there is a double star system at the center of the nebula.

The study, titled “Herschel Planetary Nebula Survey (HerPlaNS): hydrogen recombination laser lines in Mz 3“, recently appeared in the Monthly Notices of the Royal Astronomical Society. The study was led by Isabel Aleman of the University of São Paulo and the Leiden Observatory, and included members from the Herschel Science Center, the Smithsonian Astrophysical Observatory, the Institute of Astronomy and Astrophysics, the Royal Observatory of Belgium and multiple universities.

The life cycle of a Sun-like star, from its birth on the left side of the frame to its evolution into a red giant on the right after billions of years. Credit: ESO/M. Kornmesser

The Ant Nebula (aka. Mz 3) is a young bipolar planetary nebula located in the constellation Norma, and takes its name from the twin lobes of gas and dust that resemble the head and body of an ant. In the past, this nebula’s beautiful and intricate nature was imaged by the NASA/ESA Hubble Space Telescope. The new data obtained by Herschel also indicates that the Ant Nebula beams intense laser emissions from its core.

In space, infrared laser emissions are detected at very different wavelengths and only under certain conditions, and only a few of these space lasers are known. Interestingly enough, it was astronomer Donald Menzel – who first observed and classified the Ant Nebula in 1920 (hence why it is officially known as Menzel 3 after him) – who was one of the first to suggest that lasers could occur in nebula.

According to Menzel, under certain conditions natural “light amplification by the stimulated emissions of radiation” (aka. where we get the term laser from) would occur in space. This was long before the discovery of lasers in laboratories, an occasion that is celebrated annually on May 16th, known as UNESCO’s International Day of Light. As such, it was highly appropriate that this paper was also published on May 16th, celebrating the development of the laser and its discoverer, Theodore Maiman.

As Isabel Aleman, the lead author of a paper, described the results:

“When we observe Menzel 3, we see an amazingly intricate structure made up of ionized gas, but we cannot see the object in its center producing this pattern. Thanks to the sensitivity and wide wavelength range of the Herschel observatory, we detected a very rare type of emission called hydrogen recombination line laser emission, which provided a way to reveal the nebula’s structure and physical conditions.”

Artist's impression of the Herschel Space Telescope. Credit: ESA/AOES Medialab/NASA/ESA/STScI
Artist’s impression of the Herschel Space Telescope. Credit: ESA/AOES Medialab/NASA/ESA/STScI

“Such emission has only been identified in a handful of objects before and it is a happy coincidence that we detected the kind of emission that Menzel suggested, in one of the planetary nebulae that he discovered,” she added.

The kind of laser emission they observed needs very dense gas close to the star. By comparing observations from the Herschel observatory to models of planetary nebula, the team found that the density of the gas emitting the lasers was about ten thousand times denser than the gas seen in typical planetary nebulae, and in the lobes of the Ant Nebula itself.

Normally, the region close to the dead star – in this case, roughly the distance between Saturn and the Sun – is quite empty because its material was ejected outwards after the star went supernova. Any lingering gas would soon fall back onto it. But as Professor Albert Zijlstra, from the Jodrell Bank Center for Astrophysics and a co-author on the study, put it:

“The only way to keep such dense gas close to the star is if it is orbiting around it in a disc. In this nebula, we have actually observed a dense disc in the very center that is seen approximately edge-on. This orientation helps to amplify the laser signal. The disc suggests there is a binary companion, because it is hard to get the ejected gas to go into orbit unless a companion star deflects it in the right direction. The laser gives us a unique way to probe the disc around the dying star, deep inside the planetary nebula.”

The planetary nebula Abell 39. According to a new study, our Sun will similarly become a luminous planetary nebula by the end of its life cycle. Credit: WIYN/NOAO/NSF

While astronomers have not yet seen the expected second star, they are hopeful that future surveys will be able to locate it, thus revealing the origin of the Ant Nebula’s mysterious lasers. In so doing, they will be able to connect two discoveries (i.e. planetary nebula and laser) made by the same astronomer over a century ago. As Göran Pilbratt, ESA’s Herschel project scientist, added:

“This study suggests that the distinctive Ant Nebula as we see it today was created by the complex nature of a binary star system, which influences the shape, chemical properties, and evolution in these final stages of a star’s life. Herschel offered the perfect observing capabilities to detect this extraordinary laser in the Ant Nebula. The findings will help constrain the conditions under which this phenomenon occurs, and help us to refine our models of stellar evolution. It is also a happy conclusion that the Herschel mission was able to connect together Menzel’s two discoveries from almost a century ago.”

Next-generation space telescopes that could tell us more about planetary nebula and the life-cycles of stars include the James Webb Space Telescope (JWST). Once this telescope takes to space in 2020, it will use its advanced infrared capabilities to see objects that are otherwise obscured by gas and dust. These studies could reveal much about the interior structures of nebulae, and perhaps shed light on why they periodically shoot out “space lasers”.

Further Reading: University of Manchester, ESA, MNRAS

Weekly Space Hangout: May 23, 2018: Mike Massimino and Nat Geo’s ONE STRANGE ROCK

Hosts:
Fraser Cain (universetoday.com / @fcain)
Dr. Paul M. Sutter (pmsutter.com / @PaulMattSutter)
Dr. Kimberly Cartier (KimberlyCartier.org / @AstroKimCartier )
Dr. Morgan Rehnberg (MorganRehnberg.com / @MorganRehnberg & ChartYourWorld.org)

Special Guests:
This week, we are extremely excited to welcome former NASA Astronaut Mike Massimino back to the Weekly Space Hangout in a segment he pre-recorded with Fraser back in April of this year.

Mike, the first person ever to send a tweet from space, joins a group of eight elite astronauts to tell Earth’s extraordinary story in National Geographic’s new series, ONE STRANGE ROCK, executive produced by Darren Aronofsky’s Protozoa Pictures and Jane Root’s Nutopia. Having viewed Earth from space, Mike conveys his personal experiences of our planet and underscores how there really is no place like home.

Mike served as an astronaut from 1996 to 2014. He is a veteran of two space flights: STS-109 in March 2002 and STS-125 in May 2009 – the final two Hubble Space Telescope servicing missions. He was the last person to work inside of Hubble and set a team record with his crewmates for the most cumulative spacewalking time in a single space shuttle mission. He has logged a total of 571 hours and 47 minutes in space and 30 hours and 4 minutes of spacewalking.

Mike received his Bachelor of Science degree from Columbia University and two Master of Science degrees and a Ph.D. from MIT. He has received a number of awards including two NASA Space Flight Medals, the NASA Distinguished Service Medal and the American Astronautical Society’s 2009 Flight Achievement Award. Additionally, he is the holder of two patents and author of many engineering research papers.

Mike lives in New York City, where he is an engineering professor at Columbia University and the senior advisor for space programs at the Intrepid Sea, Air & Space Museum. He is author of the New York Times Bestseller Spaceman: An Astronaut’s Unlikely Journey to Unlock the Secrets of the Universe and has made numerous television appearances, including National Geographic’s late-night talk show StarTalk and had a six-time recurring role as himself on the CBS sitcom The Big Bang Theory.

You can watch full episodes of One Strange Rock online at the Nat Geo website (http://channel.nationalgeographic.com/one-strange-rock/) including Episode 7, Terraform, featuring this week’s guest, Mike Massimino.

Announcements:
If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!

We record the Weekly Space Hangout every Wednesday at 5:00 pm Pacific / 8:00 pm Eastern. You can watch us live on Universe Today, or the Weekly Space Hangout YouTube page – Please subscribe!

Are We Headed Towards Another Deep Solar Minimum?

Solar SDO
A (nearly) naked Sol... more the norm than the exception these days. Credit: NASA/SDO AIA 512/1600 imager.
Solar SDO
A (nearly) naked Sol… more the norm than the exception these days. Credit: NASA/SDO AIA 512/1600 imager.

Have you been keeping an eye on Sol lately? One of the top astronomy stories for 2018 may be what’s not happening, and how inactive our host star has become.

The strange tale of Solar Cycle #24 is ending with an expected whimper: as of May 8th, the Earthward face of the Sun had been spotless for 73 out of 128 days thus far for 2018, or more than 57% of the time. This wasn’t entirely unexpected, as the solar minimum between solar cycle #23 and #24 saw 260 spotless days in 2009 – the most recorded in a single year since 1913. Cycle #24 got off to a late and sputtering start, and though it produced some whopper sunspots reminiscent of the Sol we knew and loved on 20th century cycles past, it was a chronic under-performer overall. Mid-2018 may see the end of cycle #24 and the start of Cycle #25… or will it?

solar minimum
The story thus far… and the curious drama that is solar cycle #24. Credit: David Hathaway/NASA Marshall Spaceflight Center.

One nice surprise during Cycle #24 was the appearance of massive sunspot AR 2192, which popped up just in time for the partial solar eclipse of October 23rd, 2014. Several times the size of the Earth, the spot complex was actually the largest seen in a quarter century. But just as “one swallow does not a Summer make,” one large sunspot group couldn’t save Solar Cycle #24.

partial solar eclipse
The partial eclipse of the Sun, October 23, 2014, as seen from Jasper, Alberta, shot under clear skies through a mylar filter, on the front of a 66mm f/6 apo refractor using the Canon 60Da for 1/8000 (!) sec exposure at ISO 100. The colors are natural, with the mylar filter providing a neutral “white light” image. The big sunspot on the Sun that day is just beginning to disappear behind the Moon’s limb. The mylar filter gave a white Sun, its natural colour, but I have tinted the Sun’s disk yellow for a more pleasing view that is not just white Sun/black sky. Image credit and copyright: Alan Dyer/Amazing Sky.net

The Sun goes through an 11-year sunspot cycle, marked by the appearance of new spots at mid- solar latitudes, which then slowly progress to make subsequent appearances closer towards the solar equator, in a pattern governed by what’s known as Spörer’s Law. The hallmark of a new solar cycle is the appearance of those high latitude spots. The Sun actually flips overall polarity every cycle, so a proper Hale Cycle for the Sun is actually 11 x 2 = 22 years long.

A big gaseous fusion bomb, the Sun actually rotates once every 25 days near its equator, and 34 days at the poles. The Sun’s rotational axis is also tipped 7.25 degrees relative to the ecliptic, with the northern rotational pole tipped towards us in early September, while the southern pole nods towards us in early March.

An animation of massive susnpot AR 2192 crossing the Earthward face of Sol from October 17th to October 29th, 2014. Credit: NASA/SDO.

What’s is store for Cycle #25? One thing’s for certain: if the current trend continues, with spotless days more the rule than the exception, we could be in for a deep profound solar minimum through the 2018 to 2020 season, the likes of which would be unprecedented in modern astronomy.

Fun fact: a similar dearth of sunspots was documented during the 1645-1715 period referred to as the Maunder Minimum. During this time, crops failed and the Thames River in London froze, making “frost fairs” along its frozen shores possible. Ironically, the Maunder Minimum also began just a few decades after the dawn of the age of telescopic astronomy. During this time, the idea of “spots on the Sun” was regulated to a controversial, and almost mythical status in mainstream astronomy.

Keeping Vigil on a Tempestuous (?) Star

We’ve managed to study the last two solar cycles with unprecedented scrutiny. NASA’s STEREO-A and -B spacecraft (Only A is currently active) monitors the farside of the Sun from different vantage points. The Solar Dynamics Observatory (NASA SDO) keeps watch on the Sun across the electromagnetic spectrum. And our favorite mission, the joint NASA/European Space Agency’s SOHO spacecraft, has monitored the Sun from its sunward L1 Lagrange vantage point since it launched in 1995—nearly through one complete 22 year Hale Cycle by mid- 2020s. Not only has SOHO kept a near-continuous eye on Sol, but it’s also discovered an amazing 3,398 sungrazing comets as of September 1st, 2017… mostly due to the efforts of diligent online amateur astronomers.

A guide to features on the Sun. The left view in Calcium-K shows the photosphere and is similar to a standard whitelight view, and the right view shows features in the chromosphere in hydrogen-alpha. Credit: Paul Stewart Instagram: @Upsidedownastronomer/annotations by Dave Dickinson

…and did you know: we can actually model the solar farside currently out of view from the Earth to a high degree of fidelity thanks to the advent of powerful computational methods used in the nascent field of solar helioseismology.

Unfortunately, this low ebb in the solar cycle will also make for lackluster aurora in the years to come. It’s a shame, really… the relatively powerful cycles of the 1970s and 80s hosted some magnificent aurorae seen from mid-latitudes (and more than a few resulting blackouts). We’re still getting some minor outbursts, but you’ll have to venture “North/South of the 60” to really see the aurorae in all of its splendor over the next few years.

But don’t take our word for it: get out there and observe the Sun for yourself. Don’t let this discourage you when it comes to observing the Sun. Even near its minimum, the Sun is a fascinating target of study… and unlike most astronomical objects, the face of the Sun can change very quickly, sometimes erupting with activity from one hour to the next.

We like to use a Coronado Personal Solar Telescope to monitor the Sun in hydrogen-alpha for prominences and filaments: such a scope can be kept at the ready to pop outside at lunch time daily for a quick look. For observing sunspots and the solar photosphere in white-light, you’ll need an approved glass filter which fits snugly over the aperture end of your telescope or camera, or you can make a safe solar filter with Baader Safety Film.

Solar scopes
Safe ways to observe the Sun: a homemade whitelight filter (left) and a Coronado PST solar telescope (right). Images by author.

Does the sunspot cycle tell the whole picture? Certainly, the Sun most likely has longer, as yet undiscovered cycles. For about a century now, astronomers have used the Wolf Sunspot Number as calculated mean average to describe the current state of activity seen on the Sun. An interesting study calls this method into question, and notes that the direction and orientation of the heliospheric current sheet surrounding the Sun seems to provide a better overall depiction of solar activity.

Other mysteries of the Sun include: just why does the solar cycle seem baked in at 11 years? Why don’t we ever see spots at the poles? And what’s in store for the future? We do know that solar output is increasing to the tune of 1% every 100 million years… and a billion years from now, Earth will be a toasty place, probably too warm to sustain liquid water on its surface…

Which brings us to the final point: what role does the solar cycle play versus albedo, global dimming and climate? This is a complex game to play: Folks have literally gone broke trying to link the solar cycle with terrestrial human affairs and everything from wheat crops to stock market fluctuations. Many a climate change-denier will at least concede that the current climate of the Earth is indeed changing, though they’ll question human activity’s role in it. The rather ominous fact is, taking only current solar activity into account, we should be in a cooling trend right now, a signal in the data that anthropogenic climate change is working hard against.

See for yourself. You can keep track of Sol’s daily activity online: our favorite sites are SpaceWeather, NOAA’s space weather/aurora activity page, and the SOHO and SDO websites.

Be sure to keep tabs of Sol, as the next solar minimum approaches and we ask the question: will Cycle #25 occur at all?

Well, we’re finally emerging from our self-imposed monastic exile that is editing to mention we’ve got a book coming out later this year: The Universe Today Ultimate Guide to Viewing the Cosmos: Everything You Need to Know to Become an Amateur Astronomer, and yes, there’s a whole chapter dedicated to solar observing and aurora. The book is up for pre-order now, and comes out on October 23rd, 2018!

Astronomy Cast Ep. 492: Comets, Asteroids and KBO’s

Another topic with plenty of updates. Since we started Astronomy Cast we’ve visited many smaller objects in the Solar System up close, from Ceres and Vesta to Pluto, not to mention a comet. What have we learned?

We usually record Astronomy Cast every Friday at 3:00 pm EST / 12:00 pm PST / 20:00 PM UTC. You can watch us live on AstronomyCast.com, or the AstronomyCast YouTube page.

Visit the Astronomy Cast Page to subscribe to the audio podcast!

If you would like to support Astronomy Cast, please visit our page at Patreon here – https://www.patreon.com/astronomycast. We greatly appreciate your support!

If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!

The Pressure Inside Every Proton is 10x That Inside Neutron Stars

The first measurement of a subatomic particle’s mechanical property reveals the distribution of pressure inside the proton. Credit: DOE's Jefferson Lab

Neutron stars are famous for combining a very high-density with a very small radius. As the remnants of massive stars that have undergone gravitational collapse, the interior of a neutron star is compressed to the point where they have similar pressure conditions to atomic nuclei. Basically, they become so dense that they experience the same amount of internal pressure as the equivalent of 2.6 to 4.1 quadrillion Suns!

In spite of that, neutron stars have nothing on protons, according to a recent study by scientists at the Department of Energy’s Thomas Jefferson National Accelerator Facility. After conducting the first measurement of the mechanical properties of subatomic particles, the scientific team determined that near the center of a proton, the pressure is about 10 times greater than the pressure in the heart of a neutron star.

The study which describes the team’s findings, titled “The pressure distribution inside the proton“, recently appeared in the scientific journal Nature. The study was led by Volker Burkert, a nuclear physicist at the Thomas Jefferson National Accelerator Facility (TJNAF), and co-authored by Latifa Elouadrhiri and Francois-Xavier Girod – also from the TJNAF.

Cross-section of a neutron star. Credit: Wikipedia Commons/Robert Schulze

Basically , they found that the pressure conditions at the center of a proton were 100 decillion pascals – about 10 times the pressure at the heart of a neutron star. However, they also found that pressure inside the particle is not uniform, and drops off as the distance from the center increases. As Volker Burkert, the Jefferson Lab Hall B Leader, explained:

“We found an extremely high outward-directed pressure from the center of the proton, and a much lower and more extended inward-directed pressure near the proton’s periphery… Our results also shed light on the distribution of the strong force inside the proton. We are providing a way of visualizing the magnitude and distribution of the strong force inside the proton. This opens up an entirely new direction in nuclear and particle physics that can be explored in the future.”

Protons are composed of three quarks that are bound together by the strong nuclear force, one of the four fundamental forces that government the Universe – the other being electromagnetism, gravity and weak nuclear forces. Whereas electromagnetism and gravity produce the effects that govern matter on the larger scales, weak and strong nuclear forces govern matter at the subatomic level.

Previously, scientists thought that it was impossible to obtain detailed information about subatomic particles. However, the researchers were able to obtain results by pairing two theoretical frameworks with existing data, which consisted of modelling systems that rely on electromagnetism and gravity. The first model concerns generalized parton distributions (GDP) while the second involve gravitational form factors.

Quarks inside a proton experience a force an order of magnitude greater than matter inside a neutron star. Credit: DOE’s Jefferson Lab

Patron modelling refers to modeling subatomic entities (like quarks) inside protons and neutrons, which allows scientist to create 3D images of a proton’s or neutron’s structure (as probed by the electromagnetic force). The second model describes the scattering of subatomic particles by classical gravitational fields, which describes the mechanical structure of protons when probed via the gravitational force.

As noted, scientists previously thought that this was impossible due to the extreme weakness of the gravitational interaction. However, recent theoretical work has indicated that it could be possible to determine the mechanical structure of a proton using electromagnetic probes as a substitute for gravitational probes. According to Latifa Elouadrhiri – a Jefferson Lab staff scientist and co-author on the paper – that is what their team set out to prove.

“This is the beauty of it. You have this map that you think you will never get,” she said. “But here we are, filling it in with this electromagnetic probe.”

For the sake of their study, the team used the DOE’s Continuous Electron Beam Accelerator Facility at the TJNAF to create a beam of electrons. These were then directed into the nuclei of atoms where they interacted electromagnetically with the quarks inside protons via a process called deeply virtual Compton scattering (DVCS). In this process, an electron exchanges a virtual photon with a quark, transferring energy to the quark and proton.

The bare masses of all 6 flavors of quarks, proton and electron, shown in proportional volume. Credit: Wikipedia/Incnis Mrsi

Shortly thereafter, the proton releases this energy by emitting another photon while remaining intact. Through this process, the team was able to produced detailed information of the mechanics going on in inside the protons they probed. As Francois-Xavier Girod, a Jefferson Lab staff scientist and co-author on the paper, explained the process:

“There’s a photon coming in and a photon coming out. And the pair of photons both are spin-1. That gives us the same information as exchanging one graviton particle with spin-2. So now, one can basically do the same thing that we have done in electromagnetic processes — but relative to the gravitational form factors, which represent the mechanical structure of the proton.”

The next step, according to the research team, will be to apply the technique to even more precise data that will soon be released. This will reduce uncertainties in the current analysis and allow the team to reveal other mechanical properties inside protons – like the internal shear forces and the proton’s mechanical radius. These results, and those the team hope to reveal in the future, are sure to be of interest to other physicists.

“We are providing a way of visualizing the magnitude and distribution of the strong force inside the proton,” said Burkert. “This opens up an entirely new direction in nuclear and particle physics that can be explored in the future.”

Perhaps, just perhaps, it will bring us closer to understanding how the four fundamental forces of the Universe interact. While scientists understand how electromagnetism and weak and strong nuclear forces interact with each other (as described by Quantum Mechanics), they are still unsure how these interact with gravity (as described by General Relativity).

If and when the four forces can be unified in a Theory of Everything (ToE), one of the last and greatest hurdles to a complete understanding of the Universe will finally be removed.

Further Reading: Jefferson Lab, Cosmos Magazine, Nature