How Far Does Light Travel in a Year?

Diagram showing the distance light travels between the Sun and the Earth. Credit: Wikipedia Commons/Brews ohare

The Universe is an extremely big place. As astronomers looked farther into space over the centuries, and deeper into the past, they came to understand just how small and insignificant our planet and our species seem by comparison. At the same time, ongoing investigations into electromagnetism and distant stars led scientists to deduce what the the speed of light is – and that it is the fastest speed obtainable.

As such, astronomers have taken to using the the distance light travels within a single year (aka. a light year) to measure distances on the interstellar and intergalactic scale. But how far does light travel in a year? Basically, it moves at a speed of 299,792,458 meters per second (1080 million km/hour; 671 million mph), which works out to about 9,460.5 trillion km (5,878.5 trillion miles) per year.

The Speed of Light:

Calculating the speed of light has been a preoccupation for scientists for many centuries. And prior to the 17th century, there was disagreement over whether the speed of light was finite, or if it moved from one spot to the next instantaneously. In 1676, Danish astronomer Ole Romer settled the argument when his observations of the apparent motion of Jupiter’s moon Io revealed that the speed of light was finite.

Light moves at different wavelengths, represented here by the different colors seen in a prism. Credit: NASA/ESA

From his observations, famed Dutch astronomer Christiaan Huygens calculated the speed of light at 220,000 km/s (136,701 mi/s). Over the course of the nest two centuries, the speed of light was refined further and further, producing estimates that ranged from about 299,000 to 315,000 km/s (185,790 to 195,732 mi/s).

This was followed by James Clerk Maxwell, who proposed in 1865 that light was an electromagnetic wave. In his theory of electromagnetism, the speed of light was represented as c. And then in 1905, Albert Einstein proposed his theory of Special Relativity, which postulated that the speed of light (c) was constant, regardless of the inertial reference frame of the observer or the motion of the light source.

By 1975, after centuries of refined measurements, the speed of light in a vacuum was calculated at 299,792,458 meters per second. Ongoing research also revealed that light travels at different wavelengths and is made up of subatomic particles known as photons, which have no mass and behave as both particles and waves.

Light-Year:

As already noted, the speed of light (expressed in meters per second) means that light travels a distance of 9,460,528,000,000 km (or 5,878,499,817,000 miles) in a single year. This distance is known as a “light year”, and is used to measure objects in the Universe that are at a considerable distances from us.

Examples of objects in our Universe, and the scale of their distances, based on the light year as a standard measure. Credit: Bob King.

For example, the nearest star to Earth (Proxima Centauri) is roughly 4.22 light-years distant. The center of the Milky Way Galaxy is 26,000 light-years away, while the nearest large galaxy (Andromeda) is 2.5 million light-years away. To date, the candidate for the farthest galaxy from Earth is MACS0647-JD, which is located approximately 13.3 billion light years away.

And the Cosmic Microwave Background, the relic radiation which is believed to be leftover from the Big Bang, is located some 13.8 billion light years away. The discovery of this radiation not only bolstered the Big Bang Theory, but also gave astronomers an accurate assessment of the age of the Universe. This brings up another important point about measuring cosmic distances in light years, which is the fact that space and time are intertwined.

You see, when we see the light coming from a distant object, we’re actually looking back in time. When we see the light from a star located 400 light-years away, we’re actually seeing light that was emitted from the star 400 years ago. Hence, we’re seeing the star as it looked 400 years ago, not as it appears today. As a result, looking at objects billions of light-years from Earth is to see billions of light-years back in time.

Yes, light travels at an extremely fast speed. But given the sheer size and scale of the Universe, it can still take billions of years from certain points in the Universe to reach us here on Earth. Hence why knowing how long it takes for light to travel a single year is so useful to scientists. Not only does it allow us to comprehend the scale of the Universe, it also allows us to chart the process of cosmic evolution.

We have written many articles about the speed of light here at Universe Today. Here’s How Far is a Light Year?, What is the Speed of Light?, How Much Stuff is in a Light Year?, How Does Light Travel?, and How Far Can You See in the Universe?

Want more info on light-years? Here’s an article about light-years for HowStuffWorks, and here’s an answer from PhysLink.

We’ve also recorded an episode of Astronomy Cast on this topic. Listen here, Episode 10: Measuring Distance in the Universe.

Sources:

SpaceX Targeting 3rd launch in 10 Days with ‘Epic’ Intelsat Comsat on July 5 – Watch Live

Never used SpaceX Falcon 9 is seen rising to launch position and now stands erect and poised for liftoff Intelsat 35e on July 3, 2017 at Launch Complex 39A at NASA's Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com
Never used SpaceX Falcon 9 is seen rising to launch position and now stands erect and poised for Intelsat 35e liftoff on July 5, 2017 at Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – Spectacular 4th of July fireworks are coming tonight, July 3,[reset to July5] to the Florida Space Coast courtesy of SpaceX and Intelsat with the planned near dusk launch of the commercial Epic 35e next-generation high throughput satellite to geostationary orbit for copious customers in the Americas, Europe and Africa. UPDATE: After a 2nd abort launch is now NET July 5.

JULY 5 UPDATE: GO for launch attempt tonight at 7:37 PM. Weather looks good at this time.

“SpaceX, confirms that we are ‘Go’ for a launch tonight, 5 July, at approximately 23:37:00 UTC (7:37pm EDT), GO INTELSAT 35E!!” Intelsat announced.

If all goes well, SpaceX will have demonstrated an amazing launch pace with 3 rockets propelled aloft in the span of just 10 days from both US coasts.

Originally slated for Sunday evening, July 2, the launch was automatically aborted by the computer control systems literally in the final moments before the scheduled liftoff due to a guidance issue, and under picture perfect weather conditions – which would have resulted in 3 launches in 9 days.

Following the 24 hour scrub turnaround, blastoff of the Intelsat 35e communications satellite for commercial broadband provider Intelsat is now slated for dinnertime early Monday evening, July 3 at 7:37 p.m. EDT, or 2337 UTC from SpaceX’s seaside Launch Complex 39A on NASA’s Kennedy Space Center in Florida.

Up close view of payload fairing encapsulating Intelsat 35e comsat launching atop expendable SpaceX Falcon 9 booster at Launch Complex 39A at NASA’s Kennedy Space Center in Florida. This booster is not equipped with grid fins or landing legs. Credit: Ken Kremer/kenkremer.com

The first stage will not be recovered for this launch because the massive 6800 kg Intelsat 35e comsat requires every drop of fuel to get to the desired orbit.

“There will be no return of the booster for this mission, “ Ken Lee, Intelsat’s senior vice president of space systems, told Universe Today in a prelaunch interview on Sunday.

“We [Intelsat] need all the fuel to get to orbit.”

By using all available fuel on board the Falcon 9, Intelsat 35e will be delivered to a higher orbit.

“This will enable us to use less fuel for orbit raising maneuvers and make more available for station keeping maneuvers,” Lee told me.

“We hope this will potentially extend the satellites lifetime by 1 or 2 years.”

“Intelsat 35e is the fourth in the series of our ‘Epic’ satellites. It will provide the most advanced digital services ever and a global footprint.”

You can watch the launch live on a SpaceX dedicated webcast starting about 15 minutes prior to the opening of the launch window at 7:37 p.m. EDT, or 2337 UTC

Watch the SpaceX broadcast live at: SpaceX.com/webcast

The never before used Falcon 9’s launch window extends for nearly an hour – 58 minutes – until 8:35 p.m. EDT, July 5, or 0035 UTC

Expendable SpaceX Falcon 9 is seen rising to launch position and is now erected to launch position and poised for liftoff with Intelsat 35e on July 5, 2017 at Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

“Our whole team had to activate quickly to get Intelsat 35e into this window and ready for launch. The good news is we partnered with SpaceX and Boeing, the satellite builder,” said Kurt Riegel Sr VP Intelsat Sales & Markenting, in an interview with Universe Today at the countdown clock at the KSC Press Site.

There was barely a week to turn around the Falcon 9 rocket and launch pad sinevc the blastoff of BulgariaSat-1.

“Boeing got everything accomplished on time and not give an inch on our test schedule or our quality which is so important to us.”

Monday’s [now Wednesday July] weather forecast is currently 70% GO for favorable conditions at launch time.

The weather odds have changed dramatically all week – trending more favorable.

The concern is for the Cumulus Cumulus Cloud Rule according to Air Force meteorologists with the 45th Space Wing at Patrick Air Force Base.

Monday’s abort took place 10 seconds before liftoff but was called at T-Zero by the SpaceX launch director. A problem was detected with the GNC system, which stands for guidance, navigation and control.

“We had a vehicle abort criteria violated at T-minus 10 seconds, a GNC criteria,” the launch director announced on the SpaceX webcast soon after the abort was called.

“We’re still looking into what that is at this time.

He then announced a scrub for the day.

“We’re not going to be able to get a recycle in today without going past the end of the window, so we’re officially scrubbed,” he stated on the webcast.

“Go ahead and put a 24-hour recycle into work.”

SpaceX Falcon 9 is poised for liftoff with Intelsat 35e – 4th next gen ‘Epic’ comsat on July 5, 2017 at Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

The brand new 29 story tall SpaceX Falcon 9 will deliver Intelsat 35e to a Geostationary Transfer Orbit (GTO).

The geostationary comsat will provide high performance services in the C- And Ku-bands to customers in North and South America, the Caribbean, as well as the continents of Europe and Africa.

Artists concept of Intelsat 35e in geostationary Earth orbit. Credit: Intelsat

The Ku band service includes a customized high power beam for direct-to-home television (DTH) and data communications services in the Caribbean as well as mobility services in Europe and Africa.

Hordes of spectators lined local area beaches and causeways north and south of the launch pad in anticipation of Sunday’s launch.

Many are expected to return given the promising weather forecast and July 4th holiday weekend.

The 229-foot-tall (70-meter) Falcon 9/Intelsat 353e rocket was raised erect Sunday morning, July 2 and is poised for liftoff and undergoing final prelaunch preparations.

The first and second stages will again be fueled with liquid oxygen and RP-1 propellants starting about one hour before liftoff.

Intelsat 35e marks the tenth SpaceX launch of 2017 – establishing a new single year launch record for SpaceX.

Blastoff of 2nd flight-proven SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

The recent BulgariaSat-1 and Iridium-2 missions counted as the eighth and ninth SpaceX launches of 2017.

SpaceX conducts successful static hot fire test of Falcon 9 booster atop Launch Complex 39A at the Kennedy Space Center on 29 June 2017 as seen from Banana River lagoon, Titusville, FL. The Falcon 9 is slated to launch Intelsat 35e on July 3, 2017. Credit: Ken Kremer/Kenkremer.com
SpaceX conducts successful static hot fire test of Falcon 9 booster atop Launch Complex 39A at the Kennedy Space Center on 29 June 2017 as seen from Banana River lagoon, Titusville, FL. The Falcon 9 is slated to launch Intelsat 35e on July 3, 2017. Credit: Ken Kremer/Kenkremer.com

Including those last two ocean platform landings, SpaceX has now successfully recovered 13 boosters; 5 by land and 8 by sea, over the past 18 months.

Watch for Ken’s onsite Intelsat 35e and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

What a magnificent space sight to behold ! Cruise Ships and Recycled Rockets float side by side in Port Canaveral after recycled SpaceX Falcon 9 1st stage from BulgariaSat-1 launch from KSC on 23 June floats into port atop droneship on 29 June 2017. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 Booster leaning atop OCISLY droneship upon which it landed after 23 June launch from KSC floats into Port Canaveral, FL, on 29 June 2017, hauled by tugboat as seen from Jetty Park Pier. Credit: Ken Kremer/kenkremer.com

Messier 49 – the NGC 4472 Elliptical Galaxy

The location of M49, in proximity to other Messier Objects and major stars. Credit: Wikisky

Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at Orion’s Nebula’s “little brother”, the De Marian’s Nebula!

During the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of them so that others would not make the same mistake he did. In time, this list (known as the Messier Catalog) would come to include 100 of the most fabulous objects in the night sky.

One of these objects is the elliptical galaxy known as Messier 49 (aka. NGC 4472). Located in the southern skies in the constellation of Virgo, this galaxy is one several members of the Virgo Cluster of galaxies and is located 55.9 million light years from Earth. On a clear night, and allowing for good light conditions, it can be seen with binoculars or a small telescope, and will appear as a hazy patch in the sky.

Description:

Messier 49 is the brightest of the Virgo Cluster member galaxies, which is pretty accurate considering it’s only about 60 million light years away and may span an area as large as 160,000 light years. It is a huge system of globular clusters, much less concentrated than Virgo cluster member M87 – but a giant none the less. As Stephen E. Zep (et al) wrote in a 2000 study:

“We present new radial velocities for 87 globular clusters around the elliptical galaxy NGC 4472 and combine these with our previously published data to create a data set of velocities for 144 globular clusters around NGC 4472. We utilize this data set to analyze the kinematics of the NGC 4472 globular cluster system. The new data confirm our previous discovery that the metal-poor clusters have significantly higher velocity dispersion than the metal-rich clusters in NGC 4472. The very small angular momentum in the metal-rich population requires efficient angular momentum transport during the formation of this population, which is spatially concentrated and chemically enriched. Such angular momentum transfer can be provided by galaxy mergers, but it has not been achieved in other extant models of elliptical galaxy formation that include dark matter halos. We also calculate the velocity dispersion as a function of radius and show that it is consistent with roughly isotropic orbits for the clusters and the mass distribution of NGC 4472 inferred from X-ray observations of the hot gas around the galaxy.”

This ground-based image shows the Small Magellanic Cloud. The area of the SMIDGE survey is highlighted, as well as the position of NGC 248. Credit: NASA/ESA/Hubble/Digitized Sky Survey 2

However, there was something going on in the mass structure of M49 that astronomers were curious about… Something they couldn’t quite explain. Was it dark matter? As M. Lowenstein wrote in a 1992 study:

“An attempt to constrain the total mass distribution of the well-observed giant elliptical galaxy NGC 4472 is realized by constructing simultaneous equilibrium models for the gas and stars using all available relevant optical and X-ray data. The value of <?>, the emission-weighted average value of kT, derived from the Ginga spectrum, <?> = 1.9 ± 0.2 keV, can be reproduced only in hydrostatic models where nonluminous matter comprises at least 90% of the total mass. However, in general, these mass models are not consistent with observed projected stellar and globular cluster velocity dispersions at moderate radii.”

The next thing you know, nuclear outburst were discovered – the product of interaction with a neighboring galaxy. As B. Biller (et al) indicated in a 2004 study:

“We present the analysis of the Chandra ACIS observations of the giant elliptical galaxy NGC 4472. The Chandra Observatory’s arcsec resolution reveals a number of new features. Specifically: 1) an ~8 arc min streamer or arm (this corresponds to a linear size of 36 kpc) extending southwest of the galaxy and an assymetrical, somewhat truncated streamer to the northeast. Smaller, morphologically similar structures are observed in NGC 4636 and are explained as shocks from a nuclear outburst in the recent past. The larger size of the NGC 4472 streamers requires a correspondingly higher energy input compared to the NGC 4636 case. The asymmetry of the streamers may be due to the interaction of NGC 4472 with the ambient Virgo cluster gas. 2) A string of small, extended sources south of the nucleus. These sources may stem from an interaction of NGC 4472 with the galaxy UGC 7637. 3) X-ray cavities corresponding to radio lobes, where expanding radio plasma has evacuated the X-ray emitting gas. We also present a luminosity function for the X-ray point sources detected within NGC 4472 which we compare to that for other early type galaxies.”

Chandra images showing 4 of the 9 galaxies discovered (left), and an artist’s impression on showing how gas falls towards a black hole and becomes a rapidly spinning disk of matter near the center (right). Credit: NASA/Chandra

But the very best was yet to come… the discovery of a black hole! According to NASA, the results from NASA’s Chandra X-ray Observatory, combined with new theoretical calculations, provide one of the best pieces of evidence yet that many supermassive black holes are spinning extremely rapidly. The images on the left show 4 out of the 9 large galaxies included in the Chandra study, each containing a supermassive black hole in its center.

The Chandra images show pairs of huge bubbles, or cavities, in the hot gaseous atmospheres of the galaxies, created in each case by jets produced by a central supermassive black hole. Studying these cavities allows the power output of the jets to be calculated. This sets constraints on the spin of the black holes when combined with theoretical models. The Chandra images were also used to estimate how much fuel is available for each supermassive black hole, using a simple model for the way matter falls towards such an object.

The artist’s impression on the right side of the main graphic shows gas within a “sphere of influence” falling straight inwards towards a black hole before joining a rapidly spinning disk of matter near the center. Most of the material in this disk is swallowed by the black hole, but some of it is swept outwards in jets (colored blue) by quickly spinning magnetic fields close to the black hole.

Previous work with these Chandra data showed that the higher the rate at which matter falls towards these supermassive black holes, the higher their power output is in jets. However, without detailed theory the implications of this result for black hole behavior were unclear. The new study uses these Chandra results combined with leading theoretical models for the production of jets, plus general relativity, to show that the supermassive black holes in these galaxies must be spinning at close to the maximum rate. If black holes are spinning at this limit, material can be dragged around them at close to the speed of light, the speed limit from Einstein’s theory of relativity.

Atlas Image obtained of Messier 49, taken by the Two Micron All Sky Survey (2MASS). Credit: NASA/UofMass/IPAC/Caltech/NASA/NSF/2MASS

History of Observation:

According to SEDS, M49 was the first member of the Virgo cluster of galaxies to be discovered, by Charles Messier, who cataloged it on February 19th, 1771. As he recorded in his notes at the time:

“Nebula discovered near the star Rho Virginis. One cannot see it without difficulty with an ordinary telescope of 3.5-feet [FL]. The Comet of 1779 was compared by M. Messier with this nebula on April 22 and 23: The comet and the nebula had the same light. M. Messier has reported this nebula on the chart of the route of the comet, which appeared in the volume of the Academy of the same year 1779. Seen again on April 10, 1781.” Eight years later, on April 22, 1779, on the occasion of following the comet of that year, and on the hunt for finding more nebulous objects in competition to other observers, Barnabas Oriani independently rediscovered this ‘nebula’: “Very pale and looking exactly like the comet [1779 Bode, C/1779 A1].”

In his Bedford Catalogue of 1844, Admiral William H. Smyth confused this finding with Messier’s discovery:

“A bright, round, and well-defined nebula, on the Virgin’s left shoulder; exactly on the line between Delta Virginis and Beta Leonis, 8deg, or less than half-way, from the former star. With an eyepiece magnifying 93 times, there are only two telescopic stars in the field, one of which is in the sp and the other in the sf quadrant; and the nebula has a very pearly aspect. This object was discovered by Oriani in 1771 [this is wrong: it was Messier who discovered it that year; Oriani found it only in 1779], and registered by Messier as a “faint nebula, not seen without difficulty,” with a telescope of 3 1/2 feet in length. It is a pity that this active and very assiduous astronomer could not have been furnished with one of the giant telescopes of the present days. Had he possessed efficient means, there can be no doubt of the augmentation of his useful and, in its day, unique Catalogue: a collection of objects for which sidereal astronomy must ever remain indebted to him.” This error was repeated by John Herschel in his General Catalogue of 1864 (GC), who also erroneously assigned this object to “1771 Oriani,” and also found its way into J.L.E. Dreyer’s NGC.

Let’s hope you don’t mistake it with the many other galaxies nearby!

The location of Messier 49 within the Virgo constellation. Credit: IAU and Sky & Telescope magazine (Roger Sinnott & Rick Fienberg)

Locating Messier 49:

Galaxy hopping isn’t an easy chore and it takes some practice. Starting looking for M49 about halfway between Epsilon and Beta Virginis. Use Gamma to help triangulate your position. At near magnitude 8, Messier 49 is quite binocular possible and would show under dark sky conditions as a faint, very small egg shaped fog. However, it will not show in a finderscope of a telescope – but the nearby stars will.

Use their patterns to help guide you there. Because galaxies require dark skies, M49 cannot be found under urban conditions or during moonlit nights. In telescopes as small as 70mm, it will appear as a nebulous egg shape and become brighter – but no more resolved to larger instruments. To assist in location, begin with lowest magnification and increase magnification once found to darken background field.

And here are the quick facts to help you get started!

Object Name: Messier 49
Alternative Designations: M49, NGC 4472
Object Type: Elliptical Galaxy
Constellation: Virgo
Right Ascension: 12 : 29.8 (h:m)
Declination: +08 : 00 (deg:m)
Distance: 60000 (kly)
Visual Brightness: 8.4 (mag)
Apparent Dimension: 9×7.5 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier Objects, , M1 – The Crab Nebula, M8 – The Lagoon Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Sources:

SpaceX Ramps Up; Reused SpaceX BulgariaSat-1 Booster Arrives in Port as Next Falcon 9 Test Fires for July 2 Intelsat Launch – Gallery

What a magnificent space sight to behold ! Cruise Ships and Recycled Rockets float side by side in Port Canaveral after recycled SpaceX Falcon 9 1st stage from BulgariaSat-1 launch from KSC on 23 June floats into port atop droneship on 29 June 2017. Credit: Ken Kremer/kenkremer.com
What a magnificent space sight to behold ! Cruise Ships and Recycled Rockets float side by side in Port Canaveral after recycled SpaceX Falcon 9 1st stage from BulgariaSat-1 launch from KSC on 23 June floats into port atop droneship on 29 June 2017. Credit: Ken Kremer/kenkremer.com

PORT CANAVERAL/KENNEDY SPACE CENTER, FL – The launch cadence at Elon Musk’s SpaceX is truly ramping up with Falcon 9 boosters rapidly coming and going in all directions from ground to space as the firm audaciously sets its sight on a third commercial payload orbital launch on July 2 in the span of just 9 days from its East and West Coast launch bases.

It was a magnificent sight to behold !! Seeing commercial passenger carrying cruise ships and commercial recycled rockets that will one day carry paying passenger to space, floating side by side in the busy channel of narrow Port Canaveral, basking in the suns glow from the sunshine state.

The doubly ‘flight-proven’ SpaceX Falcon 9 booster portends a promising future for spaceflight that Elon Musk hopes and plans will drastically slash the high cost of rocket launches and institute economic savings that would eventually lead to his dream of a ‘City on Mars!’ – sooner rather than later.

SpaceX Falcon 9 Booster leaning atop OCISLY droneship upon which it landed after 23 June launch from KSC floats into Port Canaveral, FL, on 29 June 2017, hauled by tugboat as seen from Jetty Park Pier. Credit: Ken Kremer/kenkremer.com

Thursday, June 29, serves as a perfect example of how SpaceX is rocking the space industry worldwide.

First, the reused first stage Falcon 9 booster from last Friday’s (June 23) SpaceX launch of the BulgariaSat-1 HD television broadcast satellite floated magnificently into Port Canaveral early Thursday morning atop the diminutive oceangoing droneship upon which it safely touched down upright on a quartet of landing legs some eight minutes after launch.

SpaceX Falcon 9 Booster leaning atop OCISLY droneship upon which it landed after 23 June launch from KSC floats into Port Canaveral, FL, on 29 June 2017, hauled by tugboat as seen from Jetty Park Pier. Credit: Ken Kremer/kenkremer.com

Second, SpaceX engineers then successfully conducted a late in the day static hot fire test of the Falcon 9 first stage engines and core that will power the next launch of the Intelsat 35e commercial comsat to orbit this Sunday, July 2.

So the day was just chock full of nonstop SpaceX rocketry action seeing a full day of rocket activities from dawn to dusk.

SpaceX Falcon 9 Booster and Canaveral Lighthouse together- Twice used SpaceX Falcon 9 which launched BulgariaSat-1 into orbit from KSC on 23 June floats into Port Canaveral with Cape Canaveral LIghthouse seen between landing legs in the distance as OCISLY drone ship crew on which she landed are working on deck on June 29, 2017. Credit: Ken Kremer/kenkremer.com

Thursday’s nonstop Space Coast action spanning from the north at the Kennedy Space Center and further south to Cape Canaveral Air Force Station and Port Canaveral was the culmination of space launch flow events that actually began days, weeks and months earlier.

The 156 foot- tall Falcon 9 booster had successfully landed on the tiny rectangular shaped “Of Course I Still Love You” or OCISLY droneship less than nine minutes after liftoff on Friday, June 23 on the BulgariaSat-1 flight.

That mission began with the picture perfect liftoff of the BulgariaSat-1 communications satellite for East European commercial broadband provider BulgariaSat at 3:10 p.m. EDT, or 19:10 UTC, June 23, with ignition of all nine of the ‘flight-proven’ Falcon 9 first stage engines on SpaceX’s seaside Launch Complex 39A at NASA’s Kennedy Space Center in Florida.

BulgariaSat is an affiliate of Bulsatcom, Bulgaria’s largest digital television provider.

The 15 story tall first stage touched down with a slight tilt of roughly eight degrees as a direct result of the extremely demanding landing regime.

Then after spending several post landing and launch days at sea due to stormy weather along the Florida Space Coast and to accommodate local shipping traffic and SpaceX planning needs, the booster at last neared shore from the south off the coast of Melbourne, FL.

Accompanied by a small armada of support vessels it was slowly towed to port by the Elsbeth III.

The SpaceX flotilla arrived at last at the mouth of Port Canaveral and Jetty Park Pier jutting into the Atlantic Ocean at about 830 a.m. EDT – offering a spectacular view at to a flock of space enthusiasts and photographers including this author.

SpaceX Booster arrival on 30 June 2017. Credit: Dawn Leek Taylor

I highly recommend you try and see a droneship arrival if all possible.

The leaning boosters – of which this is only the second – are even more dramatic!

Because the Falcon 9 barely survived the highest ever reentry force and landing heat to date, Musk reported.

The rectangularly shaped OCISLY droneship is tiny – barely the size of a moderately sized apartment complex parking lot.

Credit: Ken Kremer/kenkremer.com

Falcon 9’s first stage for the BulgariaSat-1 mission previously supported the Iridium-1 mission from Vandenberg Air Force Base in January of this year.

Some two minutes and 40 seconds after liftoff the first and second stages separated.

As the second stage continued to orbit, the recycled first stage began the daunting trip back to Earth on a very high energy trajectory that tested the limits of the boosters landing capability.

“Falcon 9 will experience its highest ever reentry force and heat in today’s launch. Good chance rocket booster doesn’t make it back,” SpaceX founder and CEO Elon Musk wrote in a prelaunch tweet.

Following stage separation, Falcon 9’s first stage carried out two burns, the entry burn and the landing burn using a trio of the Merlin 1D engines.

Ultimately the 15 story tall booster successfully landed on the “Of Course I Still Love You” or OCISLY droneship, stationed in the Atlantic Ocean about 400 miles (600 km) offshore and east of Cape Canaveral.

“Rocket is extra toasty and hit the deck hard (used almost all of the emergency crush core), but otherwise good,” Musk tweeted shortly after the recycled booster successfully launched and landed for its second time.

Up close view of blackened Aluminum grid fins on twice used SpaceX Falcon 9 1st stage which just sailed into Port Canaveral on 29 June after launching BulgariaSat-1 23 June 2017 from pad 39A on NASA’s Kennedy Space Center. The fins are being replaced by more resilient units made of Titanium as demonstrated 1st during the recent Iridium 2 launch. Credit: Ken Kremer/kenkremer.com

BulgariaSat-1 and Iridium-2 counted as the eighth and ninth SpaceX launches of 2017.

Including those two ocean platform landings, SpaceX has now successfully recovered 13 boosters; 5 by land and 8 by sea, over the past 18 months.

Both landing droneships are now back into their respective coastal ports.

It’s a feat straight out of science fiction but aimed at drastically slashing the cost of access to space as envisioned by Musk.

Watch my BulgariaSat-1 launch video from KSC pad 39A

Video Caption: Launch of SpaceX Falcon 9 on June 23, 2017 from pad 39A at the Kennedy Space Center carrying BulgariaSat-1 TV broadband satellite to geosynchronous orbit for BulgariaSat, which is Bulgaria’s 1st GeoComSat – as seen in this remote video taken at the pad. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s onsite BulgariaSat-1 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Blastoff of 2nd flight-proven SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Is Time To Go Back to Uranus and Neptune? Revisiting Ice Giants of the Solar System

We've Got To Go Back!
We've Got To Go Back!


I look forward to all the future missions that NASA is going to be sending out in the Solar System. Here, check this out. You can use NASA’s website to show you all the future missions. Here’s everything planned for the future, here’s everything going to Mars.

Now, let’s look and see what missions are planned for the outer planets of the Solar System, especially Uranus and Neptune. Oh, that’s so sad… there’s nothing.

Uranus, seen by Voyager 2. Image credit: NASA/JPL

It’s been decades since humanity had an up close look at Uranus and Neptune. For Uranus, it was Voyager 2, which swept through the system in 1986. We got just a few tantalizing photographs of the ice giant planet and it’s moons.

Mosaic of the four highest-resolution images of Ariel taken by the Voyager 2 space probe during its 1986 flyby of Uranus. Credit: NASA/JPL

What’s that?

Oberon, as imaged by the Voyager 2 probe during its flyby on Jan. 24, 1986. Credit: NASA

What’s going on there?

Color composite of the Uranian satellite Miranda, taken by Voyager 2 on Jan. 24, 1986, from a distance of 147,000 km (91,000 mi). Credit: NASA/JPL

What are those strange features? Sorry, insufficient data.

And then Voyager 2 did the same, zipping past Neptune in 1989.

Reconstruction of Voyager 2 images showing the Great Black spot (top left), Scooter (middle), and the Small Black Spot (lower right). Credit: NASA/JPL

Check this out.

Neptune’s largest moon Triton photographed on August 25, 1989 by Voyager 2. Credit: NASA

What’s going here on Triton? Wouldn’t you like to know more? Well, too bad! You can’t it’s done, that’s all you get.

Don’t get me wrong, I’m glad we’ve studied all these other worlds. I’m glad we’ve had orbiters at Mercury, Venus, everything at Mars, Jupiter, and especially Saturn. We’ve seen Ceres and Vesta, and the Moon up close. We even got a flyby of Pluto and Charon.

It’s time to go back to Uranus and Neptune, this time to stay.

And I’m not the only one who feels this way.

Scientists at NASA recently published a report called the Ice Giant Mission Study, and it’s all about various missions that could be sent to explore Uranus, Neptune and their fascinating moons.

The team of scientists who worked on the study considered a range of potential missions to the ice giants, and in the end settled on four potential missions; three that could go to Uranus, and one headed for Neptune. Each of them would cost roughly $2 billion.

Uranus is closer, easier to get to, and the obvious first destination of a targeted mission. For Uranus, NASA considered three probes.

The first idea is a flyby mission, which will sweep past Uranus gathering as much science as it can. This is what Voyager 2 did, and more recently what NASA’s New Horizons did at Pluto. In addition, it would have a separate probe, like the Cassini and Galileo missions, that would detach and go into the atmosphere to sample the composition below the cloudtops. The mission would be heavy and require an Atlas V rocket with the same configuration that sent Curiosity to Mars. The flight time would take 10 years.

NASA’s Curiosity Mars Science Laboratory (MSL) rover blasts off for Mars atop a stunningly beautiful Atlas V rocket. Credit: Ken Kremer – kenkremer.com

The main science goal of this mission would be to study the composition of Uranus. It would make some other measurements of the system as it passed through, but it would just be a glimpse. Better than Voyager, but nothing like Cassini’s decade plus observations of Saturn.

I like where this is going, but I’m going to hold out for something better.

The next idea is an orbiter. Now we’re talking! It would have all the same instruments as the flyby and the detachable probe. But because it would be an orbiter, it would require much more propellant. It would have triple the launch mass of the flyby mission, which means a heavier Atlas V rocket. And a slightly longer flight time; 12 years instead of 10 for the flyby.

Because it would remain at Uranus for at least 3 years, it would be able to do an extensive analysis of the planet and its rings and moons. But because of the atmospheric probe, it wouldn’t have enough mass for more instruments. It would have more time at Uranus, but not a much better set of tools to study it with.

Okay, let’s keep going. The next idea is an orbiter, but without the detachable probe. Instead, it’ll have the full suite of 15 scientific instruments, to study Uranus from every angle. We’re talking visible, doppler, infrared, ultraviolet, thermal, dust, and a fancy wide angle camera to give us those sweet planetary pictures we like to see.

Study Uranus? Yes please. But while we’re at it, let’s also sent a spacecraft to Neptune.

The labeled ring arcs of Neptune as seen in newly processed data. The image spans 26 exposures combined into a equivalent 95 minute exposure, and the ring trace and an image of the occulted planet Neptune is added for reference. (Credit: M. Showalter/SETI Institute).

As part of the Ice Giants Study, the researchers looked at what kind of missions would be possible. In this case, they settled on a single recommended mission. A huge orbiter with an additional atmospheric probe. This mission would be almost twice as massive as the heaviest Uranus mission, so it would need a Delta IV Heavy rocket to even get out to Neptune.

As it approached Neptune, the mission would release an atmospheric probe to descend beneath the cloudtops and sample what’s down there. The orbiter would then spend an additional 2 years in the environment of Neptune, studying the planet and its moons and rings. It would give us a chance to see its fascinating moon Triton up close, which seems to be a captured Kuiper Belt Object.

Unfortunately there’s no perfect grand tour trajectory available to us any more, where a single spacecraft could visit all the large planets in the Solar System. Missions to Uranus and Neptune will have to be separate, however, if NASA’s Space Launch System gets going, it could carry probes for both destinations and launch them together.

The goal of these missions is the science. We want to understand the ice giants of the outer Solar System, which are quite different from both the inner terrestrial planets and the gas giants Jupiter and Saturn.

The Solar System. Credit: NASA

The gas giants are mostly hydrogen and helium, like the Sun. But the ice giants are 65% water and other ices made from methane and ammonia. But it’s not like they’re big blobs of water, or even frozen water. Because of their huge gravity, the ice giants crush this material with enormous pressure and temperature.

What happens when you crush water under this much pressure? It would all depend on the temperature and pressure. There could be different types of ice down there. At one level, it could be an electrically conductive soup of hydrogen and oxygen, and then further down, you might get crystallized oxygen with hydrogen ions running through it.

Hailstones made of diamond could form out of the carbon-rich methane and fall down through the layers of the planets, settling within a molten carbon core. What I’m saying is, it could be pretty strange down there.

We know that ice giants are common in the galaxy, in fact, they’ve made up the majority of the extrasolar planets discovered so far. By better understanding the ones we have right here in our own Solar System, we can get a sense of the distant extrasolar planets turning up. We’ll be better able to distinguish between the super earths and mini-neptunes.

Artist’s impression of the Milky Way’s 100 billion exoplanets. Credit: NASA, ESA, and M. Kornmesser (ESO)

Another big question is how these planets formed in the first place. In their current models, most planetary astronomers think these planets had very short time windows to form. They needed to have massive enough cores to scoop up all that material before the newly forming Sun’s solar wind blasted it all out into space. And yet, why are these kinds of planets so common in the Universe?

The NASA mission planners developed a total of 12 science objectives for these missions, focusing on the composition of the planets and their atmospheres. And if there’s time, they’d like to know about how heat moves around, their constellations of rings and moons. They’d especially like to investigate Neptune’s moons Triton, which looks like a captured Kuiper Belt Object, as it orbits in the reverse direction from all the other moons in the Solar System.

In terms of science, the two worlds are very similar. But because Neptune has Triton. If I had to choose, I’d go with a Neptune mission.

Neptune and its large moon Triton as seen by Voyager 2 on August 28th, 1989. (Credit: NASA).

Are you excited? I’m excited. Here’s the bad news. According to NASA, the best launch windows for these missions would be 2029 or 2034. And that’s just the launch time, the flight time is an additional decade or more on top of that. In other words, the first photos from a Uranus flyby could happen in 2039 or 2035, while orbiters could arrive at either planet in the 2040s. I’m sure my future grandchildren will enjoy watching these missions arrive.

But then, we have to keep everything in perspective. NASA’s Cassini mission was under development in the 1980s. It didn’t launch until 1997, and it didn’t get to Saturn until 2004. It’s been almost 20 years since that launch, and almost 40 years since they started working on it.

I guess we need to be more patient. I can be patient.

Watch Live 24-Hour Webcast for International Asteroid Day

Picture of the asteroid that exploded over Cherlyabinsk on Feb 15, 2013. Credit: Tuvix/Youtube

Every day, Earth is hit by 60 to 300 metric tons of space dust and smaller meteoroids. But sometimes, larger and more dangerous space rocks plummet to Earth, such as on June 30, 1908 when an estimated 40 meter-wide meteoroid exploded over the Tunguska, Siberia region in Russia, devastating 2000 sq. kilometers (770 square miles) of forest. As the 2013 Chelyabinsk meteor event attests, the likelihood of a similar event happening again is not an “if” but a “when.”

To raise public awareness about asteroid impact hazards and to urge political leaders to work together to be prepared, the United Nations proclaimed June 30 as International Asteroid Day.

A first-ever 24-hour Asteroid Day program will be feature nearly 1,000 events around the world. It starts at 9 p.m. EDT on June 29 (1 a.m. June 30 GMT), streaming online at the Asteroid Day webcast.

The events start in Tucson, Arizona with an event hosted by our friend, Meteorite Man and Action Scientist Geoff Notkin speaking with Dante Lauretta and Heather Enos from the OSIRIS-REx mission to asteroid Bennu, Eric Christensen, director, Catalina Sky Survey for Near-Earth Objects and many more.

Other events around the world feature Brian Cox, Neil deGrasse Tyson, Brian May, Peter Gabriel, as well as dozens of expert scientists, technologists and researchers in planetary science, NASA astronauts Rusty Schweickart, Ed Lu and Nicole Stott, ESA astronauts Michel Tognini, Jean-François Clervoy; and Romanian astronaut Dorin Prunariu.

NASA and ESA are both hosting events as well. You can see the entire lineup of events here (Google document) and find additional information at the Asteroid Day Live website.

In addition, the Discovery Channel, has produced two specials about asteroids and Asteroid Day to air June 30 around the world: “How to Survive an Asteroid Impact” and a three-minute Virtual Reality video that re-enacts the Tunguska event, provides viewers with an insight into the risks of asteroids, how scientists are trying to protect our planet, and what viewers should do if an asteroid is about to impact their city.

There is also a seven-part series called “Scientists Rock” that introduces you to the people working to protect us from Asteroids.

According to a press release from Asteroid Day, central to Asteroid Day is the 100x Declaration, calling for the 100-fold increase in the detection and monitoring of asteroids. Signed to date by more than 60,000 people around the world, the Declaration resolves to “solve humanity’s greatest challenges to safeguard our families and quality of life on Earth in the future. The Declaration is available online for the signature of anyone concerned about advancing asteroid research and technology.

What is the Smallest Planet in the Solar System?

MESSENGER image of Mercury from its third flyby (NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington)

The Solar Planets are a nice mixed bag of what is possible when it comes to planetary formation. Within the inner Solar System, you have the terrestrial planets – bodies that are composed primarily of silicate minerals and metals. And in the outer Solar System, you have the gas giants and bodies that are composed primarily of ice that lie just beyond in the Trans-Neptunian region.

Of these, the question of which planet is the smallest has been the subject of some controversy. Until recently, the smallest planet was considered to be Pluto. But with the 2006 IAU Resolution that put constraints on what the definition of a planet entails, that status has since passed to Mercury. So in addition to being the closest planet to the Sun, Mercury is also the smallest.

Size and Mass:

With a mean radius of 2440 km, Mercury is the smallest planet in our Solar System, equivalent in size to 0.38 Earths. And given that it has its experiences no flattening at the poles – like Venus, which means it is an almost perfectly spherical body – its radius is the same at the poles as it is the equator.

And while it is smaller than the largest natural satellites in our Solar System – such as Ganymede and Titan – it is more massive. At 3.3011×1023 kg in mass (33 trillion trillion metric tons; 36.3 trillion trillion US tons), it is equivalent to 0.055 Earths in terms of mass.

Mercury and Earth, size comparison. Credit: NASA / APL (from MESSENGER)

Density, Volume:

On top of that, Mercury is significantly more dense than bodies its size. In fact, Mercury’s density (at 5.427 g/cm3) is the second highest in the Solar System, only slightly less than Earth’s (5.515 g/cm3). The result of this is a gravitational force of 3.7 m/s2, which is 0.38 times that of Earth (0.38 g). In essence, this means that if you could stand on the surface of Mercury, you would weight 38% as much as you do on Earth.

In terms of volume, Mercury once again becomes a bit diminutive, at least by Earth standards. Basically, Mercury has a volume of 6.083×1010 km³ (60 billion cubic km; 14.39 trillion cubic miles) which works out to 0.056 times the volume of the Earth. In other words, you could fit Mercury inside Earth almost twenty times over.

Structure and Composition:

Like Earth, Venus and Mars, Mercury is a terrestrial planet, meaning that is primarily composed of silicate minerals and metals that are differentiated between a metallic core and a silicate mantle and crust. But in Mercury’s case, the core is oversized compared to the other terrestrial planets, measuring some 1,800 km (approx. 1,118.5 mi) in radius, and therefore occupying 42% of the planet’s volume (compared to Earth’s 17%).

Internal structure of Mercury: 1. Crust: 100–300 km thick 2. Mantle: 600 km thick 3. Core: 1,800 km radius. Credit: MASA/JPL

Another interesting feature about Mercury’s core is the fact that it has a higher iron content than that of any other major planet in the Solar System. Several theories have been proposed to explain this, the most widely-accepted being that Mercury was once a larger planet that was struck by a planetesimal that stripped away much of the original crust and mantle, leaving behind the core as a major component.

Beyond the core is a mantle that measures 500 – 700 km (310 – 435 mi) in thickness and is composed primarily of silicate material. The outermost layer is Mercury’s crust, which is composed of silicate material that is believed to be 100 – 300 km thick.

Yes, Mercury is a pretty small customer when compared to its brothers, sisters and distant cousins in the Solar System. However, it is also one of the densest, hottest and most irradiated. So while small, no one would ever accuse this planet of not being really tough!

We have written many interesting articles on Mercury and the Solar Planets here at Universe Today. Here’s What is the Biggest Planet in the Solar System?, What is the Second Largest Planet in the Solar System?, How Does Mercury Compare to Earth?, What is the Average Surface Temperature on Mercury?, How Long is a Day on Mercury?, and The Orbit of Mercury, How Long is a Year on Mercury?,

And here’s another take on the smallest planet in the Solar System, and here’s a link to NASA’s Solar System Exploration Guide.

We have recorded a whole series of podcasts about the Solar System at Astronomy Cast.

Sources:

Amazing New Views of Betelgeuse Courtesy of ALMA

This orange blob shows the nearby star Betelgeuse, as seen by the Atacama Large Millimeter/submillimeter Array (ALMA). ALMA/ESO/NRAO
This orange blob is the nearby star Betelgeuse, as imaged recently by the Atacama Large Millimeter/submillimeter Array (ALMA). ALMA/ESO/NRAO

Just. Wow.

An angry monster lurks in the shoulder of the Hunter. We’re talking about the red giant star Betelgeuse, also known as Alpha Orionis in the constellation Orion. Recently, the Atacama Large Millimeter Array (ALMA) gave us an amazing view of Betelgeuse, one of the very few stars that is large enough to be resolved as anything more than a point of light.

Located 650 light years distant, Betelgeuse is destined to live fast, and die young. The star is only eight million years old – young as stars go. Consider, for instance, our own Sun, which has been shining as a Main Sequence star for more than 500 times longer at 4.6 billion years – and already, the star is destined to go supernova at anytime in the next few thousand years or so, again, in a cosmic blink of an eye.

Still lumpy… Betelgeuse imaged by Hubble in 1996. Hubble/ESA/STScI

An estimated 12 times as massive as Sol, Betelgeuse is perhaps a staggering 6 AU or half a billion miles in diameter; plop it down in the center of our solar system, and the star might extend out past the orbit of Jupiter.

As with many astronomical images, the wow factor comes from knowing just what you’re seeing. The orange blob in the image is the hot roiling chromosphere of Betelgeuse, as viewed via ALMA at sub-millimeter wavelengths. Though massive, the star only appears 50 milliarcseconds across as seen from the Earth. To give you some idea just how small a milliarcsecond is, there’s a thousand of them in an arc second, and 60 arc seconds in an arc minute. The average Full Moon is 30 arc minutes across, or 1.8 million milliarcseconds in apparent diameter. Betelgeuse has one of the largest apparent diameters of any star in our night sky, exceeded only by R Doradus at 57 milliarcseconds.

The apparent diameter of Betelgeuse was first measured by Albert Michelson using the Mount Wilson 100-inch in 1920, who obtained an initial value of 240 million miles in diameter, about half the present accepted value, not a bad first attempt.

You can see hints of an asymmetrical bubble roiling across the surface of Betelgeuse in the ALMA image. Betelgeuse rotates once every 8.4 years. What’s going on under that uneasy surface? Infrared surveys show that the star is enveloped in an enormous bow-shock, a powder-keg of a star that will one day provide the Earth with an amazing light show.

The bowshock created by Betelgeuse as it plows through the local interstellar medium. JAXA/Akari

Thankfully, Betelgeuse is well out of the supernova “kill zone” of 25 to 100 light years (depending on the study). Along with Spica at 250 light years distant in the constellation Virgo, both are prime nearby supernovae candidates that will on day give astronomers a chance to study the anatomy of a supernova explosion up close. Riding high to the south in the northern hemisphere nighttime sky in the wintertime, +0.5 magnitude Betelgeuse would most likely flare up to negative magnitudes and would easily be visible in the daytime if it popped off in the Spring or Fall. This time of year in June would be the worst, as Alpha Orionis only lies 15 degrees from the Sun!

An early springtime supernova in the future? Stellarium

Of course, this cosmic spectacle could kick off tomorrow… or thousands of years from now. Maybe, the light of Betelgeuse gone supernova is already on its way now, traversing the 650 light years of open space. Ironically, the last naked eye supernova in our galaxy – Kepler’s Star in the constellation Ophiuchus in 1604 – kicked off just before Galileo first turned his crude telescope towards the heavens in 1610.

You could say we’re due.