Mars 2020 Rover is Going to be Taking a Chunk of Mars Back to… Mars?

This artist's rendition depicts NASA's Mars 2020 rover studying its surroundings. Credit: NASA

In July of 2020, the Mars 2020 rover – the latest from NASA’s Mars Exploration Program – will begin its long journey to the Red Planet. Hot on the heels of the Opportunity and Curiosity rovers, the Mars 2020 rover will attempt to answer some of the most pressing questions we have about Mars. Foremost among these is whether or not the planet had habitable conditions in the past, and whether or not microbial life existed there.

To this end, the Mars 2020 rover will obtain drill samples of Martian rock and set them aside in a cache. Future crewed missions may retrieve these samples and bring them back to Earth for analysis. However, in a recent announcement, NASA indicated that a piece of a Martian meteor will accompany the Mars 2020 rover back to Mars, which will be used to calibrate the rover’s high-precious laser scanner.

This laser scanner is known as the Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) instrument. The laser’s resolution is capable of illuminating even the finest features in rock samples, which could include fossilized microorganisms. But in order to achieve this, the laser requires a calibration target so that the science team can fine-tune its settings.

Mounted on the rover’s robotic arm, SHERLOC uses spectrometers, a laser and a camera to search for organics and minerals that have been altered by watery environments and may be signs of past microbial life. Credit: NASA

Ordinarily, these calibration targets involve pieces of rock, metal or glass, samples that are the result of a complex geological history. However, when addressing the SHERLOC’s calibration needs, JPL scientists came up with a rather innovative idea. For billions of years, Mars has experienced impacts that have sent pieces of its surface into orbit. In some cases, those pieces came to Earth in the form of meteorites, some of which have been identified.

While these meteorites are rare and not identical to the geologically diverse samples the Mars 2020 rover will collect, they are well-suited for target practice. As Luther Beegle of JPL, the principle investigator for SHERLOC, said in a recent NASA press statement:

“We’re studying things on such a fine scale that slight misalignments, caused by changes in temperature or even the rover settling into sand, can require us to correct our aim. By studying how the instrument sees a fixed target, we can understand how it will see a piece of the Martian surface.”

In this respect, the Mars 2020 rover is in good company. For example, Curiosity’s used its Chemistry and Camera (ChemCham) instrument – which relies on laser-induced breakdown spectroscopy (LIBS) – to determine the elemental compositions of rock and soil samples it has obtained. Similarly, the Opportunity rover’s Miniature Thermal Emission Spectrometer (Mini-TES) allowed this rover to detect the composition of rocks from a distance.

Rohit Bhartia of NASA’s Mars 2020 mission holds a slice of a meteorite scientists have determined came from Mars. Credit: NASA/JPL-Caltech

However, SHERLOC is unique in that it will be the first instrument deployed to Mars that uses Raman and fluorescence spectroscopy. Raman spectroscopy consists of subjecting materials to light in the visible, near infrared, or near ultraviolet range and measuring how the photons respond. Based on how their energy levels shift up or down, scientists are able to determine the presence of certain elements.

Fluorescence spectroscopy relies on ultraviolet lasers to excite the electrons in carbon-based compounds, which causes chemicals that are known to form in the presence of life (i.e. biosignatures) to glow. SHERLOC will also photograph the rocks it studies, which will allow the science team to map the chemical signatures it finds across the surface of Mars.

For their purposes, the SHERLOC team needed a sample that would be solid enough to withstand the intense vibrations caused by launch and landing. They also needed one that contained the right chemicals to test SHERLOC’s sensitivity to biosignatures. With the help of the Johnson Space Center and the Natural History Museum in London, they ultimately decided on a sample from the Sayh al Uhaymir 008 meteorite (aka. SaU008).

This meteorite, which was found in Oman in 1999, was more rugged that other samples and could be sliced without the rest of the meteorite flaking. As a result, SaU008 will be the first Martian meteorite sample that helps scientists look for past signs of life on Mars. It will also be the first Martian meteorite to have a piece of itself returned to the surface of Mars – though technically not the first to be sent back.

A slice of a meteorite scientists have determined came from Mars placed inside an oxygen plasma cleaner, which removes organics from the outside of surfaces. Credit: NASA/JPL-Caltech

That honor goes to Zagami, a meteorite retrieved in Nigeria in 1962, which had a piece of itself sent back to Mars aboard the Mars Global Surveyor (MGS) in 1999. That mission ended in 2007, so this chunk has been floating around in orbit of Mars ever since. In addition, the team behind Mars 2020‘s SuperCam instrument will also be adding a Martian meteorite for their own calibration tests.

Along with bits of SaU008, the Mars 2020 payload will include samples of advanced materials. Aside from also being used to calibrate SHERLOC, these materials will be tested to see how they hold up to Martian weather and radiation. If they prove to be tough enough to survive on the Martian surface, these materials could be used in the manufacture of space suits, gloves and helmets for future astronauts.

As Marc Fries, a SHERLOC co-investigator and curator of extraterrestrial materials at Johnson Space Center, put it:

“The SHERLOC instrument is a valuable opportunity to prepare for human spaceflight as well as to perform fundamental scientific investigations of the Martian surface. It gives us a convenient way to test material that will keep future astronauts safe when they get to Mars.”

With every robotic mission sent to Mars, NASA and other space agencies are working towards the day when astronauts’ boots will finally touch down on the Red Planet. When the first crewed mission to Mars are conducted (currenty scheduled for the 2030s), they will be following in the tracks of some truly intrepid robotic explorers!

Further Reading: NASA

New Horizons Just Took a Record Breaking Image. No Camera Has Ever Taken a Picture From This Far From Earth

With its Long Range Reconnaissance Imager (LORRI), New Horizons has observed several Kuiper Belt objects (KBOs) and dwarf planets at unique phase angles, as well as Centaurs at extremely high phase angles to search for forward-scattering rings or dust. These December 2017 false-color images of KBOs 2012 HZ84 (left) and 2012 HE85 are, for now, the farthest from Earth ever captured by a spacecraft. They're also the closest-ever images of Kuiper Belt objects. Credits: NASA/JHUAPL/SwRI

In July of 2015, the New Horizons mission made history by being the first spacecraft to rendezvous with Pluto. In the course of conducting its flyby, the probe gathered volumes of data about Pluto’s surface, composition, atmosphere and system of moons. It also provided breathtaking images of Pluto’s “heart”, its frozen plains, mountain chains, and it’s mysterious “bladed terrain”.

Since that time, New Horizons has carried on to the Kuiper Belt for the sake of conducting more historic encounters. In preparation for these, the probe also established new records when it used its Long Range Reconnaissance Imager (LORRI) to take a series of long-distance pictures. These images, which have since been released to the public, have set the new record for the most distant images ever taken.

At present, the New Horizons probe is at a distance of 6.12 billion km (3.79 billion mi) from Earth. This means that images taken at this point are at a distance of 40.9 Astronomical Units (AUs), or the equivalent of about 41 times the distance between Earth and the Sun. This it slightly farther than the “Pale Blue Dot” image of Earth, which was snapped by the Voyager 1 mission when it was at a distance of 6.06 billion km (3.75 billion mi; 40.5 AU) from Earth.

Image of the “Wishing Well” star cluster, taken Dec. 5, 2017, which temporarily broke the 27-year record set by Voyager 1. Credit: NASA/JHUAPL/SwRI

This historic picture was taken on February 14th, 1990 (Valentine’s Day) at the behest of famed astronomer Carl Sagan. At the time, Sagan was a member of the Voyager imaging team, and he recommended that Voyager 1 take the opportunity to look back at Earth one more time before making its way to the very edge of the Solar System. For more than 27 years, this long-distance record remained unchallenged.

However, in December of 2017, the New Horizons team began conducting a routine calibration test of the LORRI instrument. This consisted of snapping pictures of the “Wishing Well” cluster (aka. the “Football Cluster” or NGC 3532), an open galactic star cluster that is located about 1321 light years from Earth in the direction of the southern constellation of Carina.

This image (shown above) was rather significant, given that this star cluster was the first target ever observed by the Hubble Space Telescope (on May 20th, 1990). While this image broke the long-distance record established by Voyager 1, the probe then turned its LORRI instrument towards objects in its flight path. As part of the probes mission to rendezvous with a KBO, the team was searching for forward-scattering rings or dust.

As a result, just two hours after it had taken the record-breaking image of the “Wishing Well” star cluster, the probe snapped pictures of the Kuiper Belt Objects (KBOs) known as 2012 HZ84 and 2012 HE85 (seen below, left and right). These images once again broke the record for being the most distant images taken from Earth (again), but also set a new record for the closest-ever images ever taken of KBOs.

False-color images of KBOs 2012 HZ84 (left) and 2012 HE85, taken by LORRI, are the farthest from Earth ever captured by a spacecraft. Credit: NASA/JHUAPL/SwRI

As Dr. Alan Stern, the Principle Investigator of the New Horizons mission at the Southwest Research Institute (SwRI), explained in a NASA press release:

“New Horizons has long been a mission of firsts — first to explore Pluto, first to explore the Kuiper Belt, fastest spacecraft ever launched. And now, we’ve been able to make images farther from Earth than any spacecraft in history.”

As one of only five spacecraft to travel beyond the Outer Planets, New Horizons has set a number of other distance records as well. These include the most-distant course-correction maneuver, which took place on Dec. 9th, 2017, and guided the spacecraft towards its planned flyby with the KBO 2014 MU69. This event, which will happen on Jan. 1st, 2019, will be the farthest planetary encounter in history.

In the course of its extended mission in the Kuiper Belt, the New Horizons team seeks to observe at least two-dozen other KBOs, dwarf planets and “Centaurs” – i.e. former KBOs that have unstable orbits that cause them to cross the orbit of the gas giants. At present, the New Horizons spacecraft is in hibernation and will be brought back online on June 4th, – when it will begin a series of checks to make sure it is ready for its planned encounter with MU69.

The spacecraft is also conducting nearly continuous measurements of the Kuiper Belt itself to learn more about its plasma, dust and neutral-gas environment. These efforts could reveal much about the formation and evolution of the Solar System, and are setting records that are not likely to be broken for many more decades!

Further Reading: NASA

Messier 66 – the NGC 3627 Intermediate Spiral Galaxy

The Leo Triplet, featuring Messier 65, Messier 66 and NGC 3628. Image: Wikisky

Welcome back to Messier Monday! Today, we continue in our tribute to our dear friend, Tammy Plotner, by looking at the intermediate spiral galaxy known as Messier 66.

In the 18th century, while searching the night sky for comets, French astronomer Charles Messier kept noting the presence of fixed, diffuse objects he initially mistook for comets. In time, he would come to compile a list of approximately 100 of these objects, hoping to prevent other astronomers from making the same mistake. This list – known as the Messier Catalog – would go on to become one of the most influential catalogs of Deep Sky Objects.

One of these objects is the intermediate elliptical galaxy known as Messier 66 (NGC 3627). Located about 36 million light-years from Earth in the direction of the Leo constellation, this galaxy measures 95,000 light-years in diameter. It is also the brightest and largest member of the Leo Triplet of galaxies and is well-known for its bright star clusters, dust lanes, and associated supernovae.

Description:

Enjoying life some 35 million light years from the Milky Way, the group known as the “Leo Trio” is home to bright galaxy Messier 66 – the easternmost of the two M objects. In the telescope or binoculars, you’ll find this barred spiral galaxy far more visible and much easier to see details within its knotted arms and bulging core.

Hubble image of the intermediate spiral galaxy Messier 66. Credits: NASA, ESA and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration/Davide De Martin/Robert Gendler

Because of interaction with its neighboring galaxies, M66 shows signs of a extremely high central mass concentration as well as a resolved noncorotating clump of H I material apparently removed from one of the spiral arms. Even one of its spiral arms got it noted in Halton Arp’s collection of Peculiar Galaxies! So exactly what did it collide with?As   Xiaolei Zhang (et al) indicated in a 1993 study:

“The combined CO and H I data provide new information, both on the history of the past encounter of NGC 3627 with its companion galaxy NGC 3628 and on the subsequent dynamical evolution of NGC 3627 as a result of this tidal interaction. In particular, the morphological and kinematic information indicates that the gravitational torque experienced by NGC 3627 during the close encounter triggered a sequence of dynamical processes, including the formation of prominent spiral structures, the central concentration of both the stellar and gas mass, the formation of two widely separated and outwardly located inner Lindblad resonances, and the formation of a gaseous bar inside the inner resonance. These processes in coordination allow the continuous and efficient radial mass accretion across the entire galactic disk. The observational result in the current work provides a detailed picture of a nearby interacting galaxy which is very likely in the process of evolving into a nuclear active galaxy. It also suggests one of the possible mechanisms for the formation of successive instabilities in postinteraction galaxies, which could very efficiently channel the interstellar medium into the center of the galaxy to fuel nuclear starburst and Seyfert activities.”

Ah, yes! Star forming regions… And what better way to look deeper than through the eyes of the Spitzer Space Telescope? As R. Kennicutt (University of Arizona) and the SINGS Team observed:

“M66’s blue core and bar-like structure illustrates a concentration of older stars. While the bar seems devoid of star formation, the bar ends are bright red and actively forming stars. A barred spiral offers an exquisite laboratory for star formation because it contains many different environments with varying levels of star-formation activity, e.g., nucleus, rings, bar, the bar ends and spiral arms. The SINGS image is a four-channel false-color composite, where blue indicates emission at 3.6 microns, green corresponds to 4.5 microns, and red to 5.8 and 8.0 microns. The contribution from starlight (measured at 3.6 microns) in this picture has been subtracted from the 5.8 and 8 micron images to enhance the visibility of the dust features.”

Colour composite image of the spiral galaxy M66 (or NGC 3627) obtained with the FORS1 and FORS2 multi-mode instruments (at VLT MELIPAL and YEPUN, respectively). Credit: ESO

Messier 66 has also been deeply studied for evidence of forming super star clusters, too. As David Meier indicated:

“Super star clusters are thought to be precursors of globular clusters and are some of the most extreme star formation regions in the universe. They tend to occur in actively starbursting galaxies or near the cores of less active galaxies. Radio super star clusters cannot be seen in optical light because of extreme extinction, but they shine brightly in infrared and radio observations. We can be certain that there are many massive O stars in these regions because massive stars are required to provide the UV radiation that ionizes the gas and creates a thermally bright HII regions. Not many natal SSCs are currently known, so detection is an important science goal in its own right. In particular, very few SSCs are known in galactic disks. We need more detections to be able to make statistical statements about SSCs and fill in the mass range of forming star clusters. With more detections, we will be able to investigate the effects of other environments (e.g. bars, bubbles, and galactic interaction) on SSCs, which could potentially be followed up in the far future with the Square Kilometer Array to discover their effects on individual forming massive stars.”

But there’s still more. Try magnetic properties in M66’s spiral patterns. As M. Soida (et al) indicated in their 2001 study:

“By observing the interacting galaxy NGC 3627 in radio polarization we try to answer the question; to which degree does the magnetic field follow the galactic gas flow. We obtained total power and polarized intensity maps at 8.46 GHz and 4.85 GHz using the VLA in its compact D-configuration. In order to overcome the zero-spacing problems, the interferometric data were combined with single-dish measurements obtained with the Effelsberg 100-m radio telescope. The observed magnetic field structure in NGC 3627 suggests that two field components are superposed. One component smoothly fills the interarm space and shows up also in the outermost disk regions, the other component follows a symmetric S-shaped structure. In the western disk the latter component is well aligned with an optical dust lane, following a bend which is possibly caused by external interactions. However, in the SE disk the magnetic field crosses a heavy dust lane segment, apparently being insensitive to strong density-wave effects. We suggest that the magnetic field is decoupled from the gas by high turbulent diffusion, in agreement with the large Hi line width in this region. We discuss in detail the possible influence of compression effects and non-axisymmetric gas flows on the general magnetic field asymmetries in NGC 3627. On the basis of the Faraday rotation distribution we also suggest the existence of a large ionized halo around this galaxy.”

History of Observation:

Both M65 and M66 were discovered on the same night – March 1, 1780 – by Charles Messier, who described M66 as, “Nebula discovered in Leo; its light is very faint and it is very close to the preceding: They both appear in the same field in the refractor. The comet of 1773 and 1774 has passed between these two nebulae on November 1 to 2, 1773. M. Messier didn’t see them at that time, no doubt, because of the light of the comet.”

Both galaxies would be observed and cataloged by the Herschel family and further expounded upon by Admiral Smyth:

“A large elongated nebula, with a bright nucleus, on the Lion’s haunch, trending np [north preceding, NW] and sf [south following, SE]; this beautiful specimen of perspective lies just 3deg south-east of Theta Leonis. It is preceded at about 73s by another of a similar shape, which is Messier’s No. 65, and both are in the field at the same time, under a moderate power, together with several stars. They were pointed out by Mechain to Messier in 1780, and they appeared faint and hazy to him. The above is their appearance in my instrument.

“These inconceivably vast creations are followed, exactly on the same parallel, ar Delta AR=174s, by another elliptical nebula of even a more stupendous character as to apparent dimensions. It was discovered by H. [John Herschel], in sweeping, and is No. 875 in his Catalogue of 1830 [actually, probably an erroneous position for re-observed M66]. The two preceding of these singular objects were examined by Sir William Herschel, and his son [JH] also; and the latter says, “The general form of elongated nebulae is elliptic, and their condensation towards the centre is almost invariably such as would arise from the superposition of luminous elliptic strata, increasing in density towards the centre. In many cases the increase of density is obviously attended with a diminution of ellipticity, or a nearer approach to the globular form in the central than in the exterior strata.” He then supposes the general constitution of those nebulae to be that of oblate spheroidal masses of every degree of flatness from the sphere to the disk, and of every variety in respect of the law of their density, and ellipticity towards the centre. This must appear startling and paradoxical to those who imagine that the forms of these systems are maintained by forces identical with those which determine the form of a fluid mass in rotation; because, if the nebulae be only clusters of discrete stars, as in the greater number of cases there is every reason to believe them to be, no pressure can propagate through them. Consequently, since no general rotation of such a system as one mass can be supposed, Sir John suggests a scheme which he shows is not, under certain conditions, inconsistent with the law of gravitation. “It must rather be conceived,” he tells us, ” as a quiescent form, comprising within its limits an indefinite magnitude of individual constituents, which, for aught we can tell, may be moving one among the other, each animated by its own inherent projectile force, and deflected into an orbit more or less complicated, by the influence of that law of internal gravitation which may result from the compounded attractions of all its parts.”

Messier 66 location. Credit: IAU and Sky & Telescope magazine (Roger Sinnott & Rick Fienberg)

Locating Messier 66:

Even though you might think by its apparent visual magnitude that M66 wouldn’t be visible in small binoculars, you’d be wrong. Surprisingly enough, thanks to its large size and high surface brightness, this particular galaxy is very easy to spot directly between Iota and Theta Leonis. In even 5X30 binoculars under good conditions you’ll easy see both it and M65 as two distinct gray ovals.

A small telescope will begin to bring out structure in both of these bright and wonderful galaxies, but to get a hint at the “Trio” you’ll need at least 6″ in aperture and a good dark night. If you don’t spot them right away in binoculars, don’t be disappointed – this means you probably don’t have good sky conditions and try again on a more transparent night. The pair is well suited to modestly moonlit nights with larger telescopes.

May you equally be attracted to this galactic pair!

And here are the quick facts on M66 to help you get started:

Object Name: Messier 66
Alternative Designations: M66, NGC 3627, (a member of the) Leo Trio, Leo Triplet
Object Type: Type Sb Spiral Galaxy
Constellation: Leo
Right Ascension: 11 : 20.2 (h:m)
Declination: +12 : 59 (deg:m)
Distance: 35000 (kly)
Visual Brightness: 8.9 (mag)
Apparent Dimension: 8×2.5 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier ObjectsM1 – The Crab Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Sources:

If We Receive a Message From Aliens, Should We Delete it Without Reading it?

Photo of the central region of the Milky Way. Credit: UCLA SETI Group/Yuri Beletsky, Carnegie Las Campanas Observatory

Roughly half a century ago, Cornell astronomer Frank Drake conducted Project Ozma, the first systematic SETI survey at the National Radio Astronomy Observatory in Green Bank, West Virginia. Since that time, scientists have conducted multiple surveys in the hopes of find indications of “technosignatures” – i.e. evidence of technologically-advanced life (such as radio communications).

To put it plainly, if humanity were to receive a message from an extra-terrestrial civilization right now, it would be the single-greatest event in the history of civilization. But according to a new study, such a message could also pose a serious risk to humanity. Drawing on multiple possibilities that have been explored in detail, they consider how humanity could shield itself from malicious spam and viruses.

The study, titled “Interstellar communication. IX. Message decontamination is impossible“, recently appeared online. The study was conducted by Michael Hippke, a independent scientist from the Sonneberg Observatory in Germany; and John G. Learned, a professor with the High Energy Physics Group at the University of Hawaii. Together, they examine some of the foregone conclusions about SETI and what is more likely to be the case.

Frank Drake writing his famous equation on a white board. Credit: SETI.org

To be fair, the notion that an extra-terrestrial civilization could pose a threat to humanity is not just a well-worn science fiction trope. For decades, scientists have treated it as a distinct possibility and considered whether or not the risks outweigh the possible benefits. As a result, some theorists have suggested that humans should not engage in SETI at all, or that we should take measures to hide our planet.

As Professor Learned told Universe Today via email, there has never been a consensus among SETI researchers about whether or not ETI would be benevolent:

“There is no compelling reason at all to assume benevolence (for example that ETI are wise and kind due to their ancient civilization’s experience). I find much more compelling the analogy to what we know from our history… Is there any society anywhere which has had a good experience after meeting up with a technologically advanced invader? Of course it would go either way, but I think often of the movie Alien… a credible notion it seems to me.”

In addition, assuming that an alien message could pose a threat to humanity makes practical sense. Given the sheer size of the Universe and the limitations imposed by Special Relativity (i.e. no known means of FTL), it would always be cheaper and easier to send a malicious message to eradicate a civilization compared to an invasion fleet. As a result, Hippke and Learned advise that SETI signals be vetted and/or “decontaminated” beforehand.

The Arecibo Radio Telescope in Puerto Rico was the site of NASA’s High Resolution Microwave Survey, a search for extraterrestrial radio messages. Credit: US NSF

In terms of how a SETI signal could constitute a threat, the researchers outline a number of possibilities. Beyond the likelihood that a message could convey misinformation designed to cause a panic or self-destructive behavior, there is also the possibility that it could contain viruses or other embedded technical issues (i.e. the format could cause our computers to crash).

They also note that, when it comes to SETI, a major complication arises from the fact that no message is likely to received in only one place (thus making containment possible). This is unlikely because of the “Declaration of Principles Concerning Activities Following the Detection of Extraterrestrial Intelligence”, which was adopted by the International Academy of Astronautics in 1989 (and revised in 2010).

Article 6 of this declaration states the following:

“The discovery should be confirmed and monitored and any data bearing on the evidence of extraterrestrial intelligence should be recorded and stored permanently to the greatest extent feasible and practicable, in a form that will make it available for further analysis and interpretation. These recordings should be made available to the international institutions listed above and to members of the scientific community for further objective analysis and interpretation.”

Voyager included a golden record with images and sounds of Earthly life recorded on it… just in case. Credit: NASA

As such, a message that is confirmed to have originated from an ETI would most likely be made available to the entire scientific community before it could be deemed to be threatening in nature. Even if there was only one recipient, and they attempted to keep the message under strict lock and key, it’s a safe bet that other parties would find a way to access it before long.

The question naturally arises then, what can be done? One possibility that Hippke and Learned suggest is to take a analog approach to interpreting these messages, which they illustrate using the 2017 SETI Decrypt Challenge as an example. This challenge, which was issued by René Heller of the Max Planck Institute for Solar System Research, consisted of a sequence of about two million binary digits and related information being posted to social media.

In addition to being a fascinating exercise that gave the public a taste of what SETI research means, the challenge also sough to address some central questions when it came to communicating with an ETI. Foremost among these was whether or not humanity would be bale to understand a message from an alien civilization, and how we might be able to make a message comprehensible (if we sent one first). As they state:

“As an example, the message from the “SETI Decrypt Challenge” (Heller 2017) was a stream of 1,902,341 bits, which is the product of prime numbers. Like the Arecibo message (Staff At The National Astronomy Ionosphere Center 1975) and Evpatoria’s “Cosmic Calls” (Shuch 2011), the bits represent the X/Y black/white pixel map of an image. When this is understood, further analysis could be done off-line by printing on paper. Any harm would then come from the meaning of the message, and not from embedded viruses or other technical issues.”

The Wow! signal represented as “6EQUJ5”. Credit: Big Ear Radio Observatory/NAAPO

However, where messages are made up of complex codes or even a self-contained AI, the need for sophisticated computers may be unavoidable. In this case, the authors explore another popular recommendation, which is the use on quarantined machines to conduct the analysis – i.e. a message prison. Unfortunately, they also acknowledge that no prison would be 100% effective and containment could eventually fail.

“This scenario resembles the Oracle-AI, or AI box, of an isolated computer system where a possibly dangerous AI is ‘imprisoned’ with only minimalist communication channels,” they write. “Current research indicates that even well-designed boxes are useless, and a sufficiently intelligent AI will be able to persuade or trick its human keepers into releasing it.”

In the end, it appears that the only real solution is to maintain a vigilant attitude and ensure that any messages we send are as benign as possible. As Hippke summarized: “I think it’s overwhelmingly likely that a message will be positive, but you can not be sure. Would you take a 1% chance of death for a 99% chance of a cure for all diseases? One learning from our paper is how to design own message, in case we decide to send any: Keep it simple, don’t send computer code.”

Basically, when it comes to the search for extra-terrestrial intelligence, the rules of internet safety may apply. If we begin to receive messages, we shouldn’t trust those that come with big attachments and send any suspicious looking ones to our spam folder. Oh, and if a sender is promising the cure for all known diseases, or claims to be the deposed monarch of Andromeda in need of some cash, we should just hit delete!

Further Reading: arXiv

Astronomy Cast Ep. 478: Apollo 8 with Paul Hildebrandt

On Christmas Day, 1968 Frank Borman, James Lovell and William Anders became the first human being to see the far side of the Moon. Their mission, of course, was Apollo 8, the first time human beings had ever left Earth orbit and seen the far side of the Moon. Today we talk all about Apollo 8, with special guest Paul Hildebrandt, director of a new documentary about the mission.

We usually record Astronomy Cast every Friday at 3:00 pm EST / 12:00 pm PST / 20:00 PM UTC. You can watch us live on AstronomyCast.com, or the AstronomyCast YouTube page.

Visit the Astronomy Cast Page to subscribe to the audio podcast!

If you would like to support Astronomy Cast, please visit our page at Patreon here – https://www.patreon.com/astronomycast. We greatly appreciate your support!

If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!

Researchers Just Scanned 14 Worlds From the Kepler Mission for “Technosignatures”, Evidence of Advanced Civilizations

A team of astronomers from UCLA searched for "technosignatures" in the Kepler field data. Credit and Copyright: Danielle Futselaar

When it comes to looking for life on extra-solar planets, scientists rely on what is known as the “low-hanging fruit” approach. In lieu of being able to observe these planets directly or up close, they are forced to look for “biosignatures” – substances that indicate that life could exist there. Given that Earth is the only planet (that we know of) that can support life, these include carbon, oxygen, nitrogen and water.

However, while the presence of these elements are a good way of gauging “habitability”, they are not necessarily indications that extra-terrestrial civilizations exist. Hence why scientists engaged in the Search for Extra-Terrestrial Intelligence (SETI) also keep their eyes peeled for “technosignatures”. Targeting the Kepler field, a team of scientists recently conducted a study that examined 14 planetary systems for indications of intelligent life.

The study, titled “A search for technosignatures from 14 planetary systems in the Kepler field with the Green Bank Telescope at 1.15-1.73 GHz“, recently appeared online and is being reviewed for publication by The Astronomical Journal. The team was led by Jean-Luc Margot, the Chair of the UCLA Department of Earth, Planetary, and Space Sciences (UCLA EPSS) and a Professor with UCLA’s Department of Physics and Astronomy.

The Green Bank Telescope is the world’s largest, fully-steerable telescope, which is currently being used in a new SETI (Search for Extraterrestrial Intelligence) attempt to look for possible alien radio signals from Tabby’s Star. Credit: NRAO/AUI/NSF

In addition to Margot, the team consisted of 15 graduate and undergraduate students from UCLA and a postdoctoral researcher from the Green Bank Observatory and the Center for Gravitational Waves and Cosmology at West Virginia University. All of the UCLA students participated in the 2016 course, “Search for Extraterrestrial Intelligence: Theory and Applications“.

Together, the team selected 14 systems from the Kepler catalog and examined them for technosignatures. While radio waves are a common occurrence in the cosmos, not all sources can be easily attributed to natural causes. Where and when this is the case, scientists conduct additional studies to try and rule out the possibility that they are a technosignature. As Professor Margot told Universe Today via email:

“In our article, we define a “technosignature” as any measurable property or effect that provides scientific evidence of past or present technology, by analogy with “biosignatures,” which provide evidence of past or present life.”

For the sake of their study, the team conducted an L-band radio survey of these 14 planetary systems. Specifically, they looked for signs of radio waves in the 1.15 to 1.73 gigahertz (GHz) range. At those frequencies, their study is sensitive to Arecibo-class transmitters located within 450 light-years of Earth. So if any of these systems have civilizations capable of building radio observatories comparable to Arecibo, the team hoped to find out!

Spring 2016 UCLA SETI class with Larry Lesyna. Credit: UCLA

“We searched for signals that are narrow (< 10 Hz) in the frequency domain,” said Margot. “Such signals are technosignatures because natural sources do not emit such narrowband signals… We identified approximately 850,000 candidate signals, of which 19 were of particular interest. Ultimately, none of these signals were attributable to an extraterrestrial source.”

What they found was that of the 850,000 candidate signals, about 99% of them were automatically ruled out because they were quickly determined to be the result of human-generated radio-frequency interference (RFI). Of the remaining candidates, another 99% were also flagged as anthropogenic because their frequencies overlapped with other known sources of RFI – such as GPS systems, satellites, etc.

The 19 candidate signals that remained were heavily scrutinized, but none could be attributed to an extraterrestrial source. This is key when attempting to distinguish potential signs of intelligence from radio signals that come from the only intelligence we know of (i.e. us!) Hence why astronomers have historically been intrigued by strong narrowband signals (like the WOW! Signal, detected in 1977) and the Lorimer Burst detected in 2007.

In these cases, the sources appeared to be coming from the Messier 55 globular cluster and the Large Magellanic Cloud, respectively. The latter was especially fascinating since it was the first time that astronomers had observered what are now known as Fast Radio Bursts (FRBs). Such bursts, especially when they are repeating in nature, are considered to be one of the best candidates in the search for intelligent, technologically-advanced life.

The UCLA SETI Group banner, featuring a photo of the central region of the Milky Way Galaxy. Credit: Yuri Beletsky/Carnegie Las Campanas Observatory

Unfortunately, these sources are still being investigated and scientists cannot attribute them to unnatural causes just yet. And as Professor Margot indicated, this study (which covered only 14 of the many thousand exoplanets discovered by Kepler) is just the tip of the iceberg:

“Our study encompassed only a small fraction of the search volume.  For instance, we covered less than five-millionths of the entire sky.  We are eager to scale the effort to sample a larger fraction of the search volume. We are currently seeking funds to expand our search.”

Between Kepler‘s first and second mission (K2), a total of 5,118 candidates and 2,538 confirmed exoplanets have been discovered within our galaxy alone. As of February 1st, 2018, a grand total of 3,728 exoplanets have been confirmed in 2,794 systems, with 622 systems having more than one planet. On top of that, a team of researchers from the University of Oklahoma recently made the first detection of extra-galactic planets as well!

It would therefore be no exaggeration to say that the hunt for ETI is still in its infancy, and our efforts are definitely beginning to pick up speed. There is literally a Universe of possibilities out there and to think that there are no other civilizations that are also looking for us seems downright unfathomable. To quote the late and great Carl Sagan: “The Universe is a pretty big place. If it’s just us, seems like an awful waste of space.”

And be sure to check out this video of the 2017 UCLA SETI Group, courtesy of the UCLA EPSS department:

Further Reading: arXiv

The Solar System Probably has Thousands of Captured Interstellar Asteroids

Artist’s impression of the first interstellar asteroid/comet, "Oumuamua". This unique object was discovered on 19 October 2017 by the Pan-STARRS 1 telescope in Hawaii. Credit: ESO/M. Kornmesser

On October 19th, 2017, the Panoramic Survey Telescope and Rapid Response System-1 (Pan-STARRS-1) in Hawaii announced the first-ever detection of an interstellar asteroid, named 1I/2017 U1 (aka. ‘Oumuamua). Originally thought to be a comet, this interstellar visitor quickly became the focus of follow-up studies that sought to determine its origin, structure, composition, and rule out the possibility that it was an alien spacecraft!

While ‘Oumuamua is the first known example of an interstellar asteroid reaching our Solar System, scientists have long suspected that such visitors are a regular occurrence. Aiming to determine just how common, a team of researchers from Harvard University conducted a study to measure the capture rate of interstellar asteroids and comets, and what role they may play in the spread of life throughout the Universe.

The study, titled “Implications of Captured Interstellar Objects for Panspermia and Extraterrestrial Life“, recently appeared online and is being considered for publication in The Astrophysical Journal. The study was conducted by Manasavi Lingam, a postdoc at the Harvard Institute for Theory and Computation (ITC), and Abraham Loeb, the chairman of the ITC and a researcher at the Harvard-Smithsonian Center for Astrophysics (CfA).

For the sake of their study, Lingam and Loeb constructed a three-body gravitational model, where the physics of three bodies are used to compute their respective trajectories and interactions with one another. In Lingam and Loeb’s model, Jupiter and the Sun served as the two massive bodies while a far less massive interstellar object served as the third. As Dr. Loeb explained to Universe Today via email:

“The combined gravity of the Sun and Jupiter acts as a ‘fishing net’. We suggest a new approach to searching for life, which is to examine the interstellar objects captured by this fishing net instead of the traditional approach of looking through telescope or traveling with spacecrafts to distant environments to do the same.”

Using this model, the pair then began calculating the rate at which objects comparable in size to ‘Oumuamua would be captured by the Solar System, and how often such objects would collide with the Earth over the course of its entire history. They also considered the Alpha Centauri system as a separate case for the sake of comparison. In this binary system, Alpha Centauri A and B serve as the two massive bodies and an interstellar asteroid as the third.

As Dr. Lingam indicated:

“The frequency of these objects is determined from the number density of such objects, which has been recently updated based on the discovery of ‘Oumuamua. The size distribution of these objects is unknown (and serves as a free parameter in our model), but for the sake of obtaining quantitative results, we assumed that it was similar to that of comets within our Solar System.”

The theory of Lithopanspermia states that life can be shared between planets within a planetary system. Credit: NASA

In the end, they determined that a few thousands captured objects might be found within the Solar system at any time – the largest of which would be tens of km in radius. For the Alpha Centauri system, the results were even more interesting. Based on the likely rate of capture, and the maximum size of a captured object, they determined that even Earth-sized objects could have been captured in the course of the system’s history.

In other words, Alpha Centauri may have picked up some rogue planets over time, which would have had drastic impact on the evolution  of the system. In this vein, the authors also explored how objects like ‘Oumuamua could have played a role in the distribution of life throughout the Universe via rocky bodies. This is a variation on the theory of lithopanspermia, where microbial life is shared between planets thanks to asteroids, comets and meteors.

In this scenario, interstellar asteroids, which originate in distant star systems, would be the be carriers of microbial life from one system to another. If such asteroids collided with Earth in the past, they could be responsible for seeding our planet and leading to the emergence of life as we know it. As Lingam explained:

“These interstellar objects could either crash directly into a planet and thus seed it with life, or be captured into the planetary system and undergo further collisions within that system to yield interplanetary panspermia (the second scenario is more likely when the captured object is large, for e.g. a fraction of the Earth’s radius).”

In addition, Lingam and Loeb offered suggestions on how future visitors to our Solar System could be studied. As Lingam summarized, the key would be to look for specific kinds of spectra from objects in our Solar Systems:

“It may be possible to look for interstellar objects (captured/unbound) in our Solar system by looking at their trajectories in detail. Alternatively, since many objects within the Solar system have similar ratios of oxygen isotopes, finding objects with very different isotopic ratios could indicate their interstellar origin. The isotope ratios can be determined through high-resolution spectroscopy if and when interstellar comets approach close to the Sun.”

“The simplest way to single out the objects who originated outside the Solar System, is to examine the abundance ratio of oxygen isotopes in the water vapor that makes their cometary tails,” added Loeb. “This can be done through high resolution spectroscopy. After identifying a trapped interstellar object, we could launch a probe that will search on its surface for signatures of primitive life or artifacts of a technological civilization.”

It would be no exaggeration to say that the discovery of ‘Oumuamua has set off something of a revolution in astronomy. In addition to validating something astronomers have long suspected, it has also provided new opportunities for research and the testing of scientific theories (such as lithopanspermia).

In the future, with any luck, robotic missions will be dispatched to these bodies to conduct direct studies and maybe even sample return missions. What these reveal about our Universe, and maybe even the spread of life throughout, is sure to be very illuminating!

Further Reading: arXiv

Weekly Space Hangout – Feb 7, 2018: Weekly News Roundup

Hosts:
Dr. Kimberly Cartier (KimberlyCartier.org / @AstroKimCartier )
Dr. Morgan Rehnberg (MorganRehnberg.com / @MorganRehnberg & ChartYourWorld.org)

Special Guest Hosts:
Dr. Pamela Gay (cosmoquest.org / @starstryder )
Dr. Nicole Gugliucci (@noisyastronomer)

While Fraser and Paul are in Iceland, Kimberly and Morgan hold down the fort, and have Pamela and Nicole join to discuss the major news of the week – like the SpaceX Falcon Heavy successful launch!

Announcements:
If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!

We record the Weekly Space Hangout every Wednesday at 5:00 pm Pacific / 8:00 pm Eastern. You can watch us live on Universe Today, or the Weekly Space Hangout YouTube page – Please subscribe!