NASA Moves Up Mission to Metal Asteroid Psyche

Credit: Arizona State University / NASA
This illustration depicts the spacecraft of NASA’s Psyche mission orbiting the metal asteroid Psyche (pronounced SY-kee). Solar power with electric propulsion will be used to propel the spacecraft to Psyche. The asteroid’s average distance from the sun is about three times the Earth’s distance or 280 million miles. Credit: SSL/ASU/P. Rubin/NASA/JPL-Caltech

I’m getting psyched for Psyche, which is both the name of an asteroid orbiting the sun between Mars and Jupiter and NASA’s mission to the asteroid. Part of the reason for this excitement comes from learning today that NASA has moved up the launch one year to 2022, with a planned arrival in the asteroid belt in 2026 — four years earlier than the original timeline.

The mission team calculated a new trajectory to Psyche, one eliminating the need for an Earth gravity assist, that would get the probe there about twice as fast and reduce costs.


Fly over Psyche in this cool animation

“We challenged the mission design team to explore if an earlier launch date could provide a more efficient trajectory to the asteroid Psyche, and they came through in a big way,” said Jim Green, director of the Planetary Science Division at NASA Headquarters in Washington. “This will enable us to fulfill our science objectives sooner and at a reduced cost.”

Campo del Cielo meteorites are heavy, metallic and dimpled with regmaglypts or “thumbprints” where softer materials melted away during the meteorite’s fall through the air. This small fragment was once part of a different planetary core similar to Psyche. Credit: Bob King

With a diameter of over 120 miles (200 km), Psyche is one of the ten most massive asteroids in the main asteroid belt.  Like certain meteorites found on Earth, it’s made almost entirely of nickel-iron metal. Metal is usually found as pepper-like flecks in stony meteorites, which represent the crust of an asteroid. Heat released during the formation of a large asteroid or planet causes the rock to melt, releasing heavier elements like iron and nickel which trickle downward under the force of gravity to form a metallic core. Radioactivity can also play a role in heating the rock.

A 3-D model of the asteroid Psyche based on its light curve, ie. variations in brightness as it rotates. Credit: Astronomical Institute of the Charles University: Josef ?urech, Vojt?ch Sidorin / CC BY 4.0

That’s why Psyche’s kind of weird. How do you get a 120-mile-wide body of exposed metal floating around space? Astronomers think it was the core of a developing planet — a protoplanet — and probably covered once upon a time by a mantle of rock. Through collisions with other asteroids, that rock layer was eventually blasted away, exposing the metal core. As such, it offers a unique look into the violent collisions that created Earth and the terrestrial planets.

Planets start as small planetesimals (10-100 kilometers across) and grow by gathering up material from new impacts until becoming large enough to serve as embryos for planets. Psyche may have started down the road of planethood only to be chopped down to size by hit-and-run impacts that broke away at its rocky envelope. Credit: Arizona State University

After a 4.6 year cruise that includes a Mars gravity assist flyby, the spacecraft will arrive at Psyche and spend 20 months in orbit mapping and studying the asteroid’s properties. The scientific goals of the mission are to understand the building blocks of planet formation and explore a new type of asteroid never seen up close before. The mission team will seek to find out whether Psyche is the core of an early planet, how old it is, what its surface is like and whether it formed in similar ways to Earth’s core.

Who knows, maybe we’ll learn it was once large enough to be considered a planet just like our own. You can stay in touch with mission developments on their Twitter site.

New Way to Make Plasma Propulsion Lighter and More Efficient

Image of the Neptune thruster (right) with plasma expanding into a space simulation chamber. Credit: Dmytro Rafalskyi

Plasma propulsion is a subject of keen interest to astronomers and space agencies. As a highly-advanced technology that offers considerable fuel-efficiency over conventional chemical rockets, it is currently being used in everything from spacecraft and satellites to exploratory missions. And looking to the future, flowing plasma is also being investigated for more advanced propulsion concepts, as well as magnetic-confined fusion.

However, a common problem with plasma propulsion is the fact that it relies on what is known as a “neutralizer”. This instrument, which allows spacecraft to remain charge-neutral, is an additional drain on power. Luckily, a team of researchers from the University of York and École Polytechnique are investigating a plasma thruster design that would do away with a neutralizer altogether.

A study detailing their research findings – titled “Transient propagation dynamics of flowing plasmas accelerated by radio-frequency electric fields” – was released earlier this month in Physics of Plasmas – a journal published by the American Institute of Physics. Led by Dr. James Dendrick, a physicist from the York Plasma Institute at the University of York, they present a concept for a self-regulating plasma thruster.

A 6 kW Hall thruster in operation at NASA;s Jet Propulsion Laboratory. Credit: NASA/JPL

Basically, plasma propulsion systems rely on electric power to ionize propellant gas and transform it into plasma (i.e. negatively charged electrons and positively-charged ions). These ions and electrons are then accelerated by engine nozzles to generate thrust and propel a spacecraft. Examples include the Gridded-ion and Hall-effect thruster, both of which are established propulsion technologies.

The Gridden-ion thruster was first tested in the 1960s and 70s as part of the Space Electric Rocket Test (SERT) program. Since then, it has been used by NASA’s Dawn mission, which is currently exploring Ceres in the Main Asteroid Belt. And in the future, the ESA and JAXA plan to use Gridded-iron thrusters to propel their BepiColombo mission to Mercury.

Similarly, Hall-effect thrusters have been investigated since the 1960s by both NASA and the Soviet space programs. They were first used as part of the ESA’s Small Missions for Advanced Research in Technology-1 (SMART-1) mission. This mission, which launched in 2003 and crashed into the lunar surface three years later, was the first ESA mission to go to the Moon.

As noted, spacecraft that use these thrusters all require a neutralizer to ensure that they remain “charge-neutral”. This is necessary since conventional plasma thrusters generate more positively-charged particles than they do negatively-charged ones. As such, neutralizers inject electrons (which carry a negative charge) in order to maintain the balance between positive and negative ions.

An artist's illustration of NASA's Dawn spacecraft approaching Ceres. Image: NASA/JPL-Caltech.
An artist’s illustration of NASA’s Dawn spacecraft with its ion propulsion system approaching Ceres. Credit: NASA/JPL-Caltech.

As you might suspect, these electrons are generated by the spacecraft’s electrical power systems, which means that the neutralizer is an additional drain on power. The addition of this component also means that the propulsion system itself will have to be larger and heavier. To address this, the York/École Polytechnique team proposed a design for a plasma thruster that can remain charge neutral on its own.

Known as the Neptune engine, this concept was first demonstrated in 2014 by Dmytro Rafalskyi and Ane Aanesland, two researchers from the École Polytechnique’s Laboratory of Plasma Physics (LPP) and co-authors on the recent paper. As they demonstrated, the concept builds upon the technology used to create gridded-ion thrusters, but manages to generate exhaust that contains comparable amounts of positively and negatively charged ions.

As they explain in the course of their study:

“Its design is based on the principle of plasma acceleration, whereby the coincident extraction of ions and electrons is achieved by applying an oscillating electrical field to the gridded acceleration optics. In traditional gridded-ion thrusters, ions are accelerated using a designated voltage source to apply a direct-current (dc) electric field between the extraction grids. In this work, a dc self-bias voltage is formed when radio-frequency (rf) power is coupled to the extraction grids due to the difference in the area of the powered and grounded surfaces in contact with the plasma.”
The hall-effect thruster used by the SMART-1 mission, which relied on xenon as its reaction mass. Copyright: ESA

In short, the thruster creates exhaust that is effectively charge-neutral through the application of radio waves. This has the same effect of adding an electrical field to the thrust, and effectively removes the need for a neutralizer. As their study found, the Neptune thruster is also capable of generating thrust that is comparable to a conventional ion thruster.

To advance the technology even further, they teamed up with James Dedrick and Andrew Gibson from the York Plasma Institute to study how the thruster would work under different conditions. With Dedrick and Gibson on board, they began to study how the plasma beam might interact with space and whether this would affect its balanced charge.

What they found was that the engine’s exhaust beam played a large role in keeping the beam neutral, where the propagation of electrons after they are introduced at the extraction grids acts to compensate for space-charge in the plasma beam. As they state in their study:

“[P]hase-resolved optical emission spectroscopy has been applied in combination with electrical measurements (ion and electron energy distribution functions, ion and electron currents, and beam potential) to study the transient propagation of energetic electrons in a flowing plasma generated by an rf self-bias driven plasma thruster. The results suggest that the propagation of electrons during the interval of sheath collapse at the extraction grids acts to compensate space-charge in the plasma beam.”

Naturally, they also emphasize that further testing will be needed before a Neptune thruster can ever be used. But the results are encouraging, since they offer up the possibility of ion thrusters that are lighter and smaller, which would allow for spacecraft that are even more compact and energy-efficient. For space agencies looking to explore the Solar System (and beyond) on a budget, such technology is nothing if not desirable!

Further Reading: Physics of Plasmas, AIP

2 US Astronauts Conduct Unplanned, Rapidly Executed Contingency Space Walk on Space Station

Astronaut Jack Fischer waves while attached to the Destiny laboratory during a spacewalk on May 23, 2017 to replace a failed data relay box and install a pair wireless antennas. Credit: NASA
Astronaut Jack Fischer waves while attached to the Destiny laboratory during a spacewalk on May 23, 2017 to replace a failed data relay box and install a pair wireless antennas. Credit: NASA

In the space of just 3 days, a pair of NASA astronauts conducted an unplanned and rapidly executed contingency space walk on the exterior of the space station on Tuesday, May 23 in order to replace a critical computer unit that failed over the weekend.

The spacewalk was conducted by Expedition 51 Commander Peggy Whitson – NASA’s most experienced astronaut – and Flight Engineer Jack Fischer aboard the International Space Station (ISS).

This marked the 10th spacewalk for Whitson – who already has the most cumulative spacewalk time by a female and the most time in space by a NASA astronaut. This was Fischer’s second spacewalk.

Furthermore Whitson now moves into third place all-time for cumulative spacewalking time totaling 60 hours, 21 minutes. Only Russia’s Anatoly Solovyev and NASA’s Michael Lopez-Alegria have more spacewalking time to their credit.

Peggy Whitson @AstroPeggy is 3rd place all-time for cumulative spacewalk time with 10 spacewalks totaling 60 hours, 21 minutes. Credit: NASA

NASA managers ordered the spacewalk over the weekend when a computer unit known as multiplexer-demultiplexer-1 (MDM-1) unexpectedly failed Saturday morning, May 20 at 1:13 p.m. Central time.

The cause of the MDM failure is not known, says NASA. Multiple attempts by NASA flight controllers to restore power to the MDM-1 relay box were not successful.

The US dynamic duo successfully changed out the MDM computer relay box with a spare unit on board the station. They also installed a pair of antennas on the station on the U.S. Destiny Laboratory module to enhance wireless communication for future spacewalks.

The MDM functions as a data relay box and is located on the S0 truss on the exterior of the US segment of the ISS, thereby necessitating a spacewalk by astronaut crew members.

After NASA engineers thoroughly assessed the situation and reviewed spacewalk procedures on Sunday, May 21, they gave the go ahead for Whitson and Fischer to carry out the hurriedly arranged extravehicular activity (EVA) spacewalk on Tuesday.

Meanwhile, Whitson worked on Sunday to prepare the spare data relay box and test its components to ensure it was ready for Tuesdays swap out of the failed unit.

“The relay box, known as a multiplexer-demultiplexer (MDM), is one of two units that regulate the operation of radiators, solar arrays and cooling loops.” says NASA.

“Because each MDM is capable of performing the critical station functions, the crew on the station was never in danger and station operations have not been affected.”

The two MDM’s housed in the truss are fully redundant systems.

“The other MDM in the truss is functioning perfectly, providing uninterrupted telemetry routing to the station’s systems.”

The spacewalk began Tuesday morning, May 23 at 7:20 a.m. EDT when the two NASA astronauts switched their spacesuits to battery power.

While Whitson focused on the MDM swap, Fischer worked on the antenna installation.

The unplanned spacewalk marks the second this month by Whitson and Fischer. The first was on May 12 and the 200th overall. The Destiny module antenna installation was deferred from the May 12 spacewalk.

Astronaut Peggy Whitson is pictured May 12, 2017, during the 200th spacewalk at the International Space Station. Credit: NASA

The relatively short EVA lasted a total of two hours and 46 minutes. It concluded at 10:06 a.m. EDT.

Overall this was the 201st spacewalk in support of the space station assembly, maintenance and upgrade. Spacewalkers have now spent a total of 1,250 hours and 41 minutes working outside the orbiting lab complex since its inception.

Spacewalk 201 was also the sixth spacewalk conducted from the Quest airlock in 2017 aboard the ISS.

The International Space Station with its prominent solar arrays and radiators attached to the truss structure was pictured May 2010 from space shuttle Atlantis. Credit: NASA

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Scientists Propose a New Kind of Planet: A Smashed Up Torus of Hot Vaporized Rock

Artist's impression of a Mars-sized object crashing into the Earth, starting the process that eventually created our Moon. Credit: Joe Tucciarone
Artist's impression of a Mars-sized object crashing into the Earth, starting the process that eventually created our Moon. Credit: Joe Tucciarone

There’s a new type of planet in town, though you won’t find it in well-aged solar systems like our own. It’s more of a stage of formation that planets like Earth can go through. And its existence helps explain the relationship between Earth and our Moon.

The new type of planet is a huge, spinning, donut-shaped mass of hot, vaporized rock, formed as planet-sized objects smash into each other. The pair of scientists behind the study explaining this new planet type have named it a ‘synestia.’ Simon Lock, a graduate student at Harvard University, and Sarah Stewart, a professor in the Department of Earth and Planetary Sciences at the University of California, Davis, say that Earth was at one time a synestia.

Rocky planets like Earth are accreted from smaller bodies over time. Objects with high energy and high angular momentum could form a synestia, a transient stage in planetary formation where vaporized rock orbits the rest of the body. In this image, each of the three stages has the same mass. Image: Simon Lock, Harvard University
Rocky planets like Earth are accreted from smaller bodies over time. Objects with high energy and high angular momentum could form a synestia, a transient stage in planetary formation where vaporized rock orbits the rest of the body. In this image, each of the three stages has the same mass. Image: Simon Lock, Harvard University

The current theory of planetary formation goes like this: When a star forms, the left-over material is in motion around the star. This left-over material is called a protoplanetary disk. The material coagulates into larger bodies as the smaller ones collide and join together.

As the bodies get larger and larger, the force of their collisions becomes greater and greater, and when two large bodies collided, their rocky material melts. Then, the newly created body cools, and becomes spherical. It’s understood that this is how Earth and the other rocky planets in our Solar System formed.

Lock and Stewart looked at this process and asked what would happen if the resulting body was spinning quickly.

When a body is spinning, the law of conservation of angular momentum comes into play. That law says that a spinning body will spin until an external torque slows it down. The often-used example from figure skating helps explain this.

If you’ve ever watched figure skaters, and who hasn’t, their actions are very instructive. When a single skater is spinning rapidly, she stretches out her arms to slow the rate of spin. When she folds her arms back into her body, she speeds up again. Her angular momentum is conserved.

This short video shows figure skaters and physics in action.

If you don’t like figure skating, this one uses the Earth to explain angular momentum.

Now take the example from a pair of figure skaters. When they’re both turning, and the two of them join together by holding each other’s hands and arms, their angular momentum is added together and conserved.

Replace two figure skaters with two planets, and this is what the two scientists behind the study wanted to model. What would happen if two large bodies with high energy and high angular momentum collided with each other?

If the two bodies had high enough temperatures and high enough angular momentum, a new type of planetary structure would form: the synestia. “We looked at the statistics of giant impacts, and we found that they can form a completely new structure,” Stewart said.

“We looked at the statistics of giant impacts, and we found that they can form a completely new structure.” – Professor Sarah Stewart, Department of Earth and Planetary Sciences at the University of California, Davis.

As explained in a press release from the UC Davis, for a synestia to form, some of the vaporized material from the collision must go into orbit. When a sphere is solid, every point on it is rotating at the same rate, if not the same speed. But when some of the material is vaporized, its volume expands. If it expands enough, and if its moving fast enough, it leaves orbit and forms a huge disc-shaped synestia.

Other theories have proposed that two large enough bodies could form an orbiting molten mass after colliding. But if the two bodies had high enough energy and temperature to vaporize some of the rock, the resulting synestia would occupy a much larger space.

“The main issue with looking for synestias around other stars is that they don’t last a long time. These are transient, evolving objects that are made during planet formation.” – Professor Sarah Stewart, UC Davis.

These synestias likely wouldn’t last very long. They would cool quickly and condense back into rocky bodies. For a body the size of Earth, the synestia might only last one hundred years.

The synestia structure sheds some light on how moons are formed. The Earth and the Moon are very similar in terms of composition, so it’s likely they formed as a result of a collision. It’s possible that the Earth and Moon formed from the same synestia.

These synestias have been modelled, but they haven’t been observed. However, the James Webb Space Telescope will have the power to peer into protoplanetary disks and watch planets forming. Will it observe a synestia?

“These are transient, evolving objects that are made during planet formation.” – Professor Sarah Stewart, UC Davis

In an email exchange with Universe Today, Dr. Sarah Stewart of UC Davis, one of the scientists behind the study, told us that “The main issue with looking for synestias around other stars is that they don’t last a long time. These are transient, evolving objects that are made during planet formation.”

“So the best bet for finding a rocky synestia is young systems where the body is close to the star. For gas giant planets, they may form a synestia for a period of their formation. We are getting close to being able to image circumplanetary disks in other star systems.”

Once we have the ability to observe planets forming in their circumstellar disks, we may find that synestias are more common than rare. In fact, planets may go through the synestia stage multiple times. Dr. Stewart told us that “Based on the statistics presented in our paper, we expect that most (more than half) of rocky planets that form in a manner similar to Earth became synestias one or more times during the giant impact stage of accretion.”

Astronomy Cast Ep. 449: Robots in Space!

When you think of a robot, you’re probably imagining some kind of human-shaped machine. And until now, the robotic spacecraft we’ve sent out into space to help us explore the Solar System look nothing like that. But that vision of robots is coming back, thanks to a few new robots in development by NASA and other groups.

Visit the Astronomy Cast Page to subscribe to the audio podcast!

We usually record Astronomy Cast as a live Google+ Hangout on Air every Friday at 1:30 pm Pacific / 4:30 pm Eastern. You can watch here on Universe Today or from the Astronomy Cast Google+ page.

What is Neptune Made Of?

The interior structure of Neptune. Credit: Moscow Institute of Physics and Technology

Since it’s discovery in the mid-19th century, Neptune has consistently been a planet of mystery. As the farthest planet from our Sun, it has only been visited by a single robotic mission. And there are still many unanswered questions about what kind of mechanics power its interior. Nevertheless, what we have learned about the planet in the course of the past few decades is considerable.

For example, thanks to the Voyager 2 probe and multiple surveys using Earth-based instruments, scientists have managed to gain a pretty good understanding of Neptune’s structure and composition. In addition to knowing what makes up its atmosphere, planetary models have also predicted what the interior of the planet looks like. So just what is Neptune made of?

Structure and Composition:

Neptune, like the rest of the gas giant planets in the Solar System, can be broken up into various layers. The composition of Neptune changes depending on which of these layers you’re looking at. The outermost layer of Neptune is the atmosphere, forming about 5-10% of the planet’s mass, and extending up to 20% of the way down to its core.

Composition and interior structure of Neptune. Credit: NASA

Beneath the atmosphere is the planet’s large mantle. This is a superheated liquid region where temperatures can reach as high as 2,000 to 5,000 K (1727 – 4727 °C; 3140 – 8540 °F). The mantle is equivalent to 10 – 15 Earth masses and is rich in water, ammonia and methane. This mixture is referred to as icy even though it is a hot, dense fluid, and is sometimes called a “water-ammonia ocean”.

Increasing concentrations of methane, ammonia and water are found in the lower regions of the atmosphere. Unlike Uranus, Neptune’s composition has a higher volume of ocean, whereas Uranus has a smaller mantle. Like the other gas/ice giants, Neptune is believed to have a solid core, the composition of which is still subject to guesswork. However, the theory that it is rocky and metal-rich is consistent with current theories of planet formation.

In accordance with these theories, the core of Neptune is composed of iron, nickel and silicates, with an interior model giving it a mass about 1.2 times that of Earth. The pressure at the center is estimated to be 7 Mbar (700 GPa), about twice as high as that at the center of Earth, and with temperatures as high as 5,400 K. At a depth of 7000 km, the conditions may be such that methane decomposes into diamond crystals that rain downwards like hailstones.

Due to its smaller size and higher concentrations of volatiles relative to Jupiter and Saturn, Neptune (much like Uranus) is often referred to as an “ice giant” – a subclass of a giant planet. Also like Uranus, Neptune’s internal structure is differentiated between a rocky core consisting of silicates and metals; a mantle consisting of water, ammonia and methane ices; and an atmosphere consisting of hydrogen, helium and methane gas.

Uranus and Neptune, the Solar System’s ice giant planets. Credit: Wikipedia Commons

Neptune’s Atmosphere:

Neptune’s atmosphere forms about 5% to 10% of its mass and extends perhaps 10% to 20% of the way towards the core, where it reaches pressures of about 10 GPa – or about 100,000 times that of Earth’s atmosphere. At high altitudes, Neptune’s atmosphere is 80% hydrogen and 19% helium, with a trace amount of methane.

As with Uranus, this absorption of red light by the atmospheric methane is part of what gives Neptune its blue hue, although Neptune’s is darker and more vivid. Because Neptune’s atmospheric methane content is similar to that of Uranus, some unknown atmospheric constituent is thought to contribute to Neptune’s more intense coloring.

Neptune’s atmosphere is subdivided into two main regions: the lower troposphere (where temperature decreases with altitude), and the stratosphere (where temperature increases with altitude). The boundary between the two, the tropopause, lies at a pressure of 0.1 bars (10 kPa). The stratosphere then gives way to the thermosphere at a pressure lower than 10-5 to 10-4 microbars (1 to 10 Pa), which gradually transitions to the exosphere.

Neptune’s spectra suggest that its lower stratosphere is hazy due to condensation of products caused by the interaction of ultraviolet radiation and methane (i.e. photolysis), which produces compounds such as ethane and ethyne. The stratosphere is also home to trace amounts of carbon monoxide and hydrogen cyanide, which are responsible for Neptune’s stratosphere being warmer than that of Uranus.

Color and contrast-modified image that emphasizes Neptune’s atmospheric features. Neptune’s Great Dark Spot stands out as the most prominent feature on the left. Credit: Erich Karkoschka

For reasons that remain obscure, the planet’s thermosphere experiences unusually high temperatures of about 750 K (476.85 °C/890 °F). The planet is too far from the Sun for this heat to be generated by ultraviolet radiation, which means another heating mechanism is involved – which could be the atmosphere’s interaction with ion’s in the planet’s magnetic field, or gravity waves from the planet’s interior that dissipate in the atmosphere.

Because Neptune is not a solid body, its atmosphere undergoes differential rotation. The wide equatorial zone rotates with a period of about 18 hours, which is slower than the 16.1-hour rotation of the planet’s magnetic field. By contrast, the reverse is true for the polar regions where the rotation period is 12 hours.

This differential rotation is the most pronounced of any planet in the Solar System, and results in strong latitudinal wind shear and violent storms. The three most impressive were all spotted in 1989 by the Voyager 2 space probe, and then named based on their appearances.

The first to be spotted was a massive anticyclonic storm measuring 13,000 x 6,600 km and resembling the Great Red Spot of Jupiter. Known as the Great Dark Spot, this storm was not spotted five later (Nov. 2nd, 1994) when the Hubble Space Telescope looked for it. Instead, a new storm that was very similar in appearance was found in the planet’s northern hemisphere, suggesting that these storms have a shorter life span than Jupiter’s.

Reconstruction of Voyager 2 images showing the Great Black spot (top left), Scooter (middle), and the Small Black Spot (lower right). Credit: NASA/JPL

The Scooter is another storm, a white cloud group located farther south than the Great Dark Spot. This nickname first arose during the months leading up to the Voyager 2 encounter in 1989, when the cloud group was observed moving at speeds faster than the Great Dark Spot.

The Small Dark Spot, a southern cyclonic storm, was the second-most-intense storm observed during the 1989 encounter. It was initially completely dark; but as Voyager 2 approached the planet, a bright core developed and could be seen in most of the highest-resolution images.

Exploration:

The Voyager 2 probe is the only spacecraft to have ever visited Neptune. The spacecraft’s closest approach to the planet occurred on August 25th, 1989, which took place at a distance of 4,800 km (3,000 miles) above Neptune’s north pole. Because this was the last major planet the spacecraft could visit, it was decided to make a close flyby of the moon Triton – similar to what had been done for Voyager 1s encounter with Saturn and its moon Titan.

The spacecraft performed a near-encounter with the moon Nereid before it came to within 4,400 km of Neptune’s atmosphere on August 25th, then passed close to the planet’s largest moon Triton later the same day. The spacecraft verified the existence of a magnetic field surrounding the planet and discovered that the field was offset from the center and tilted in a manner similar to the field around Uranus.

Neptune’s rotation period was determined using measurements of radio emissions and Voyager 2 also showed that Neptune had a surprisingly active weather system. Six new moons were discovered during the flyby, and the planet was shown to have more than one ring.

While no missions to Neptune are currently being planned, some hypothetical missions have been suggested. For instance, a possible Flagship Mission has been envisioned by NASA to take place sometime during the late 2020s or early 2030s. Other proposals include a possible Cassini-Huygens-style “Neptune Orbiter with Probes”, which was suggested back in 2003.

Another, more recent proposal by NASA was for Argo – a flyby spacecraft that would be launched in 2019, which would visit Jupiter, Saturn, Neptune, and a Kuiper belt object. The focus would be on Neptune and its largest moon Triton, which would be investigated around 2029.

Given its distance from Earth, it is no secret why the Trans-Neptunian region remains mysterious to us. In the coming decades, several proposed missions are expected to travel there and explore its rich population of icy bodies and the giant planet for which it is named. From these studies, we are likely to learn a great deal about Neptune and the history of the Solar System.

We have written many interesting articles about Neptune on Universe Today. Here’s Who Discovered Neptune?, What is the Surface of Neptune Like?, What is the Surface Temperature of Neptune?, How Many Moons Does Neptune Have?, What’s the Atmosphere of Neptune Like?, What Color is Neptune?, The Orbit of Neptune: How Long is a Year on Neptune?

If you’d like more information on Neptune, take a look at Hubblesite’s News Releases about Neptune, and here’s a link to NASA’s Solar System Exploration Guide to Neptune.

We have recorded an entire episode of Astronomy Cast just about Neptune. You can listen to it here, Episode 63: Neptune.

Sources:

We Have More Details on the Outermost Trappist-1 Planet!

An artist’s conception shows the planet TRAPPIST-1h. (NASA / JPL-Caltech)

The announcement of a seven-planet system around the star TRAPPIST-1 earlier this year set off a flurry of scientific interest. Not only was this one of the largest batches of planets to be discovered around a single star, the fact that all seven were shown to be terrestrial (rocky) in nature was highly encouraging. Even more encouraging was the fact that three of these planets were found to be orbiting with the star’s habitable zone.

Since that time, astronomers have been seeking to learn all they can about this system of planets. Aside from whether or not they have atmospheres, astronomers are also looking to learn more about their orbits and surface conditions. Thanks to the efforts of a University of Washington-led international team of astronomers, we now have an accurate idea of what conditions might be like on its outermost planet – TRAPPIST-1h.

Continue reading “We Have More Details on the Outermost Trappist-1 Planet!”

Here’s How We Can Detect Plants on Extrasolar Planets

Artist’s impression of the surface of the planet Proxima b orbiting the red dwarf star Proxima Centauri. The double star Alpha Centauri AB is visible to the upper right of Proxima itself. Credit: ESO

The past year has been an exciting time for those engaged in the hunt for extra-solar planets and potentially habitable worlds. In August of 2016, researchers from the European Southern Observatory (ESO) confirmed the existence of the closest exoplanet to Earth (Proxima b) yet discovered. This was followed a few months later (February of 2017) with the announcement of a seven-planet system around TRAPPIST-1.

The discovery of these and other extra-solar planets (and their potential to host life) was an overarching theme at this year’s Breakthrough Discuss conference. Taking place between April 20th and 21st, the conference was hosted by Stanford University’s Department of Physics and sponsored by the Harvard-Smithsonian Center for Astrophysics and Breakthrough Initiatives.

Continue reading “Here’s How We Can Detect Plants on Extrasolar Planets”

Do Gravitational Waves Permanently Alter the Nature of Spacetime?

In February 2016, LIGO detected gravity waves for the first time. As this artist's illustration depicts, the gravitational waves were created by merging black holes. The third detection just announced was also created when two black holes merged. Credit: LIGO/A. Simonnet.
Artist's impression of merging binary black holes. Credit: LIGO/A. Simonnet.

On February 11th, 2016, scientists at the Laser Interferometer Gravitational-wave Observatory (LIGO) announced the first detection of gravitational waves. This development, which confirmed a prediction made by Einstein’s Theory of General Relativity a century prior, opened new avenues of research for cosmologists and astrophysicists. It was also a watershed for researchers at Monash University, who played an important role in the discovery.

And now, a little over a year later, a team of researchers from the Monash Center for Astrophysics has announced another potential revelation. Based on their ongoing studies of gravitational waves, the team recently proposed a theoretical concept known as ‘orphan memory’. If true, this concept could revolutionize the way we think about gravitational waves and spacetime.

Researchers from Monash Center for Astrophysics are part of what is known as the LIGO Scientific Collaboration (LSC) – a group of scientists dedicated to developing the hardware and software needed to study gravitational waves. In addition to creating a system for vetting detections, the team played a key role in data analysis – observing and interpreting the data that was gathered – and were also instrumental in the design of the LIGO mirrors.

Looking beyond what LIGO and other experiments (like the Virgo Interferometer) observed, the research team sought to address how these detectors capabilities could be extended further by finding the “memory” of gravitational waves. The study that describes this theory was recently published in the Physical Review Letters under the title “Detecting Gravitational Wave Memory without Parent Signals“.

According to their new theory, spacetime does not return to its normal state after a cataclysmic event generates gravitational waves that cause it to stretch out. Instead, it remains stretched, which they refer to as “orphan memory” – the word “orphan” alluding to the fact the “parent wave” is not directly detectable. While this effect has yet to be observed, it could open up some very interesting opportunities for gravitational wave research.

At present, detectors like LIGO and Virgo are only able to discern the presence of gravitational waves at certain frequencies. As such, researchers are only able to study waves generated by specific types of events and trace them back to their source. As Lucy McNeill, a researchers from the Monash Center for Astrophysics and the lead author on the paper, said in a recent University press statement:

“If there are exotic sources of gravitational waves out there, for example, from micro black holes, LIGO would not hear them because they are too high-frequency. But this study shows LIGO can be used to probe the universe for gravitational waves that were once thought to be invisible to it.”

LIGO’s two facilities, located in Livingston, Louisiana, and Hanford, Washington. Credit: ligo.caltech.edu

As they indicate in their study, high-frequency gravitational-wave bursts (i.e. ones that are in or below the kilohertz  range) would produce orphan memory that the LIGO and Virgo detectors would be able to pick up. This would not only increase the bandwidth of these detectors exponentially, but open up the possibility of finding evidence of gravity wave bursts in previous searches that went unnoticed.

Dr Eric Thrane, a lecturer at the Monash School of Physics and Astronomy and another a member of the LSC team, was also one of the co-authors of the new study. As he stated, “These waves could open the way for studying physics currently inaccessible to our technology.”

But as they admit in their study, such sources might not even exist and more research is needed to confirm that “orphan memory” is in fact real. Nevertheless, they maintain that searching for high-frequency sources is a useful way to probe for new physics, and it just might reveal things we weren’t expecting to find.

“A dedicated gravitational-wave memory search is desirable. It will have enhanced sensitivity compared to current burst searches,” they state. “Further, a dedicated search can be used to determine whether a detection candidate is consistent with a memory burst by checking to see if the residuals (following signal subtraction) are consistent with Gaussian noise.”

Alas, such searches may have to wait upon the proposed successors to the Advanced LIGO experiment. These include the Einstein Telescope and Cosmic Explorer, two proposed third-generation gravitational wave detectors. Depending on what future surveys find, we may discover that spacetime not only stretches from the creation of gravitational waves, but also bears the “stretch marks” to prove it!

Further Reading: Physical Review Letters

 

Astronomy Cast Ep. 448: Prepping for the Eclipse

On Monday, August 21, 2017, there’s going to be a total eclipse of the Sun, visible to path that goes right through the middle of the United States. You should be making plans to see this, and we’re here to help you know where to go and what to do.
Visit the Astronomy Cast Page to subscribe to the audio podcast!

We usually record Astronomy Cast as a live Google+ Hangout on Air every Friday at 1:30 pm Pacific / 4:30 pm Eastern. You can watch here on Universe Today or from the Astronomy Cast Google+ page.