Astronomy Cast Ep. 456: Pluto Revisited

This week, we return to our starting point, where Astronomy Cast began: Pluto. 11 years on, we have a whole new appreciate for the dwarf planet Pluto. We’ve visited it, probed it and taken pictures. It’s time for an update.

We usually record Astronomy Cast every Friday at 1:30 pm PDT / 4:30 pm EDT/ 20:30 PM UTC (8:30 GMT). You can watch us live on AstronomyCast.com, or the AstronomyCast YouTube page.

Visit the Astronomy Cast Page to subscribe to the audio podcast!

If you would like to support Astronomy Cast, please visit our page at Patreon here – https://www.patreon.com/astronomycast. We greatly appreciate your support!

If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!

Chinese Astronomers Spot Two New Hypervelocity Stars

An artist's conception of a hypervelocity star that has escaped the Milky Way. Credit: NASA

Most stars in our galaxy behave predictably, orbiting around the center of the Milky Way at speeds of about 100 km/s (62 mi/s). But some stars achieve velocities that are significantly greater, to the point that they are even able to escape the gravitational pull of the galaxy. These are known as hypervelocity stars (HVS), a rare type of star that is believed to be the result of interactions with a supermassive black hole (SMBH).

The existence of HVS is something that astronomers first theorized in the late 1980s, and only 20 have been identified so far. But thanks to a new study by a team of Chinese astronomers, two new hypervelocity stars have been added to that list. These stars, which have been designated LAMOST-HVS2 and LAMOST-HVS3, travel at speeds of up to 1,000 km/s (620 mi/s) and are thought to have originated in the center of our galaxy.

The study which describes the team’s findings, titled “Discovery of Two New Hypervelocity Stars From the LAMOST Spectroscopic Surveys“, recently appeared online. Led by Yang Huang of the South-Western Institute for Astronomy Research at Yunnan University in Kunming, China, the team relied on data from Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) to detect these two new hypervelocity stars.

Footprint of the LAMOST pilot survey and the first three years’ general survey. Credit: LAMOST

Astronomers estimates that only 1000 HVS exist within the Milky Way. Given that there are as many as 200 billion stars in our galaxy, that’s just 0.0000005 % of the galactic population. While these stars are thought to originate in the center of our galaxy – supposedly as a result of interaction with our SMBH, Sagittarius A* – they manage to travel pretty far, sometimes even escaping our galaxy altogether.

It is for this very reason that astronomers are so interested in HVS. Given their speed, and the vast distances they can cover, tracking them and creating a database of their movements could provide constraints on the shape of the dark matter halo of our galaxy. Hence why Dr. Huang and his colleagues began sifting through LAMOST data to find evidence of new HVS.

Located in Hebei Province, northwestern China, the LAMOST observatory is operated by the Chinese Academy of Sciences. Over the course of five years, this observatory conducted a spectroscopic survey of 10 million stars in the Milky Way, as well as millions of galaxies. In June of 2017, LAMOST released its third Data Release (DR3), which included spectra obtained during the pilot survey and its first three years’ of regular surveys.

Containing high-quality spectra of 4.66 million stars and the stellar parameters of an additional 3.17 million, DR3 is currently the largest public spectral set and stellar parameter catalogue in the world. Already, LAMOST data had been used to identify one hypervelocity star, a B1IV/V-type (main sequence blue subgiant/subdwarf) star that was 11 Solar Masses, 13490 times as bright as our Sun, and had an effective temperature of 26,000 K (25,727 °C; 46,340 °F).

Artist’s impression of hypervelocity stars (HVSs) speeding through the Galaxy. Credit: ESA

This HVS was designated LAMOST-HSV1, in honor of the observatory. After detecting two new HVSs in the LAMOST data, these stars were designated as LAMOST-HSV2 and LAMOST-HSV3. Interestingly enough, these newly-discovered HVSs are also main sequence blue subdwarfs – or a B2V-type and B7V-type star, respectively.

Whereas HSV2 is 7.3 Solar Masses, is 2399 times as luminous as our Sun, and has an effective temperature of 20,600 K (20,327 °C; 36,620 °F), HSV3 is 3.9 Solar Masses, is 309 times as luminous as the Sun, and has an effective temperature of 14,000 K (24,740 °C; 44,564 °F). The researchers also considered the possible origins of all three HVSs based on their spatial positions and flight times.

In addition to considering that they originated in the center of the Milky Way, they also consider alternate possibilities. As they state in their study:

“The three HVSs are all spatially associated with known young stellar structures near the GC, which supports a GC origin for them. However, two of them, i.e. LAMOST-HVS1 and 2, have life times smaller than their flight times, indicating that they do not have enough time to travel from the GC to the current positions unless they are blue stragglers (as in the case of HVS HE 0437-5439). The third one (LAMOST-HVS3) has a life time larger than its flight time and thus does not have this problem.

In other words, the origins of these stars is still something of a mystery. Beyond the idea that they were sped up by interacting with the SMBH at the center of our galaxy, the team also considered other possibilities that have suggested over the years.

Artist’s impression of the ESA’s Gaia spacecraft, looking into the heart of the Milky Way  Galaxy. Credit: ESA/ATG medialab/ESO/S. Brunier

As they state in these study, these “include the tidal debris of an accreted and disrupted dwarf galaxy (Abadi et al. 2009), the surviving companion stars of Type Ia supernova (SNe Ia) explosions (Wang & Han 2009), the result of dynamical interaction between multiple stars (e.g, Gvaramadze et al. 2009), and the runaways ejected from the Large Magellanic Cloud (LMC), assuming that the latter hosts a MBH (Boubert et al. 2016).”

In the future, Huang and his colleagues indicate that their study will benefit from additional information that will be provided by the ESA’s Gaia mission, which they claim will shed additional light on how HVS behave and where they come from. As they state in their conclusions:

“The upcoming accurate proper motion measurements by Gaia should provide a direct constraint on their origins. Finally, we expect more HVSs to be discovered by the ongoing LAMOST spectroscopic surveys and thus to provide further constraint on the nature and ejection mechanisms of HVSs.”

Further Reading: arXiv

X-37B Secret Air Force Spaceplane Blasts Off on SpaceX Falcon 9 as Monster Hurricane Irma Threatens Florida Peninsula

USAF X-37B military spaceplane blasts off with picturesque water reflections at 10 a.m. EDT (1400 UTC) Sept. 7, 2017 on a SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com
USAF X-37B military spaceplane blasts off with picturesque water reflections at 10 a.m. EDT (1400 UTC) Sept. 7, 2017 on a SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – Amidst the frenzy of ‘Sunshine State’ preparations for Cat 5 monster Hurricane Irma and quite dismal weather favorability odds, the skies surrounding the Florida Space Coast suddenly parted just in the nick of time enabling the Air Force’s secret military X-37B spaceplane to blast off this morning (Sept. 7) on a SpaceX Falcon 9 as the booster nailed another thrilling ground landing back at the Cape.

The SpaceX Falcon 9 roared to life at 10 a.m. EDT (1400 UTC) Thursday morning and soared aloft from seaside Launch Complex 39A on NASA’s Kennedy Space Center into nearly clear blue skies after the classified launch time was kept guarded until just 10 minutes before liftoff.

Due to the potential for catastrophic destruction from approaching Hurricane Irma this was the last chance for the X-37B to escape Florida to orbit before the Kennedy Space Center and Cape Canaveral Air Force Station almost certainly close on Friday, the backup launch opportunity.

The X-37B OTV spaceplane reached orbit as planned on SpaceX’s 13th launch of the year.

“The 45th Space Wing successfully launched a SpaceX Falcon 9 launch vehicle Sept. 7, 2017, from Kennedy Space Center’s Launch Complex 39A,” the USAF and 45th Space Wing confirmed in a post launch statement.

The Falcon 9 launch was absolutely gorgeous taking place under near perfect weather conditions at launch time and putting on a long sky show as the rocket accelerated to orbit with its precious cargo.

USAF X-37B military spaceplane blasts off with picturesque water reflections at 10 a.m. EDT (1400 UTC) Sept. 7, 2017 on a SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

The nine Merlin 1D first stage engines ignited to generate a combined 1.7 million pounds of thrust fueled by liquid oxygen and RP-1 propellants, sending a huge exhaust plume billowing from behind as the rocket ascended off pad 39A and thundered aloft.

After first stage burnout and main engine cutoff the stages separated at T plus 2 min 26 seconds.

After successfully delivering the secret USAF mini-shuttle to orbit, SpaceX engineers completed the 2nd half of the double headed space spectacular when the Falcon 9 first stage booster successfully made a guided soft landing back at Cape Canaveral Air Force Station (CCAFS).

The boosters high speed descent generated multiple shockingly loud sonic booms as the 156-foot-tall first stage approached SpaceX’s dedicated Landing Zone-1 (LZ-1) on CCAFS that reverberated for dozens and dozens of miles across and beyond the Space coast region.

The mid-morning daylight first stage precision guided landing offered spectators a magnificent up close view of the rocket reusability technology envisioned by SpaceX’s billionaire CEO Elon Musk to drastically slash the high costs of launching people and payloads to space.

SpaceX Falcon 9 first stage fires Merlin 1D engine in final moments of descent to accomplish successful propulsive touchdown at Landing Zone-1 (LZ-1) after SpaceX launched the USAF X-37B military spaceplane on its 5th flight to space on the OTV-5 mission at 10 a.m. EDT (1400 UTC) Sept. 7, 2017 from pad 39A at KSC. Credit: Ken Kremer/Kenkremer.com

Meanwhile, Hurricane Irma continues barreling towards Florida packing winds of 185 mph as one of the strongest Atlantic storms ever. It is being closely tracked in incredibly high resolution by the new NASA/NOAA GOES-16 (GOES-R) satellite launched late last year on a ULA Atlas V in Nov 2016.

Here’s the latest storm track updated to Friday morning Sep 8:

Hurricane Irma Cone forecast on Sept 8, 2017 from the National Hurricane Center. Credit: NHC

The X-37B reusable mini-shuttle is a secretive technology testing spaceplane flying on its fifth mission overall for the U.S. Air Force Rapid Capabilities Office.

“The OTV is designed to demonstrate reusable spacecraft technologies for America’s future in space and operate experiments, which can be returned to and examined on Earth,” said the USAF.

Launch of the SpaceX Falcon 9 on Sept. 7 , 2017 carrying the X-37B mini-shuttle to orbit for the USAF. Credit: Julian Leek

Also known as the Orbital Test Vehicle, the X-37B launched on the OTV-5 mission marks the programs maiden liftoff on the 230-foot-tall SpaceX Falcon 9.

All four prior OTV missions launched on the United Launch Alliance Atlas V and ended with runway landings in either California of Florida.

USAF X-37B military mini-shuttle lifts off at 10 a.m. EDT Sept. 7, 2017 on a SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

The X-37B launches vertically like a satellite but lands horizontally like an airplane and functions as a reliable and reusable space test platform for the U.S. Air Force.

The Boeing-built X-37B is processed for flight at the Kennedy Space Center, FL, using refurbished former NASA space shuttle processing facilities (OPFs) now dedicated to the reusable mini-shuttle, also named the Orbital Test Vehicle (OTV).

The USAF X-37B Orbital Test Vehicle is set for blastoff on Sept. 7, 2017, onboard a SpaceX Falcon 9 launch vehicle from Launch Complex 39A (LC-39A) at Kennedy Space Center in Florida. Photo: Boeing/USAF

The last blastoff of the X-37B took place more than 2 years ago on May 20, 2015 when the OTV-4 mission launched on a ULA Atlas V on May 20, 2015 from Space Launch Complex-41 on Cape Canaveral Air Force Station.

After spending a record setting 718 days in orbit, the X-37B vehicle completed its fourth mission with a runway landing back at KSC’s Shuttle Landing Facility earlier this year on May 7, 2017.

Overall the OTV unmanned spacecraft have spent a total of 2,085 days in orbit.

The 11,000 pound (4990 kg) state-of-the art reusable OTV space plane is about a quarter the size of a NASA space shuttle. The vehicle measures 29 ft 3 in (8.9 m) in length with a wingspan of 14 ft 11 in (4.5 m).

The X-37B was originally developed by NASA but was transferred to the Defense Advanced Research Projects Agency (DARPA) in 2004.

Since then most but not all of the spaceplane’s goals have been shrouded in secrecy.

Sept. 7 , 2017 liftoff of the SpaceX Falcon 9 on Sept. 7, 2017 carrying the X-37B mini-shuttle to orbit for the USAF. Credit: Jeff Seibert
SpaceX Falcon 9 rocket rolls horizontally up incline at Launch Complex 39A at the Kennedy Space Center on 6 Sept. 2017. The rocket is being processed for liftoff of the X-37B OTV-5 mini-shuttle mission scheduled for Sept. 7, 2017. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing onsite X-37B OTV-5 and NASA mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Up close head on view of SpaceX Falcon 9 rocket rolling horizontally up incline at Launch Complex 39A at the Kennedy Space Center on 6 Sept. 2017. The rocket is being processed for liftoff of the X-37B OTV-5 mini-shuttle mission scheduled for Sept. 7, 2017. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket rolls horizontally up incline at Launch Complex 39A at the Kennedy Space Center on 6 Sept. 2017 ahead of liftoff of the X-37B OTV-5 spaceplane mission on Sept. 7, 2017. Credit: Julian Leek

Second Fastest Pulsar Spins 42,000 Times a Minute

Artist's illustration of a rotating neutron star, the remnants of a super nova explosion. Credit: NASA, Caltech-JPL

Pulsars are what remains when a massive star undergoes gravitational collapse and explodes in a supernova. These remnants (also known as neutron stars) are extremely dense, with several Earth-masses crammed into a space the size of a small country. They also have powerful magnetic fields, which causes them to rotate rapidly and emit powerful beams of gamma rays or x-rays – which lends them the appearance of a lighthouse.

In some cases, pulsars spin especially fast, taking only milliseconds to complete a single rotation. These “millisecond pulsars” remain a source of mystery for astronomers. And after following up on previous observations, researchers using the Low Frequency Array (LOFAR) radio telescope in the Netherlands identified a pulsar (PSR J0952?0607) that spins more than 42,000 times per minute, making it the second-fastest pulsar ever discovered.

The study which described their findings, titled “LOFAR Discovery of the Fastest-spinning Millisecond Pulsar in the Galactic Field“, recently appeared in The Astrophysical Journal Letters. Led by Dr. Cees Bassa, an astrophysicist from the University of Utrecht and the Netherlands Institute for Radio Astronomy (ASTRON), the team conducted follow-up observations of PSR J0952?0607, a millisecond pulsar located 3,200 to 5,700 light-years away.

An all-sky view in gamma ray light made with the Fermi gamma ray space telescope. Credit: NASA/DOE/International LAT Team

This study was part of an ongoing LOFAR survey of energetic sources originally identified by NASA’s Fermi Gamma-ray space telescope. The purpose of this survey was to distinguish between the gamma-ray sources Fermi detected, which could have been caused by neutron stars, pulsars, supernovae or the regions around black holes. As Elizabeth Ferrara, a member of the discovery team at NASA’s Goddard Space Center, explained in a NASA press release:

“Roughly a third of the gamma-ray sources found by Fermi have not been detected at other wavelengths. Many of these unassociated sources may be pulsars, but we often need follow-up from radio observatories to detect the pulses and prove it. There’s a real synergy across the extreme ends of the electromagnetic spectrum in hunting for them.”

Their follow-up observations indicated that this particular source was a pulsar that spins at a rate of 707 revolutions (Hz) per second, which works out to 42,000 revolutions per minute. This makes it, by definition, a millisecond pulsar. The team also confirmed that it is about 1.4 Solar Masses and is orbited every 6.4 hours by a companion star that has been stripped down to less than 0.05 Jupiter masses.

The presence of this lightweight companion is a further indication of how the spin of this pulsar became so rapid. Over time, matter would have been stripped away from the star, gradually accreting onto PSR J0952?0607. This would not only raise its spin rate but also greatly increase its electromagnetic emissions. The process continues to this day, with the star becoming increasingly smaller as the pulsar becomes more energetic.

Artist’s impression of a pulsar siphoning material from a companion star. Credit: NASA

Because of the nature of this relationship (which can only be described as “cannibalistic”), systems like PSR J0952?0607 are often called “black widow” or “redback” pulsars. Most of these systems were found by following up on sources identified by the Fermi mission, since the process has been known to result in a considerable amount of electromagnetic radiation being released.

Beyond the discovery of this record-setting pulsar, the LOFAR discovery could also be an indication that there is a new population of ultra-fast spinning pulsars in our Universe. As Dr. Bassa explained:

“LOFAR picked up pulses from J0952 at radio frequencies around 135 MHz, which is about 45 percent lower than the lowest frequencies of conventional radio searches. We found that J0952 has a steep radio spectrum, which means its radio pulses fade out very quickly at higher frequencies. It would have been a challenge to find it without LOFAR.”

The fastest spinning pulsar known, PSR J1748-2446ad, spins just slightly faster than PSR J0952?0607 – reaching a rate of nearly 43,000 rpm (or 716 revolutions per second). But some theorists think that pulsars could spin as fast as 72,000 rpm (almost twice as fast) before breaking up. This remains a theory, since rapidly-spinning pulsars are rather difficult to detect.

But with the help of instrument like LOFAR, that could be changing. For instance, both PSR J1748-2446ad and PSR J0952?0607 were shown to have steep spectra – much like radio galaxies and Active Galactic Nuclei.  The same was true of J1552+5437, another millisecond pular detected by LOFAR which spins at 25,000 rpm.

As Ziggy Pleunis – a doctoral student at McGill University in Montreal and a co-author on the study – indicated, this could be a sign that the fastest-spinning pulsars are just waiting to be found.

“There is growing evidence that the fastest-spinning pulsars tend to have the steepest spectra,” he said. “Since LOFAR searches are more sensitive to these steep-spectrum radio pulsars, we may find that even faster pulsars do, in fact, exist and have been missed by surveys at higher frequencies.”

As with many other areas of astronomical research, improvements in instrumentation and methodology are allowing for new and exciting discoveries. As expected, some of the things we are finding are forcing astronomers to rethink more than a few previously-held assumptions about the nature and limits of certain phenomena.

Be sure to enjoy this NASA video that explains “black widow” pulsars and the ongoing search to find them:

Further Reading: NASA, Astrophysical Journal Letters

Secret X-37B Military Mini-Shuttle Set for SpaceX Blastoff/Landing Sept. 7 as Cat 5 Hurricane Irma Forces Florida State of Emergency – Watch Live

SpaceX Falcon 9 rocket rolls horizontally up incline at Launch Complex 39A at the Kennedy Space Center on 6 Sept. 2017. The rocket is being processed for liftoff of the X-37B OTV-5 mini-shuttle mission scheduled for Sept. 7, 2017. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket rolls horizontally up incline at Launch Complex 39A at the Kennedy Space Center on 6 Sept. 2017. The rocket is being processed for liftoff of the X-37B OTV-5 mini-shuttle mission scheduled for Sept. 7, 2017. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – Although its far from sunny in the so called ‘Sunshine State’ the secret X-37B military mini-shuttle is set for a SpaceX blastoff and booster landing combo Thursday, Sept. 7 – even as the looming threat from Cat 5 Hurricane Irma forced Florida’s Governor to declare a statewide ‘State of Emergency.’

Launch preparations were in full swing today on Florida’s Space Coast for liftoff of the hi tech USAF X-37B reusable spaceplane- hoping to escape to orbit for the first time atop a SpaceX Falcon 9 rocket and just in the nick of time tomorrow, before the impending threat of monster storm Irma potentially lashes the launch pad at NASA’s Kennedy Space Center in the center of the states long peninsula.

Hurricane Irma Cone forecast on Sept 7, 2017 from the National Hurricane Center. Credit: NHC

Irma is packing winds of 185 mph and one of the strongest Atlantic storms ever. It is being closely tracked in incredibly high resolution by the new NASA/NOAA GOES-16 (GOES-R) satellite launched late last year on a ULA Atlas V in Nov 2016.

I witnessed the entire SpaceX Falcon 9 rocket and payload stack being rolled horizontally up the incline to the top of Launch Complex 39A late this afternoon, Sept. 6, during our media visit for up-close camera setup.

Up close head on view of SpaceX Falcon 9 rocket rolling horizontally up incline at Launch Complex 39A at the Kennedy Space Center on 6 Sept. 2017. The rocket is being processed for liftoff of the X-37B OTV-5 mini-shuttle mission scheduled for Sept. 7, 2017. Credit: Ken Kremer/kenkremer.com

Rather remarkably the relatively dismal weather forecast has brightened considerably in the final hours leading to Thursday’s scheduled launch and the forecast heavy rain showers and thunder have dissipated in the time remaining between now and liftoff.

The X-37B reusable mini-shuttle is a secretive technology testing spaceplane flying on its fifth mission overall.

Up close side view of SpaceX Falcon 9 rocket and nose cone housing the X-37B OTV-5 spaceplane slated for liftoff from Launch Complex 39A at the Kennedy Space Center on Sept. 7, 2017. Credit: Ken Kremer/kenkremer.com

The path to launch was cleared following the successful engine test firing of the Falcon 9 first stage I witnessed late last week, Thursday afternoon, Aug. 30.

During the hold down static fire test all nine Merlin 9 stage engine were ignited and fired up to full throttle for several seconds. See my static fire story here.

SpaceX conducts successful static fire test of the Falcon 9 first stage rocket at 4:30 p.m. EDT on Aug. 31, 2017 on Launch Complex 39A on NASA’s Kennedy Space Center, Fl., as seen from nearby Playalinda causeway. Liftoff of the USAF X-37B OTV-5 mini-shuttle mission is scheduled for Sept. 7, 2017. Credit: Ken Kremer/kenkremer.com

Although the exact launch time remains a closely guarded U.S. Air Force secret, liftoff of the X-37B is slated to occur sometime during a 5 hour long window.

The launch window for the X-37B on the OTV-5 mission opens at 9:50 a.m. EDT (13:50 UTC) and spans until 2:55 p.m. EDT (18:55 UTC) Sept. 7 from seaside Launch Complex 39A on NASA’s Kennedy Space Center.

SpaceX will offer their own live webcast beginning approximately 15 minutes before launch starting at about 9:35 a.m. EDT.

You can watch the launch live at NASA TV at the SpaceX hosted Webcast at – spacex.com/webcast

In the event of delay for any reason, the next launch opportunity is Friday, Sept 8 at approximately the same time and window.

However amidst the heavy duty Hurricane Irma preparations all around, nothing is certain. Local area schools in Brevard County have closed and local residents are preparing their homes and apartments to hunker down, buying food and essentials putting up storm shutters, topping off gas and energy supplies and more.

“If for any reason we cannot launch tomorrow we will reevaluate whether or not we can still support another attempt on Friday, said Wayne R. Monteith, Brig Gen, USAF, Commander, 45th Space Wing.

The weather forecast overall is about 50% chance of favorable conditions at launch time according to U.S. Air Force meteorologists with the 45th Space Wing Weather Squadron at Patrick Air Force Base. But the opportunity varies within the long window and the exact launch time is currently classified.

“Hurricane Irma is forecast to be approximately 900 miles southeast of the Spaceport during Thursday’s launch attempt, so while Irma certainly bears watching, the stalled boundary will be the main factor in Thursday’s weather,” noted the 45th Space Wing Weather Squadron.

The primary concerns on Sept. 7 are for cumulus clouds and for thick clouds in the flight path.

The odds drop to 40% favorable for the 24 hour scrub turnaround day on Friday, Sept 8

The USAF X-37B Orbital Test Vehicle is set for blastoff on Sept. 7, 2017, onboard a SpaceX Falcon 9 launch vehicle from Launch Complex 39A (LC-39A) at Kennedy Space Center in Florida. Photo: Boeing/USAF

Everything is currently on track for Thursday’s launch of the 230 foot tall SpaceX Falcon 9 on the X-37B OTV-5 mission.

“The Air Force Rapid Capabilities Office is undergoing final launch preparations for the fifth mission of the X-37B Orbital Test Vehicle [OTV],” the Secretary of the Air Force Public Affairs announced. “The OTV is scheduled to launch on Sept. 7, 2017, onboard a SpaceX Falcon 9 launch vehicle.

SpaceX Falcon 9 rocket rolls horizontally up incline at Launch Complex 39A at the Kennedy Space Center on 6 Sept. 2017 ahead of liftoff of the X-37B OTV-5 spaceplane mission on Sept. 7, 2017. Credit: Julian Leek

The X-37B will be launched for the fifth time on the OTV-5 mission atop a SpaceX Falcon 9 on Sept. 7 from Launch Complex 39A on the Kennedy Space Center Florida into low Earth orbit.

The Boeing-built X-37B is processed for flight at KSC using refurbished NASA space shuttle processing facilities now dedicated to the reusable mini-shuttle, also known as the Orbital Test Vehicle (OTV). It launches vertically like a satellite but lands horizontally like an airplane and functions as a reliable and reusable space test platform for the U.S. Air Force.

The OTV-5 mission marks the first launch of an X-37B spaceplane by SpaceX.

All four prior OTV missions launched on the United Launch Alliance Atlas V and ended with runway landings in either California or Florida.

“The many firsts on this mission make the upcoming OTV launch a milestone for the program,” said Randy Walden, the director of the Air Force Rapid Capabilities Office.

“It is our goal to continue advancing the X-37B OTV so it can more fully support the growing space community.”

Ground landing of SpaceX Falcon 9 first stage at Landing Zone-1 (LZ-1) after SpaceX launched its 12th resupply mission to the International Space Station from NASA’s Kennedy Space Center in Florida from pad 39A at 12:31 p.m. EDT on Monday, Aug. 14, 2017. Credit: Ken Kremer/Kenkremer.com

SpaceX will also attempt another land landing of the 156-foot-tall Falcon 9 first stage back at Landing Zone-1 (LZ-1) at the Cape.

The Falcon 9 first stage is equipped with a quartet of landing legs and grid fins to enable the rocket recycling plan.

Up close view of SpaceX Falcon 9 landing legs for the X-37B OTV-5 spaceplane slated for liftoff from Launch Complex 39A at the Kennedy Space Center on Sept. 7, 2017. Credit: Ken Kremer/kenkremer.com

This marks the 7th time SpaceX attempts a ground landing at the Cape.

The booster will touch down about 8 minutes after launch and generate multiple sonic booms screaming loudly across the surrounding region and beyond.

“The fifth OTV mission will also be launched into, and landed from, a higher inclination orbit than prior missions to further expand the X-37B’s orbital envelope.”

The daylight first stage precision guided landing should offer spectators a thrilling up close view of the rocket reusability technology envisioned by SpaceX’s billionaire CEO Elon Musk to drastically slash the high costs of launching to space.

Technicians work on the Air Force X-37B Orbital Test Vehicle 4, which landed at NASA’s Kennedy Space Center Shuttle Landing Facility in Florida May 7, 2017. Credit: Secretary of the Air Force Public Affairs.

The 11,000 pound (4990 kg) state-of -the art reusable OTV space plane is about a quarter the size of a NASA space shuttle. The vehicle measures 29 ft 3 in (8.9 m) in length with a wingspan of 14 ft 11 in (4.5 m).

The X-37B was originally developed by NASA but was transferred to the Defense Advanced Research Projects Agency (DARPA) in 2004.

Since then most but not all of the spaceplane’s goals have been shrouded in secrecy.

Watch for Ken’s continuing onsite X-37B OTV-5 and NASA mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

The Orbit of Earth will be Hiding Earth 2.0

According to a new study, the motions of our Sun around its center of mass could make it impossible to detect another Earth in a distant star system. Credit: ESO

In the hunt for extra-solar planets, astronomers and enthusiasts can be forgiven for being a bit optimistic. In the course of discovering thousands of rocky planets, gas giants, and other celestial bodies, is it too much to hope that we might someday find a genuine Earth-analog? Not just an “Earth-like” planet (which implies a rocky body of comparable size) but an actual Earth 2.0?

This has certainly been one of the goals of exoplanet-hunters, who are searching nearby star systems for planets that are not only rocky, but orbit within their star’s habitable zone, show signs of an atmosphere and have water on their surfaces. But according to a new study by Alexey G. Butkevich – a astrophysicist from the Pulkovo Observatory in St. Petersburg, Russia – our attempts to discover Earth 2.0 could be hindered by Earth itself!

Butkevich’s study, titled “Astrometric Exoplanet Detectability and the Earth Orbital Motion“, was recently published in the Monthly Notices of the Royal Astronomical Society. For the sake of his study, Dr. Butkevich examined how changes in the Earth’s own orbital position could make it more difficult to conduct measurements of a star’s motion around its system’s barycenter.

Artist’s impression of how an Earth-like planet might look from space. Credit: ESO.

This method of exoplanet detection, where the motion of a star around the star system’s center of mass (barycenter), is known as the Astrometic Method. Essentially, astronomers attempt to determine if the presence of gravitational fields around a star (i.e. planets) are causing the star to wobble back and forth. This is certainly true of the Solar System, where our Sun is pulled back and forth around a common center by the pull of all its planets.

In the past, this technique has been used to identify binary stars with a high degree of precision. In recent decades, it has been considered as a viable method for exoplanet hunting. This is no easy task since the wobbles are rather difficult to detect at the distances involved. And until recently, the level of precision required to detect these shifts was at the very edge of instrument sensitivity.

This is rapidly changing, thanks to improved instruments that allow for accuracy down to the microarcsecond. A good example of this is the ESA’s Gaia spacecraft, which was deployed in 2013 to catalog and measure the relative motions of billions of stars in our galaxy. Given that it can conduct measurements at 10 microarcseconds, it is believed that this mission could conduct astrometric measurements for the sake of finding exoplanets.

But as Butkevich explained, there are other problems when it comes to this method. “The standard astrometric model is based on the assumption that stars move uniformly relative to the solar system barycentre,” he states. But as he goes on to explain, when examining the effects of Earth’s orbital motion on astrometric detection, there is a correlation between the Earth’s orbit and the position of a star relative to its system barycenter.

Kepler-22b, an exoplanet with an Earth-like radius that was discovery within the habitable zone of its host star. Credit: NASA

To put it another way, Dr. Butkevich examined whether or not the motion of our planet around the Sun, and the Sun’s motion around its center of mass, could have a cancelling effect on parallax measurements of other stars. This would effectively make any measurements of a star’s motion, designed to see if there were any planets orbiting it, effectively useless. Or as Dr. Butkevich stated in his study:

“It is clear from simple geometrical considerations that in such systems the orbital motion of the host star, under certain conditions, may be observationally close to the parallactic effect or even indistinguishable from it. It means that the orbital motion may be partially or fully absorbed by the parallax parameters.”

This would be especially true of systems where the orbital period of a planet was one year, and which had an orbit that placed it close to the Sun’s ecliptic – i.e. like Earth’s own orbit! So basically, astronomers would not be able to detect Earth 2.0 using astrometric measurements, because Earth’s own orbit and the Sun’s own wobble would make detection close to impossible.

As Dr. Butkevich states in his conclusions:

“We present an analysis of effects of the Earth orbital motion on astrometric detectability of exoplanetary systems. We demonstrated that, if period of a planet is close to one year and its orbital plane is nearly parallel to the ecliptic, orbital motion of the host may be entirely or partially absorbed by the parallax parameter. If full absorption occurs, the planet is astrometrically undetectable.”
Future surveys for exoplanets could be complicated by the Sun’s own motion around its barycenter. Credit: NASA

Luckily, exoplanet-hunters have a myriad of other methods too choose from, including direct and indirect measurements. And when it comes to spotting planets around neighboring stars, two of the most effective involve measuring Doppler shifts in stars (aka. the Radial Velocity Method) and dips in a star’s brightness (aka. the Transit Method).

Nevertheless, these methods suffer from their own share of drawbacks, and knowing their limitations is the first step in refining them. In that respect, Dr. Butkevich’s study has echoes of heliocentrism and relativity, where we are reminded that our own reference point is not fixed in space, and can influence our observations.

The hunt for exoplanets is also expected to benefit greatly from deployment of next-generation instruments like the James Webb Space Telescope, the Transiting Exoplanet Survey Satellite (TESS), and others.

Further Reading: arXiv

Supermassive Black Holes or Their Galaxies? Which Came First?

Which Came First, Supermassive Black Holes of their Galaxies?
Which Came First, Supermassive Black Holes of their Galaxies?

There’s a supermassive black hole at the center of almost every galaxy in the Universe. How did they get there? What’s the relationship between these monster black holes and the galaxies that surround them?

Every time astronomers look farther out in the Universe, they discover new mysteries. These mysteries require all new tools and techniques to understand. These mysteries lead to more mysteries. What I’m saying is that it’s mystery turtles all the way down.

One of the most fascinating is the discovery of quasars, understanding what they are, and the unveiling of an even deeper mystery, where do they come from?

As always, I’m getting ahead of myself, so first, let’s go back and talk about the discovery of quasars.

Molecular clouds scattered by an intermediate black hole show very wide velocity dispersion in this artist’s impression. This scenario well explains the observational features of a peculiar molecular cloud CO-0.40-0.22. Credit: Keio University

Back in the 1950s, astronomers scanned the skies using radio telescopes, and found a class of bizarre objects in the distant Universe. They were very bright, and incredibly far away; hundreds of millions or even billion of light-years away. The first ones were discovered in the radio spectrum, but over time, astronomers found even more blazing in the visible spectrum.

The astronomer Hong-Yee Chiu coined the term “quasar”, which stood for quasi-stellar object. They were like stars, shining from a single point source, but they clearly weren’t stars, blazing with more radiation than an entire galaxy.

Over the decades, astronomers puzzled out the nature of quasars, learning that they were actually black holes, actively feeding and blasting out radiation, visible billions of light-years away.

But they weren’t the stellar mass black holes, which were known to be from the death of giant stars. These were supermassive black holes, with millions or even billions of times the mass of the Sun.

As far back as the 1970s, astronomers considered the possibility that there might be these supermassive black holes at the heart of many other galaxies, even the Milky Way.

The Whirlpool Galaxy (Spiral Galaxy M51, NGC 5194), a classic spiral galaxy located in the Canes Venatici constellation, and its companion NGC 5195. Credit: NASA/ESA

In 1974, astronomers discovered a radio source at the center of the Milky Way emitting radiation. It was titled Sagittarius A*, with an asterisk that stands for “exciting”, well, in the “excited atoms” perspective.

This would match the emissions of a supermassive black hole that wasn’t actively feeding on material. Our own galaxy could have been a quasar in the past, or in the future, but right now, the black hole was mostly silent, apart from this subtle radiation.

Astronomers needed to be certain, so they performed a detailed survey of the very center of the Milky Way in the infrared spectrum, which allowed them to see through the gas and dust that obscures the core in visible light.

They discovered a group of stars orbiting Sagittarius A-star, like comets orbiting the Sun. Only a black hole with millions of times the mass of the Sun could provide the kind of gravitational anchor to whip these stars around in such bizarre orbits.

Further surveys found a supermassive black hole at the heart of the Andromeda Galaxy, in fact, it appears as if these monsters are at the center of almost every galaxy in the Universe.

But how did they form? Where did they come from? Did the galaxy form first, and cause the black hole to form at the middle, or did the black hole form, and build up a galaxy around them?

Until recently, this was actually still one of the big unsolved mysteries in astronomy. That said, astronomers have done plenty of research, using more and more sensitive observatories, worked out their theories, and now they’re gathering evidence to help get to the bottom of this mystery.

Astronomers have developed two models for how the large scale structure of the Universe came together: top down and bottom up.

In the top down model, an entire galactic supercluster formed all at once out of a huge cloud of primordial hydrogen left over from the Big Bang. A supercluster’s worth of stars.

As the cloud came together it, it spun up, kicking out smaller spirals and dwarf galaxies. These could have combined later on to form the more complex structure we see today. The supermassive black holes would have formed as the dense cores of these galaxies as they came together.

Hubble image of Messier 54, a globular cluster located in the Sagittarius Dwarf Galaxy. Credit: ESA/Hubble & NASA

If you want to wrap your mind around this, think of the stellar nursery that formed our Sun and a bunch of other stars. Imagine a single cloud of gas and dust forming multiple stars systems within it. Over time, the stars matured and drifted away from each other.

That’s top down. One big event that leads to the structure we see today.

In the bottom up model, pockets of gas and dust collected together into larger and larger masses, eventually forming dwarf galaxies, and even the clusters and superclusters we see today. The supermassive black holes at the heart of galaxies were grown from collisions and mergers between black holes over eons.

In fact, this is actually how astronomers think the planets in the Solar System formed. By pieces of dust attracting one another into larger and larger grains until the planet-sized objects formed over millions of years.

Bottom up, small parts coming together.

Shortly after the Big Bang, the entire Universe was incredibly dense. But it wasn’t the same density everywhere. Tiny quantum fluctuations in density at the beginning evolved over billions of years of expansion into the galactic superclusters we see today.

Colliding galaxies can force the supermassive black holes in their cores together (NCSA)

I want to stop and let this sink into your brain for a second. There were microscopic variations in density in the early Universe. And these variations became the structures hundreds of millions of light-years across we see today.

Imagine the two forces at play as the expansion of the Universe happened. On the one hand, you’ve got the mutual gravity of the particles pulling one another together. And on the other hand, you’ve got the expansion of the Universe separating the particles from one another. The size of the galaxies, clusters and superclusters were decided by the balance point of those opposing forces.

If small pieces came together, then you’d get that bottom up formation. If large pieces came together, you’d get that top down formation.

When astronomers look out into the Universe at the largest scales, they observe clusters and superclusters as far as they can see – which supports the top down model.

On the other hand, observations show that the first stars formed just a few hundred million years after the Big Bang, which supports bottom up.

So the answer is both?

No, the most modern observations give the edge to the bottom up processes.

The key is that gravity moves at the speed of light, which means that the gravitational interactions between particles spreading away from each other needed to catch up, going the speed of light.

In other words, you wouldn’t get a supercluster’s worth of material coming together, only a star’s worth of material. But these first stars were made of pure hydrogen and helium, and could grow much more massive than the stars we have today. They would live fast and die in supernova explosions, creating much more massive black holes than we get today.

This illustration shows the final stages in the life of a supermassive star that fails to explode as a supernova, but instead implodes to form a black hole. Credit: NASA/ESA/P. Jeffries (STScI)

The first protogalaxies came together, collecting together these first monster black holes and the massive stars surrounding them. And then, over millions and billions of years, these black holes merged again and again, accumulating millions and even billions of times the mass of the Sun. This was how we got the modern galaxies we see today.

There was a recent observation that supports this conclusion. Earlier this year, astronomers announced the discovery of supermassive black holes at the center of relatively tiny galaxies. In our own Milky Way, the supermassive black hole is 4.1 million times the mass of the Sun, but accounts for only .01% of the galaxy’s total mass.

But astronomers from the University of Utah found two ultra compact galaxies with black holes of 4.4 million and 5.8 million times the mass of the Sun respectively. And yet, the black holes account for 13 and 18 percent of the mass of their host galaxies.

The thinking is that these galaxies were once normal, but collided with other galaxies earlier on in the history of the Universe, were stripped of their stars and then were spat out to roam the cosmos.

They’re the victims of those early merging events, evidence of the carnage that happened in the early Universe when the mergers were happening.

We always talk about the unsolved mysteries in the Universe, but this is one that astronomers are starting to puzzle out.

It seems most likely that the structure of the Universe we see today formed bottom up. The first stars came together into protogalaxies, dying as supernova to form the first black holes. The structure of the Universe we see today is the end result of billions of years of formation and destruction. With the supermassive black holes coming together over time.

Once telescopes like James Webb get to work, we should be able to see these pieces coming together, at the very edge of the observable Universe.

Now We Know When Stars Will Be Passing Through the Oort Cloud

A new study indicates that in about a million years, a star will pass close to our Solar System, sending comets towards Earth and the other planets. Credit: NASA/JPL-Caltech

To our Solar System, “close-encounters” with other stars happen regularly – the last occurring some 70,000 years ago and the next likely to take place 240,000 to 470,000 years from now. While this might sound like a “few and far between” kind of thing, it is quite regular in cosmological terms. Understanding when these encounters will happen is also important since they are known to cause disturbances in the Oort Cloud, sending comets towards Earth.

Thanks to a new study by Coryn Bailer-Jones, a researcher from the Max Planck Institute for Astronomy, astronomers now have refined estimates on when the next close-encounters will be happening. After consulting data from the ESA’s Gaia spacecraft, he concluded that over the course of the next 5 million years, that the Solar System can expect 16 close encounters, and one particularly close one!

For the sake of the study – which recently appeared in the journal Astronomy & Astrophysics under the title The Completeness-Corrected Rate of Stellar Encounters with the Sun From the First Gaia Data Release” – Dr. Bailer Jones used Gaia data to track the movements of more than 300,000 stars in our galaxy to see if they would ever pass close enough to the Solar System to cause a disturbance.

Artist’s impression of the ESA’s Gaia spacecraft. Credit: ESA/ATG medialab; background: ESO/S. Brunier

As noted, these types of disturbances have happened many times throughout the history of the Solar System. In order to dislodge icy objects from their orbit in the Oort Cloud – which extends out to about 15 trillion km (100,000 AU) from our Sun – and send them hurling into the inner Solar System, it is estimated that a star would need to pass within 60 trillion km (37 trillion mi; 400,000 AU) of our Sun.

While these close encounters pose no real risk to our Solar System, they have been known to increase comet activity. As Dr. Bailer-Jones explained to Universe Today via email:

“Their potential influence is to shake up the Oort cloud of comets surrounding our Sun, which could result in some being pushed into the inner solar system where is chance they could impact with the Earth. But the long-term probability of one such comet hitting the Earth is probably lower than the probability the Earth is hit by a near-Earth asteroid. So they don’t pose much more danger.”

One of the goals of the Gaia mission, which launched back in 2013, was to collect precise data on stellar positions and motions over the course of its five-year mission. After 14 months in space, the first catalogue was released, which contained information on more than a billion stars. This catalogue also contained the distances and motions across the sky of over two million stars.

By combining this new data with existing information, Dr. Bailer-Jones was able to calculate the motions of some 300,000 stars relative to the Sun over a five million year period. As he explained:

“I traced the orbits of stars observed by Gaia (in the so-called TGAS catalogue) backwards and forwards in time, to see when and how close they would come to the Sun. I then computed the so-called ‘completeness function’ of TGAS to find out what fraction of encounters would have been missed by the survey: TGAS doesn’t see fainter stars (and the very brightest stars are also omitted at present, for technical reasons), but using a simple model of the Galaxy I can estimate how many stars it is missing. Combining this with the actual number of encounters found, I could estimate the total rate of stellar encounters (i.e. including the ones not actually seen). This is necessarily a rather rough estimate, as it involves a number of assumptions, not least the model for what is not seen.”

From this, he was able to come up with a general estimate of the rate of stellar encounters over the past 5 million years, and for the next 5 million. He determined that the overall rate is about 550 stars per million years coming within 150 trillion km, and about 20 coming closer than 30 trillion km. This works out to about one potential close encounter every 50,000 years or so.

Dr. Bailor-Jones also determined that of the 300,000 stars he observed, 97 of them would pass within 150 trillion km (93 trillion mi; 1 million AU) of our Solar System, while 16 would come within 60 trillion km. While this would be close enough to disturb the Oort Cloud, only one star would get particularly close. That star is Gliese 710, a K-type yellow dwarf located about 63 light years from Earth which is about half the size of our Sun.

Stars speeding through the Galaxy. Credit: ESA

According to Dr. Bailer-Jones’ study, this star will pass by our Solar System in 1.3 million years, and at a distance of just 2.3 trillion km (1.4 trillion mi; 16 ,000AU). This will place it well within the Oort Cloud, and will likely turn many icy planetesimals into long-period comets that could head towards Earth. What’s more, Gliese 710 has a relatively slow velocity compared to other stars in our galaxy.

Whereas the average relative velocity of stars is estimated to be around 100.000 km/h (62,000 mph) at their closest approach, Gliese 710 will will have a speed of 50,000 km/h (31,000 mph). As a result, the star will have plenty of time to exert its gravitational influence on the Oort Cloud, which could potentially send many, many comets towards Earth and the inner Solar System.

Over the past few decades, this star has been well-documented by astronomers, and they were already pretty certain that it would experience a close encounter with our Solar System in the future. However, previous calculations indicated that it would pass within 3.1 to 13.6 trillion km (1.9 to 8.45 trillion mi; 20,722 to 90,910 AU) from our star system – and with a 90% certainty. Thanks to this most recent study, these estimates have been refined to 1.5–3.2 trillion km, with 2.3 trillion km being the most likely.

Again, while it might sound like these passes are on too large of a timescale to be of concern, in terms of the astronomical history, its a regular occurrence. And while not every close encounter is guaranteed to send comets hurling our way, understanding when and how these encounters have happened is intrinsic to understanding the history and evolution of our Solar System.

Understanding when a close encounters might happen next is also vital. Assuming we are still around when another  takes place, knowing when it is likely to happen could allow us to prepare for the worst – i.e. if a comets is set on a collision course with Earth! Failing that, humanity could use this information to prepare a scientific mission to study the comets that are sent our way.

The second release of Gaia data is scheduled for next April, and will contain information on an estimated 1 billion stars. That’s 20 times as many stars as the first catalogue, and about 1% the total number of stars within the Milky Way Galaxy. The second catalog will also include information on much more distant stars, will which allow for reconstructions of up to 25 million years into the past and future.

As Dr. Bailer-Jones indicated, the release of Gaia data has helped astronomers considerably. “[I]t greatly improves on what we had before, in both number of stars and precision,” he said. “But this is really just a taster of what will come in the second data release in April 2018, when we will provide parallaxes and proper motions for around one billion stars (500 times as many as in the first data release).”

With every new release, estimates on the movements of the galaxy’s stars (and the potential for close encounters) will be refined further. It will also help us to chart when major comet activity took place within the Solar System, and how this might have played a role in the evolution of the planets and life itself.

Further Reading: ESA

Big Solar Storm Coming Our Way, Now’s Your Chance to See Auroras

X9.3 Flare blasts off the Sun. Image credit: NASA/GSFC/SDO
X9.3 Flare blasts off the Sun. Image credit: NASA/GSFC/SDO

An X9.3 class solar flare flashes in the middle of the Sun on Sept. 6, 2017. Credit:NASA/GSFC/SDO
An X9.3 class solar flare flashes in the middle of the Sun on Sept. 6, 2017. Credit:NASA/GSFC/SDO

If you’re still riding that high from seeing the recent total solar eclipse and you want to keep the party going, now’s your chance to see another of the night sky’s wonders: an aurora. That said, a totally full Moon is going to try and wreck the party.

NASA announced that two powerful flares were just emitted on the surface of the Sun, casting coronal mass ejections in our direction. Over the course of the next couple of days, this should generate aurora activity in the sky outside the regular viewing areas. In other words, if you normally don’t see the Northern Lights where you live, you might want to spend a few hours outside tonight and tomorrow. Look up, you might see something.

The first flare, an X2.2 event, peaked on September 6 at 5:10 am EDT and the second X9.3 flare went off at 8:02 am. Both of which came from the sunspot group AR 2673. If you’ve still got those eclipse glasses, take a look at the Sun, and you should be able to see the sunspot group right now. There are two groups of sunspots close to one another, AR 2673 and AR 2674. This follows up the X4 flare emitted on September 4th.

Solar astronomers measure flares using a similar scale to other natural events, with a series of designations. The smallest are A-class, then B, C, M and finally X. Each level within the rating accounts for double the strength; it’s exponential. So, and X2 is twice as powerful as an X1, etc. The most powerful flare ever recorded was an X28 in 2003, so today’s flare is still comparatively weak to that monster.

Here's the flare in visible and ultraviolet. Credit: NASA/GSFC/SDO
Here’s the flare in visible and ultraviolet. Credit: NASA/GSFC/SDO

But, measuring in at X9.3, today’s flare is the strongest in almost a decade. The last one this strong was back in 2008. And NOAA is predicting that this flare could cause radio blackouts across the sun-facing side of the Earth. If you’re out at sea and depending on your radio transmissions, don’t be surprised if you’re getting a lot of static today.

How do you stand the best chance of seeing auroras? My favorite tool comes from NOAA’s 3-day aurora forecast. It shows you a 3-day predictive simulation for what the solar storm should do as it buffets the Earth’s magnetosphere. You can run the simulation backwards and forwards, and you’re looking glowing green areas to come across your part of the world.

But even if it doesn’t look like you’re going to see the auroras, I still think it’s worth trying. Even if you don’t get an aurora directly overhead, you can sometimes see it on the horizon, and it can be surprisingly beautiful.

Here’s my timelapse video of auroras on the horizon.

The big problem, of course, is the Moon. Tonight is also a full Moon, which means that awful glowing ball is going to rise just after sunset and blaze across the sky all night. You’re going to have a rough time seeing all but the brightest auroras. But I still think it’s worth trying.

If you want to maximize your chances of seeing an aurora, check out the Space Weather site on a regular basis. There are also services that’ll send you a text message when there’s a powerful aurora going on in your area (just Google “aurora alert text messages”. And of course, there are handy apps that’ll make your phone beep boop when there are auroras overhead. I use an app called Aurora Alert.

We’ve had three powerful flares in the last couple of days, which means that the Sun is feeling a little frisky. There could be more, and they could happen after the full Moon is over, and we’ve got some alone time with the dark sky. So stay on top of the current space weather, spend time outside, and keep your eyes on the sky. You might get a shot at seeing an aurora.

And once you’ve seen one, you’ll be hooked.

Source: NASA News Release

NASA, NOAA Satellites Track Hurricane Irma’s Path

The Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite captured this nighttime view of the Category 5 Hurricane Irma in the early hours of September 5, 2017. When the image was acquired, the storm’s center was moving due west. A National Hurricane Center forecast called for the hurricane to turn west-northwest toward the northern Leeward Islands. Credit: NASA, NOAA, Suomi NPP - VIIRS.

Record-setting Hurricane Irma barreled over the Caribbean islands of St. Martin, St. Barthelemy and Anguilla early Wednesday, destroying buildings with its sustained winds of 185 mph (297 kph), with rains and storm surges causing major flooding. The US National Hurricane Center listed the Category 5 Irma as the strongest Atlantic hurricane ever recorded north of the Caribbean and east of the Gulf of Mexico. The storm continues to roar on a path toward the U.S. and British Virgin Islands, Puerto Rico and possibly Florida, or along the southeast coast of the US.

This animation of NOAA’s GOES East satellite imagery from Sept. 3 at 8:15 a.m. EDT (1215 UTC) to Sept. 6 ending at 8:15 a.m. EDT (1215 UTC) shows Category 5 Hurricane Irma as it moved west and track over St. Martin by 8 a.m. EDT on Sept. 6:

Different models have Irma traveling on slightly different paths and officials from all the areas that might possibly be hit are telling people to prepare and follow evacuation orders. National Hurricane Center scientist Eric Blake said via twitter that some models had the storm going one way, and some another. But he cautioned everyone in a potential path should take precautions. “Model trends can be quite misleading- could just change right back. It is all probabilistic at this point. It could still miss [one particular area]. But chances of an extreme event is rising.”

The fleet of Earth-observing satellites are providing incredible views of this monster storm, and even astronauts on board the International Space Station are capturing views:

While satellite views provide the most comprehensive view of Irma’s potential track, there’s also a more ‘hands-on’ approach to getting data on hurricanes. NOAA hurricane hunter Nick Underwood posted this video while his plane flew into Hurricane Irma yesterday. The plane’s specialized instruments can take readings on the storm that forecasters can’t get anywhere else:

But Irma isn’t the only storm to keep an eye on. Tropical storms Katia and Jose are also on the horizon:

In the meantime, a launch is scheduled from Cape Canaveral on Thursday, September 7. SpaceX is hoping to launch the US Air Force’s X-37B reusable spaceplane, but current forecasts put only a 50% chance of weather suitable enough on Thursday, and only 40% on Friday. We’ll keep you posted.

For the latest satellite views, the Twitter accounts above are posting regular updates.

On Sept. 4 at 17:24 UTC, NASA-NOAA’s Suomi NPP satellite captured this view of Hurricane Irma as a Category 4 hurricane approaching the Leeward Islands.
Credits: NOAA/NASA Goddard MODIS Rapid Response Team.