Space debris is a growing problem, so companies are working on ways to mitigate it. A new satellite called ADRAS-J was built and launched to demonstrate how a spacecraft could rendezvous with a piece of space junk, paving the path for future removal. Astroscale Japan Inc, the Japanese company behind the satellite, released a new picture from the mission showing a close image of its target space debris, a discarded Japanese H2A rocket’s upper stage, captured from just a few hundred meters away.
Continue reading “This is an Actual Picture of Space Debris”Insanely Detailed Webb Image of the Horsehead Nebula
Few space images are as iconic as those of the Horsehead Nebula. Its shape makes it instantly recognizable. Over the decades, a number of telescopes have captured its image, turning it into a sort of test case for a telescope’s power.
The JWST has them all beat.
Continue reading “Insanely Detailed Webb Image of the Horsehead Nebula”Binary Stars Form in the Same Nebula But Aren’t Identical. Now We Know Why.
It stands to reason that stars formed from the same cloud of material will have the same metallicity. That fact underpins some avenues of astronomical research, like the search for the Sun’s siblings. But for some binary stars, it’s not always true. Their composition can be different despite forming from the same reservoir of material, and the difference extends to their planetary systems.
New research shows that the differences can be traced back to their earliest stages of formation.
Continue reading “Binary Stars Form in the Same Nebula But Aren’t Identical. Now We Know Why.”Earth Had a Magnetosphere 3.7 Billion Years Ago
We go about our daily lives sheltered under an invisible magnetic field generated deep inside Earth. It forms the magnetosphere, a region dominated by the magnetic field. Without that planetary protection shield, we’d experience harmful cosmic radiation and charged particles from the Sun.
Continue reading “Earth Had a Magnetosphere 3.7 Billion Years Ago”Astronomers Think They’ve Found Examples of the First Stars in the Universe
When the first stars in the Universe formed, the only material available was primordial hydrogen and helium from the Big Bang. Astronomers call these original stars Population Three stars, and they were extremely massive, luminous, and hot stars. They’re gone now, and in fact, their existence is hypothetical.
But if they did exist, they should’ve left their fingerprints on nearby gas, and astrophysicists are looking for it.
Continue reading “Astronomers Think They’ve Found Examples of the First Stars in the Universe”First Light from Einstein Probe: A Supernova Remnant
On 9 January 2024, the Einstein probe was launched, its mission to study the night sky in X-rays. The first image from the probe that explores the Universe in these energetic wavelengths has just been released. It shows Puppis A, the supernova remnant from a massive star that exploded 4,000 years ago. The image showed the expanding cloud of ejecta from the explosion but now, Einstein will continue to scan the skies for other X-ray events.
Continue reading “First Light from Einstein Probe: A Supernova Remnant”Galaxies Evolved Surprisingly Quickly in the Early Universe
Anyone familiar with astronomy will know that galaxies come in a fairly limited range of shapes, typically; spiral, elliptical, barred-spiral and irregular. The barred-spiral galaxy has been known to be a feature of the modern universe but a study from astronomers using the Hubble Space Telescope has recently challenged that view. Following on observations using the James Webb Space Telescope has found the bar feature in some spiral galaxies as early as 11 billion years ago suggesting galaxies evolved faster in the early Universe than previously expected.
Continue reading “Galaxies Evolved Surprisingly Quickly in the Early Universe”How Knot Theory Can Help Spacecraft Can Change Orbits Without Using Fuel
When a spacecraft arrives at its destination, it settles into an orbit for science operations. But after the primary mission is complete, there might be other interesting orbits where scientists would like to explore. Maneuvering to a different orbit requires fuel, limiting a spacecraft’s number of maneuvers.
Researchers have discovered that some orbital paths allow for no-fuel orbital changes. But the figuring out these paths also are computationally expensive. Knot theory has been shown to find these pathways more easily, allowing the most fuel-efficient routes to be plotted. This is similar to how our GPS mapping software plots the most efficient routes for us here on Earth.
Continue reading “How Knot Theory Can Help Spacecraft Can Change Orbits Without Using Fuel”Another New Molecule Discovered Forming in Space
The list of chemicals found in space is growing longer and longer. Astronomers have found amino acids and other building blocks of life on comets, asteroids, and even floating freely in space. Now, researchers have found another complex chemical to add to the list.
Continue reading “Another New Molecule Discovered Forming in Space”JWST Uses “Interferometry Mode” to Reveal Two Protoplanets Around a Young Star
The JWST is flexing its muscles with its interferometry mode. Researchers used it to study a well-known extrasolar system called PDS 70. The goal? To test the interferometry mode and see how it performs when observing a complex target.
Continue reading “JWST Uses “Interferometry Mode” to Reveal Two Protoplanets Around a Young Star”