Where Should We Look For Ancient Civilizations in the Solar System?

Image of the "Face of Mars" by the Mars Reconnaissance Orbiter, with the Viking 1 image inset (bottom right). Credit: NASA/JPL
Image of the "Face of Mars" by the Mars Reconnaissance Orbiter, with the Viking 1 image inset (bottom right). Credit: NASA/JPL

The search for life in the Universe takes many paths. There’s SETI, or the Search for Extraterrestrial Intelligence, which is searching for signals from a distant ancient civilization. There’s the exploration of our own Solar System, on Mars, or underneath the subsurface oceans of Europa and Enceladus, to see if life can be anywhere there’s liquid water and a source of energy. And upcoming space telescopes like James Webb will attempt to directly image the atmospheres of distant extrasolar planets, to see if they contain the distinct chemical signatures of life.

But according to Jason Wright, an astronomer at the Center for Exoplanets and Habitable Worlds at Penn State University, we could consider searching for evidence of ancient civilizations right here on Earth, or across the Solar System. Don’t get excited, though, so far “there is zero evidence for prior indigenous species in the Solar System.”

Artist's impression of the terraforming of Mars, from its current state to a livable world. Credit: Daein Ballard
Artist’s impression of the terraforming of Mars, from its current state to a livable world. Credit: Daein Ballard
In a paper, recently submitted to the arXiv electronic preprint archive entitled Prior Indigenous Technological Species, Dr. Wright describes how we might go about searching for the technological artifacts left behind by ancient civilizations that have evolved in the Solar System. Perhaps on an ancient, cooler Venus, or on Mars in a time when it was wetter and had a thicker atmosphere. Those civilizations could have arisen millions or even billions of years ago, destroyed themselves or left the Solar System, and only ancient traces of their culture and technology would still be around.

If a civilization had reached a high level of technology, where did it go? Wright suggests a variety of catastrophes, like a swarm of comets, self destruction, or even a nearby supernova explosion that irradiated the whole Solar System with high energy gamma rays. Even without a specific event, a civilization might have simply just died out, or became permanently non-technological. Of course, these possibilities face our own human civilization. It’s hard to read the paper and not consider the fate of humanity. Will future aliens search for scraps to learn about us?

Where should we look? According to Wright, Earth is the obvious, most habitable place in the Solar System, and it’ll be the easiest to search. Humans have dramatically changed the landscape of Earth. Our open pit mines, for example, are a clear indication that an intelligent species dug out a specific mineral from the ground. These might be obvious for millions of years, but over the course of billions of years, plate tectonics will have recycled those regions, absorbing the evidence back into the ground. Radioactive isotopes from ancient nuclear reactors, or fossils of ancient beings will have about the same lifespan. Beyond a few hundred million years, the Earth itself would have completely obscured any evidence of a technological civilization.

Inhospitable surface of Venus. Credit: Magellan
Venus is inhospitable today, but it might not have always been the case. Billions of years in the past, when the Sun was cooler, it might have had a thinner atmosphere and milder temperatures. It’s worth searching. That said, it appears that Venus has gone through major geological resurfacing events, where the entire planet’s surface turned inside out. Venus could easily hide its secrets.

Scientists are accumulating more and more evidence that Mars was warmer and wetter in the past, with eras when liquid water could exist on the surface for long periods of time. And unlike Earth and Venus, it doesn’t have active plate tectonics. Landscapes on the surface have remained there for billions of years. Well, okay, they’ve been pounded by meteorites, but they’re still there.

What should we be looking for? One idea is technological structures: ancient mining facilities, factories, even cities. On Mars, these structures could get covered by dust or worn down by erosion, so it’s entirely possible our space-based observations could have missed them. Even structures on asteroids and the Moon get eroded by micrometeorites wearing them down. Over the course of millions years, an ancient factory would look very similar to a small rocky outcrop. The real evidence could be hidden underground, safely protected from the surface erosion. We need more rovers and orbiters with ground penetrating radar to see below the surface.

The Lunar Laser Ranging Experiment placed on the Moon by the Apollo 14 astronauts. Credit: NASA
The Lunar Laser Ranging Experiment placed on the Moon by the Apollo 14 astronauts. Credit: NASA
There could be free-floating objects in the Solar System, like ancient space stations. Of course, if they’ve been abandoned long ago, they wouldn’t be functional, and that same micrometeorite erosion would have worn them down over the vast timescales. Furthermore, their orbits might not be stable, and could eventually crash into another world, or get kicked out of the Solar System entirely. Space stations out in the Kuiper Belt would be subject to less erosion, and better preserved over vast timescales. We need better telescopes and deeper surveys to answer this question.

The bottom line is that Dr. Wright doesn’t conclude there’s any evidence for ancient civilizations in the Solar System so far. But the reality is that we’ve only just begun to look. NASA’s Mars Reconnaissance Orbiter, which contains the most powerful telescope to ever travel away from the Earth has only mapped a few percent of the Martian surface at its highest resolution. Astronomers have only mapped a tiny fraction of the asteroids and comets zipping around the Solar System. And we’ve only had single glimpses at places in the outer Solar System, like Uranus, Neptune and Pluto.

There’s so much more searching that needs to be done. But while we’re at it, we should keep an eye out for ancient civilizations. If we did find an old factory, space station, or even the dumping ground of a precursor species, it would be a boon to our knowledge.

And might just give us a warning; advanced knowledge of what the future holds for our own civilization.

Original Source: Prior Indigenous Technological Species

Rise Of The Super Telescopes: The Wide Field Infrared Survey Telescope

NASA's Wide Field Infrared Survey Telescope (WFIRST) will capture Hubble-quality images covering swaths of sky 100 times larger than Hubble does, enabling cosmic evolution studies. Its Coronagraph Instrument will directly image exoplanets and study their atmospheres. Credits: NASA/GSFC/Conceptual Image Lab
NASA's Wide Field Infrared Survey Telescope (WFIRST) will capture Hubble-quality images covering swaths of sky 100 times larger than Hubble does. These enormous images will allow astronomers to study the evolution of the cosmos. Its Coronagraph Instrument will directly image exoplanets and study their atmospheres. Credits: NASA/GSFC/Conceptual Image Lab

We humans have an insatiable hunger to understand the Universe. As Carl Sagan said, “Understanding is Ecstasy.” But to understand the Universe, we need better and better ways to observe it. And that means one thing: big, huge, enormous telescopes.

In this series we’ll look at the world’s upcoming Super Telescopes:

The Wide Field Infrared Survey Telescope (WFIRST)

It’s easy to forget the impact that the Hubble Space Telescope has had on our state of knowledge about the Universe. In fact, that might be the best measurement of its success: We take the Hubble, and all we’ve learned from it, for granted now. But other space telescopes are being developed, including the WFIRST, which will be much more powerful than the Hubble. How far will these telescopes extend our understanding of the Universe?

“WFIRST has the potential to open our eyes to the wonders of the universe, much the same way Hubble has.” – John Grunsfeld, NASA Science Mission Directorate

The WFIRST might be the true successor to the Hubble, even though the James Webb Space Telescope (JWST) is often touted as such. But it may be incorrect to even call WFIRST a telescope; it’s more accurate to call it an astrophysics observatory. That’s because one of its primary science objectives is to study Dark Energy, that rather mysterious force that drives the expansion of the Universe, and Dark Matter, the difficult-to-detect matter that slows that expansion.

WFIRST will have a 2.4 meter mirror, the same size as the Hubble. But, it will have a camera that will expand the power of that mirror. The Wide Field Instrument is a 288-megapixel multi-band near-infrared camera. Once it’s in operation, it will capture images that are every bit as sharp as those from Hubble. But there is one huge difference: The Wide Field Instrument will capture images that cover over 100 times the sky that Hubble does.

Alongside the Wide Field Instrument, WFIRST will have the Coronagraphic Instrument. The Coronagraphic Instrument will advance the study of exoplanets. It’ll use a system of filters and masks to block out the light from other stars, and hone in on planets orbiting those stars. This will allow very detailed study of the atmospheres of exoplanets, one of the main ways of determining habitability.

WFIRST is slated to be launched in 2025, although it’s too soon to have an exact date. But when it launches, the plan is for WFIRST to travel to the Sun-Earth LaGrange Point 2 (L2.) L2 is a gravitationally balanced point in space where WFIRST can do its work without interruption. The mission is set to last about 6 years.

Probing Dark Energy

“WFIRST has the potential to open our eyes to the wonders of the universe, much the same way Hubble has,” said John Grunsfeld, astronaut and associate administrator of NASA’s Science Mission Directorate at Headquarters in Washington. “This mission uniquely combines the ability to discover and characterize planets beyond our own solar system with the sensitivity and optics to look wide and deep into the universe in a quest to unravel the mysteries of dark energy and dark matter.”

In a nutshell, there are two proposals for what Dark Energy can be. The first is the cosmological constant, where Dark Energy is uniform throughout the cosmos. The second is what’s known as scalar fields, where the density of Dark Energy can vary in time and space.

We used to think that the Universe expanded at a steady rate. Then in the 1990s we discovered that the expansion had started accelerating about 5 billion years ago. Dark Energy is the name given to the force driving that expansion. Image: NASA/STSci/Ann Feild
We used to think that the Universe expanded at a steady rate. Then in the 1990s we discovered that the expansion had accelerated. Dark Energy is the name given to the force driving that expansion. Image: NASA/STSci/Ann Feild

Since the 1990s, observations have shown us that the expansion of the Universe is accelerating. That acceleration started about 5 billion years ago. We think that Dark Energy is responsible for that accelerated expansion. By providing such large, detailed images of the cosmos, WFIRST will let astronomers map expansion over time and over large areas. WFIRST will also precisely measure the shapes, positions and distances of millions of galaxies to track the distribution and growth of cosmic structures, including galaxy clusters and the Dark Matter accompanying them. The hope is that this will give us a next level of understanding when it comes to Dark Energy.

If that all sounds too complicated, look at it this way: We know the Universe is expanding, and we know that the expansion is accelerating. We want to know why it’s expanding, and how. We’ve given the name ‘Dark Energy’ to the force that’s driving that expansion, and now we want to know more about it.

Probing Exoplanets

Dark Energy and the expansion of the Universe is a huge mystery, and a question that drives cosmologists. (They really want to know how the Universe will end!) But for many of the rest of us, another question is even more compelling: Are we alone in the Universe?

There’ll be no quick answer to that one, but any answer we find begins with studying exoplanets, and that’s something that WFIRST will also excel at.

Artist's concept of the TRAPPIST-1 star system, an ultra-cool dwarf that has seven Earth-size planets orbiting it. We're going to keep finding more and more solar systemsl like this, but we need observatories like WFIRST, with starshades, to understand the planets better. Credits: NASA/JPL-Caltech
Artist’s concept of the TRAPPIST-1 star system, an ultra-cool dwarf that has seven Earth-size planets orbiting it. We’re going to keep finding more and more solar systems like this, but we need observatories like WFIRST to understand the planets better. Credits: NASA/JPL-Caltech

“WFIRST is designed to address science areas identified as top priorities by the astronomical community,” said Paul Hertz, director of NASA’s Astrophysics Division in Washington. “The Wide-Field Instrument will give the telescope the ability to capture a single image with the depth and quality of Hubble, but covering 100 times the area. The coronagraph will provide revolutionary science, capturing the faint, but direct images of distant gaseous worlds and super-Earths.”

“The coronagraph will provide revolutionary science, capturing the faint, but direct images of distant gaseous worlds and super-Earths.” – Paul Hertz, NASA Astrophysics Division

The difficulty in studying exoplanets is that they are all orbiting stars. Stars are so bright they make it impossible to see their planets in any detail. It’s like staring into a lighthouse miles away and trying to study an insect near the lighthouse.

The Coronagraphic Instrument on board WFIRST will excel at blocking out the light of distant stars. It does that with a system of mirrors and masks. This is what makes studying exoplanets possible. Only when the light from the star is dealt with, can the properties of exoplanets be examined.

This will allow detailed measurements of the chemical composition of an exoplanet’s atmosphere. By doing this over thousands of planets, we can begin to understand the formation of planets around different types of stars. There are some limitations to the Coronagraphic Instrument, though.

The Coronagraphic Instrument was kind of a late addition to WFIRST. Some of the other instrumentation on WFIRST isn’t optimized to work with it, so there are some restrictions to its operation. It will only be able to study gas giants, and so-called Super-Earths. These larger planets don’t require as much finesse to study, simply because of their size. Earth-like worlds will likely be beyond the power of the Coronagraphic Instrument.

These limitations are no big deal in the long run. The Coronagraph is actually more of a technology demonstration, and it doesn’t represent the end-game for exoplanet study. Whatever is learned from this instrument will help us in the future. There will be an eventual successor to WFIRST some day, perhaps decades from now, and by that time Coronagraph technology will have advanced a great deal. At that future time, direct snapshots of Earth-like exoplanets may well be possible.

But maybe we won’t have to wait that long.

Starshade To The Rescue?

There is a plan to boost the effectiveness of the Coronagraph on WFIRST that would allow it to image Earth-like planets. It’s called the EXO-S Starshade.

The EXO-S Starshade is a 34m diameter deployable shading system that will block starlight from impairing the function of WFIRST. It would actually be a separate craft, launched separately and sent on its way to rendezvous with WFIRST at L2. It would not be tethered, but would orient itself with WFIRST through a system of cameras and guide lights. In fact, part of the power of the Starshade is that it would be about 40,000 to 50,000 km away from WFIRST.

Dark Energy and Exoplanets are priorities for WFIRST, but there are always other discoveries awaiting better telescopes. It’s not possible to predict everything that we’ll learn from WFIRST. With images as detailed as Hubble’s, but 100 times larger, we’re in for some surprises.

“This mission will survey the universe to find the most interesting objects out there.” – Neil Gehrels, WFIRST Project Scientist

“In addition to its exciting capabilities for dark energy and exoplanets, WFIRST will provide a treasure trove of exquisite data for all astronomers,” said Neil Gehrels, WFIRST project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This mission will survey the universe to find the most interesting objects out there.”

With all of the Super Telescopes coming on line in the next few years, we can expect some amazing discoveries. In 10 to 20 years time, our knowledge will have advanced considerably. What will we learn about Dark Matter and Dark Energy? What will we know about exoplanet populations?

Right now it seems like we’re just groping towards a better understanding of these things, but with WFIRST and the other Super Telescopes, we’re poised for more purposeful study.

NASA’s Space Chainmail to Give Astronauts the Edge in Space Duels

This metallic "space fabric" was created using 3-D printed techniques that add different functionality to each side of the material. Credits: NASA/JPL-Caltech

One would think NASA was preparing for a some sword fights in space! At least, that’s the impression one might get when they see the new armor NASA is developing for the first time. Officially, they are referring to it as a new type of “space fabric“, one which will provide protection to astronauts, spaceships and deployable devices. But to the casual observer, it looks a lot like chain mail armor!

The new armor is the brainchild of Polit Casillas, a systems engineer from NASA’s Jet Propulsion Laboratory. Inspired by traditional textiles, this armor relies on advances made in additive manufacturing (aka. 3-D printing) to create woven metal fabrics that can fold and change shape quickly. And someday soon, it could be used for just about everything!

As the son of a fashion designer in Spain, Casillas grew up around fabrics and textiles, and was intrigued by how they are used for the sake of design. Much in the same way that textiles are produced by weaving together countless threads, Casilla’s prototype space fabric relies on 3-D printing to create metal squares in one piece, which are then strung together to form a coat of armor.

Another example of a 3-D-printed metallic “space fabric.” The bottom and top sides of the fabric are designed to have different functionality. Credits: NASA/JPL-Caltech

In addition to his work with this new space fabric, Casillas co-leads JPL’s Atelier workshop, which specialized in the rapid-prototyping of advanced concepts and systems. This fast-paced collaborative environment works with different technologies and looks for ways to incorporate new ones (such as 4-D printing) into existing designs. As Casillas described this concept in a NASA press release:

“We call it ‘4-D printing’ because we can print both the geometry and the function of these materials. If 20th Century manufacturing was driven by mass production, then this is the mass production of functions.”

The space fabrics have four essential functions, which includes reflectivity, passive heat management, foldability and tensile strength. With one side reflecting light and the other absorbing it, the material acts as a means of thermal control. It can also fold in many different ways and adapt to shapes, all the while maintaining tensile strength to ensure it can sustain forces pulling on it.

These fabrics could be used to protect astronauts and shield large antennas, deployable devices and spacecraft from meteorites and other hazards. In addition, they could be used to ensure that missions to extreme environments would be protected from the elements. Consider Jupiter’s moon Europa, which NASA is planning on exploring in the coming decade using a lander – aka. the Europa Clipper mission.

Artist’s concept of a Europa Clipper mission. Credit: NASA/JPL

Here, and on other “ocean worlds” – like Ceres, Enceladus, Titan and Pluto – this sort of flexible armor could provide insulation for spacecraft. They could be used on landing struts to ensure that they could change shape to fit over uneven terrain as well. This kind of material could also be used to build habitats for Mars or the Moon – like the South Pole-Aitken Basin, where permanently-shadowed craters allow for the existence of water ice.

Another benefit of this material is the fact that it is considerably cheaper to produce compared to materials made using traditional fabrication methods. Under ordinary conditions, designing and building spacecraft is a complex and costly process. But by adding multiple functions to a material at different stages of development, the whole process can be made cheaper and new designs can be implemented.

Andrew Shapiro-Scharlotta is a manager at the JPL’s Space Technology Office, an office responsible for funding  early-stage technologies like the space fabric. As he put it, this sort of production process could enable all kinds of designs and new mission concepts. “We are just scratching the surface of what’s possible,” he said. “The use of organic and non-linear shapes at no additional costs to fabrication will lead to more efficient mechanical designs.”

In keeping with how 3-D printing has been developed for use aboard the ISS, the JPL team not only wants to use this fabric in space, but also manufacture it in space as well. In the future, Casillas also envisions a process whereby tools and structural materials can be printed from recycled materials, offering additional cost-savings and enabling rapid, on-demand production of necessary components.

Such a production process could revolutionize the way spacecraft and space systems are created. Instead of ships, suits, and robotic craft created from many different parts (which then have to be assembled), they could be printed out like “whole cloth”. The manufacturing revolution, it seems, loometh!

Further Reading: NASA

SpaceX Stages Stupendous NRO Spysat Sunrise Liftoff and Land Landing

SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office successfully launches shortly after sunrise from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. 1st stage accomplished successful ground landing at the Cape nine minutes later. Credit: Ken Kremer/Kenkremer.com

SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office successfully launches shortly after sunrise from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. 1st stage accomplished successful ground landing at the Cape nine minutes later. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – SpaceX today staged the stupendously successful Falcon 9 rocket launch at sunrise of a mysterious spy satellite in support of U.S. national defense for the National Reconnaissance Office (NRO) while simultaneously accomplishing a breathtaking pinpoint land landing of the boosters first stage that could eventually dramatically drive down the high costs of spaceflight.

Liftoff of the classified NROL-76 payload for the NRO took place shortly after sunrise this morning, Monday, May 1, at 7:15 a.m. EDT (1115 GMT), from SpaceX’s seaside Launch Complex 39A on NASA’s Kennedy Space Center in Florida.

The weather was near perfect and afforded a spectacular sky show for all those who descended on the Florida Space Coast for an up close eyewitness view of the rockets rumbling thunder.

The rocket roared off pad 39A after ignition of the nine Merlin 1D first stage engines generated some 1.7 million pounds of thrust.

The Falcon sped skyward darting in and out of wispy white clouds and appeared to head in a northeasterly direction from the space coast.

“A National Reconnaissance Office (NRO) payload was successfully launched aboard a SpaceX Falcon 9 rocket from Launch Complex 39A (LC-39A), Kennedy Space Center (KSC), Florida, at 7:15 a.m. EDT, on May 1, 2017,” the NRO said in a post launch statement.

“Thanks to the SpaceX team for the great ride, and for the terrific teamwork and commitment they demonstrated throughout. They were an integral part of our government/industry team for this mission, and proved themselves to be a great partner,” said Betty Sapp, Director of the National Reconnaissance Office.

The launch of the two stage 229 foot tall Falcon 9 was postponed a day after a last moment scrub was suddenly called on Sunday by the launch director at just about T minus 52 seconds due to a sensor issue in the first stage.

SpaceX engineers were clearly able to fully resolve the issue in time for today’s second launch attempt of the super secret NROL-76 for the NRO customer.

Barely nine minutes after the launch, the 156 foot tall first stage of the SpaceX Falcon 9 rocket made an incredibly precise and thrilling soft touchdown on land at Cape Canaveral Air Force Station’s Landing Zone 1, located a few miles south of launch pad 39A.

SpaceX Falcon 9 deploys quartet of landing legs moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely nine minutes after liftoff from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

The quartet of landing legs attached to the base of the first stage deployed only moments before touchdown – as can be seen in my eyewitness photos herein.

Multiple sonic booms screamed across the space coast as the 15 story first stage plummeted back to Earth and propulsively slowed down to pass though the sound barrier and safely came to rest fully upright.

This counts as SpaceX’s first ever launch of a top secret US surveillance satellite. It also counts as the fourth time SpaceX landed a first stage fully intact on the ground.

As is typical for NRO missions, nothing is publically known about the satellite nor has the NRO released any details about this mission in support of national security other than the launch window.

SpaceX Falcon 9 deploys quartet of landing legs moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely nine minutes after liftoff from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

Overall SpaceX has now recovered 10 first stages via either land or at sea on an oceangoing platform.

NROL-76 marks the fifth SpaceX launch of 2017 and the 33rd flight of a Falcon 9.

Blastoff of SpaceX Falcon 9 delivering NROL-76 spy satellite to orbit on 1 May 2017 for the U.S. National Reconnaissance Office. Credit: Julian Leek

NROL-76 is the second of five launches slated for the NRO in 2017. The next NRO launch is on schedule for August 14 from Vandenberg Air Force Base (VAFB), California by competitor ULA.

Until now launch competitor United Launch Alliance (ULA) and its predecessors have held a virtual monopoly on the US military’s most critical satellite launches.

The NRO is a joint Department of Defense–Intelligence Community organization responsible for developing, launching, and operating America’s intelligence satellites to meet the national security needs of our nation, according to the NRO.

Watch for Ken’s continuing onsite launch reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station in Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office stands raised erect poised for sunrise liftoff from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

What’s that Strange Glowing Mold? Astronauts will Soon be Able to Sequence Unknown Space Organisms

NASA astronaut Kate Rubins poses for a picture with the minION device during the first sample initialization run of the Biomolecular Sequencer investigation. Credits: NASA

Seeking to understand more about space-born microbes, NASA has initiated a program known as Genes in Space-3 – a collaborative effort that will prepare, sequence and identify unknown organisms, entirely from space. For those who might be thinking that this sounds a lot like the film Life – where astronauts revive an alien organism on the International Space Station and everyone dies! – rest assured, this is not the setup for some horror movie.

In truth, it represents a game-changing development that builds on recent accomplishments, where DNA was first synthesized by NASA astronaut Kate Rubin aboard the International Space Station in 2016. Looking ahead, the Genes in Space-3 program will allow astronauts aboard the ISS to collect samples of microbes and study them in-house, rather than having to send them back to Earth for analysis.

The previous experiments performed by Rubin – which were part of the Biomolecule Sequencer investigation – sought to demonstrate that DNA sequencing is feasible in an orbiting spacecraft. The Genes in Space-3 seeks to build on that by establishing a DNA sample-preparation process that would allow ISS crews to identify microbes, monitor crew health, and assist in the search for DNA-based life elsewhere in the Solar System.

NASA astronaut Kate Rubins became the first person to sequence DNA in space and sequenced more than a billion bases during her time aboard the ISS. Credits: NASA

As Sarah Wallace – a NASA microbiologist and the project’s Principal Investigator (PI) at the Johnson Space Center – said in a recent press release:

“We have had contamination in parts of the station where fungi was seen growing or biomaterial has been pulled out of a clogged waterline, but we have no idea what it is until the sample gets back down to the lab. On the ISS, we can regularly resupply disinfectants, but as we move beyond low-Earth orbit where the ability for resupply is less frequent, knowing what to disinfect or not becomes very important.”

Developed in partnership by NASA’s Johnson Space Center and Boeing (and sponsored by the ISS National Lab), this project brings together two previously spaceflight-tested molecular biology tools. First, there is miniPCR, a device which copies targeted pieces of DNA in a process known as Polymerase Chain Reaction (PCR) to create thousands of copies.

This device was developed as part of the student-designed Genes in Space competition, and was successfully tested aboard the ISS during the Genes in Space-1 experiment. Running from September to March of 2016, this experiment sought to test if the alterations to DNA and the weakening of the immune system (both of which happen during spaceflight) are in fact linked.

Student Anna-Sophia Boguraev, winner of the Genes in Space competition, is pictured with the miniPCR device. Credits: NASA

This test will be followed-up this summer with Genes in Space-2 experiment. Running from April to September, this experiment will measure how spaceflight affects telomeres – the protective caps on our chromosomes that are associated with cardiovascular disease and cancers.

The MinION, meanwhile, is a handheld device developed by Oxford Nanopore Technologies. Capable of analyzing DNA and RNA sequences, this technology allows for rapid analysis that is also portable and scalable. It has already been used here on Earth, and was successfully tested aboard the ISS as part of the Biomolecule Sequencer investigation earlier this year.

Combined with some additional enzymes to demonstrate DNA amplification, the Genes in Space-3 experiment will allow astronauts to bring the lab to the microorganisms, rather than the reverse. This will consist of crew members collecting samples from within the space station and then culturing them aboard the orbiting laboratory. The samples will then be prepared for sequencing using the miniPCR and sequenced and identified using the MinION.

As Sarah Stahl, a microbiologist and project scientist, explained, this will allow crews to combat the spread of infectious diseases and bacteria. “The ISS is very clean,” she said. “We find a lot of human-associated microorganisms – a lot of common bacteria such as Staphylococcus and Bacillus and different types of familiar fungi like Aspergillus and Penicillium.”

In addition to being able to diagnose illnesses and infections in real-time, the experiment will allow for new and exciting research aboard the ISS. This could include identifying DNA-based life on other planets, the samples of which would be returned to the ISS via probe. In addition, if and hen microbes are found floating around in space, they could be returned to the ISS for swift analysis.

Another benefit of the program will come from Earth-based scientists being able to access the experiments going on aboard the ISS in real-time. And scientists here on Earth will also benefit from the tools being employed, which will allow for cheap and effective ways to diagnose viruses, especially in parts of the world where access to a laboratory is not possible.

Once more, the development of systems and tools for use in space – an environment that is not typically conducive to Earth-based technologies – is offering up applications that go far beyond space travel. And in the coming years, ISS-based genetic research could help in the ongoing search for extra-terrestrial life, as well as provide new insights into theories like panspermia (i.e. the cosmos being seeded with life by comets, asteroids and planetoids).

Be sure to enjoy this video titled “Cosmic Carpool”, courtesy of NASA’s Johnson Space Center:

Further Reading: NASA

An Aging Pulsar has Captured a new Companion, and it’s Spinning back up Again

Artist's impression of a pulsar siphoning material from a companion star. Credit: NASA

When massive stars reach the end of their life cycle, they explode in a massive supernova and cast off most of their material. What’s left is a “milliscond pulsar”, a super dense, highly-magnetized neutron star that spins rapidly and emit beams of electromagnetic radiation. Eventually, these stars lose their rotational energy and begin to slow down, but they can speed up again with the help of a companion.

According to a recent study, an international team of scientists witnessed this rare event when observing an ultra-slow pulsar located in the neighboring Andromeda Galaxy (XB091D). The results of their study indicated that this pulsar has been speeding up for the past one million years, which is likely the result of a captured a companion that has since been restoring its rapid rotational velocity.

Typically, when a pulsars pairs with an ordinary star, the result is a binary system consisting of a pulsar and a white dwarf. This occurs after the pulsar pulls off the outer layers of a star, turning it into a white dwarf. The material from these outer layer then forms an accretion disk around the pulsar, which creates a “hot spot” that radiates brightly in the X-ray specturum and where temperatures can reach into the millions of degrees.

The team was led by Ivan Zolotukhin of the Sternberg Astronomical Institute at Lomonosov Moscow State University (MSU), and included astronomers from the University of Toulouse, the National Institute for Astrophysics (INAF), and the Smithsonian Astrophysical Observatory. The study results were published in The Astrophysical Journal under the title “The Slowest Spinning X-Ray Pulsar in an Extragalactic Globular Cluster“.

As they state in their paper, the detection of this pulsar was made possible thanks to data collected by the XMM-Newton space observatory from 2000-2013. In this time, XMM-Newton has gathered information on approximately 50 billion X-ray photons, which has been combined by astronomers at Lomosov MSU into an open online database.

This database has allowed astronomers to take a closer look at many previously-discovered objects. This includes XB091D, a pulsar with a period of seconds (aka. a “second pulsar”) located in one of the oldest globular star clusters in the Andromeda galaxy. However, finding the X-ray photos that would allow them to characterize XB091D was no easy task. As Ivan Zolotukhin explained in a MSU press release:

“The detectors on XMM-Newton detect only one photon from this pulsar every five seconds. Therefore, the search for pulsars among the extensive XMM-Newton data can be compared to the search for a needle in a haystack. In fact, for this discovery we had to create completely new mathematical tools that allowed us to search and extract the periodic signal. Theoretically, there are many applications for this method, including those outside astronomy.”

The slowest spinning X-ray pulsar in a globular star cluster has been discovered in the Andromeda galaxy. Credit: A. Zolotov

Based on a total of 38 XMM-Newton observations, the team concluded that this pulsar (which was the only known pulsar of its kind beyond our galaxy at the time), is in the earliest stages of “rejuvenation”. In short, their observations indicated that the pulsar began accelerating less than 1 million years ago. This conclusion was based on the fact that XB091D is the slowest rotating globular cluster pulsar discovered to date.

The neutron star completes one revolution in 1.2 seconds, which is more than 10 times slower than the previous record holder.  From the data they observed, they were also able to characterize the environment around XB091D. For example, they found that the pulsar and its binary pair are located in an extremely dense globular cluster (B091D) in the Andromeda Galaxy – about 2.5 million light years away.

This cluster is estimated to be 12 billion years old and contains millions of old, faint stars. It’s companion, meanwhile, is a 0.8 solar mass star, and the binary system  itself has a rotation period of 30.5 hours. And in about 50,000 years, they estimate, the pulsar will accelerate sufficiently to once again have a rotational period measured in the milliseconds – i.e. a millisecond pulsar.

A diagram of the ESA XMM-Newton X-Ray Telescope. Delivered to orbit by a Ariane 5 launch vehicle in 1999. Credit: ESA/XMM-Newton

Interestingly, XB910D’s location within this vast region of super-high density stars is what allowed it to capture a companion about 1 million years ago and commence the process “rejuvenation” in the first place. As Zolotukhin explained:

“In our galaxy, no such slow X-ray pulsars are observed in 150 known globular clusters, because their cores are not big and dense enough to form close binary stars at a sufficiently high rate. This indicates that the B091D cluster core, with an extremely dense composition of stars in the XB091D, is much larger than that of the usual cluster. So we are dealing with a large and rather rare object—with a dense remnant of a small galaxy that the Andromeda galaxy once devoured. The density of the stars here, in a region that is about 2.5 light years across, is about 10 million times higher than in the vicinity of the Sun.”

Thanks to this study, and the mathematical tools the team developed to find it, astronomers will likely be able to revisit many previously-discovered objects in the coming years. Within these massive data sets, there could be many examples of rare astronomical events, just waiting to be witnessed and properly characterized.

Further reading: The Astrophysical Journal, Lomonosov Moscow State University

Star-travel 5 Million Years Into The Milky Way’s Future

Credit: ESA/Gaia/DPAC


Two Million Stars on the Move

Gaze into Gaia’s crystal ball and you will see the future. This video shows the motion of 2,057,050 stars in the coming 5 million years from the Tycho-Gaia Astrometric Solution sample, part of the first data release of European Space Agency’s Gaia mission.

Gaia is a space observatory parked at the L2 Lagrange Point, a stable place in space a million miles behind Earth as viewed from the Sun. Its mission is astrometry: measuring the precise positions, distances and motion of 1 billion astronomical objects (primarily stars) to create a three-dimensional map of the Milky Way galaxy. Gaia’s radial velocity measurements — the motion of stars toward or away from us —  will provide astronomers with a stereoscopic and moving-parts picture of about 1% of the galaxy’s stars.

Think about how slowly stars move from the human perspective. Generations of people have lived and died since the days of ancient Greece and yet the constellations outlines and naked eye stars appear nearly identical today as they did then. Only a few stars — Arcturus, Sirius, Aldebaran — have moved enough for a sharp-eyed observer of yore to perceive their motion.

Given enough time, stars do change position, distorting the outlines of the their constellations. This view shows the sky looking north in 91,000 A.D. Both Lyra and the Big Dipper are clearly bent out of shape! Created with Stellarium

We know that stars are constantly on the move around the galactic center. The Sun and stars in its vicinity orbit the core at some half-million miles an hour, but nearly all are so far away that their apparent motion has barely moved the needle over the time span of civilization as we know it.

This video shows more than 2 million stars from the TGAS sample, with the addition of 24,320 bright stars from the Hipparcos Catalogue that weren’t included in Gaia’s first data release back in September 2016. The video starts from the positions of stars as measured by Gaia between 2014 and 2015, and shows how these positions are expected to evolve in the future, based on the stars’ proper motions or direction of travel across space.

This frame will help you get your footing as you watch the video. Orion (at right) and the Alpha Persei stellar association and Pleiades (at left) are shown. Credit: ESA/Gaia/DPAC

Watching the show

The frames in the video are separated by 750 years, and the overall sequence covers 5 million years. The dark stripes visible in the early frames reflect the way Gaia scans the sky (in strips) and the early, less complete database. The artifacts are gradually washed out as stars move across the sky.

Using the map above to get oriented, it’s fun to watch Orion change across the millennia. Betelgeuse departs the constellation heading north fairly quickly, but Orion’s Belt hangs in there for nearly 2 million years even if it soon develops sag! The Pleiades drift together to the left and off frame and then reappear at right.

Stars seem to move with a wide range of velocities in the video, with stars in the galactic plane moving quite slow and faster ones speeding across the view. This is a perspective effect: most of the stars we see in the plane are much farther from us, and thus seem to be moving slower than the nearby stars, which are visible across the entire sky.

Artist’s impression of The Milky Way Galaxy to provide context for the video. The Sun and solar system are located in the flat plane of the galaxy, so when we look into the Milky Way (either toward the center or toward the edge), the stars pile up across the light years to form a band in the sky. If we could rise above the disk and see the galaxy from the halo, we’d be able to look down (or up) and see the galaxy as a disk with winding spiral arms. Credit: NASA

Some of the stars that appear to zip in and out of view quickly are passing close to the Sun. But motion of those that trace arcs from one side of the sky to the other while passing close to the galactic poles (top and bottom of the frame) as they speed up and slow down, is spurious. These stars move with a constant velocity through space.

Stars located in the Milky Way’s halo, a roughly spherical structure centered on the galaxy’s spiral disk, also appear to move quite fast because they slice through the galactic plane with respect to the Sun. In reality, halo stars move very slowly with respect to the center of the galaxy.

Early in the the visualization, we see clouds of interstellar gas and dust that occupy vast spaces within the galaxy and block the view of more distant suns. That these dark clouds seem to disappear over time is also a spurious effect.

After a few million years, the plane of the Milky Way appears to have shifted towards the right as a consequence of the motion of the Sun with respect to that of nearby stars in the Milky Way. Regions that are depleted of stars in the video will not appear that way to future stargazers but will instead be replenished by stars not currently sampled by Gaia. So yes, there are a few things to keep in mind while watching these positional data converted into stellar motions, but the overall picture is an accurate one.

I find the video as mesmerizing as watching fireflies on a June night. The stars seem alive. Enjoy your ride in the time machine!

Surveillance Sat Set for Sunday Sunrise SpaceX Blastoff and Landing Apr. 30 – Watch Live

SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office stands raised erect poised for sunrise liftoff from Launch Complex 39A on 30 April 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office stands raised erect poised for sunrise liftoff from Launch Complex 39A on 30 April 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – A classified surveillance for the nation’s spymasters is set for blastoff shortly after sunrise on Sunday, Apr. 30 by SpaceX in a space first by the firm founded by billionaire entrepreneur Elon Musk that also features a ground landing attempt by the booster. Update: Scrub reset to May 1

Liftoff of the still mysterious NROL-76 classified payload for the National Reconnaissance Office, or NRO, is slated Sunday morning, April 30 from SpaceX’s seaside Launch Complex 39A on NASA’s Kennedy Space Center in Florida.

The Falcon 9 rocket and NROL-76 payload have been mated and rolled about a quarter mile up the ramp at pad 39A.

The 229-foot-tall (70-meter) Falcon 9/NROL-76 were raised erect this morning, Saturday, April 29 and are poised for liftoff and undergoing final prelaunch preparations.

The breakfast time launch window on Sunday, April 30 opens at 7 a.m. EDT (1100 GMT). It extends for two hours until 9.a.m. EDT.

#NROL76 will carry a classified payload designed, built and operated by @NatReconOfc. @SpaceX @45thSpaceWing. Credit: NRO

The exact time of the spy satellite launch within the two hour window is classified at less than T Minus one day.

Spectators have been gathering from across the globe to witness the exciting launch and landing and area hotels are filling up.

A brand new Falcon 9 is being used for the launch unlike the recycled rocket utilized for the prior launch of the SES-10 mission involving history’s first reflown orbit class booster.

As is typical for NRO missions, nothing is publicly known about the satellite nor has the NRO released any details about this mission in support of national security other than the launch window.

We also know that this is the first launch of a spy satellite for the US governments super secret NRO spy agency by SpaceX and a source of pride for Musk and all SpaceX employees.

However you can watch the launch live on a SpaceX dedicated webcast starting about 20 minutes prior to the 7:00 am EDT opening of the window.

Watch the SpaceX broadcast live at: SpaceX.com/webcast

As is customary for all national security launches live coverage of the launch will cease approximately five minutes after liftoff as the secret payload makes it way to orbit.

However, SpaceX will continue their live webcast with complete coverage of the ground landing attempt back at the Cape which is a secondary objective of the launch.

#NROL76 Mission Patch depicts Lewis & Clark heading into the great unknown to discover and explore the newly purchased Louisiana Territory. Launch slated for 30 April 2017 from KSC pad 39A. Credit: NRO

Everything is on track for Sunday’s launch of the 229 foot tall SpaceX Falcon 9 on the NRO launch of NROL-76.

And the weather looks promising at this time.

Sunday’s weather outlook is currently forecasting an 80% chance of favorable conditions at launch time. The concerns are for cumulus clouds according to Air Force meteorologists with the 45th Space Wing at Patrick Air Force Base.

SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office stands raised erect poised for sunrise liftoff from Launch Complex 39A on 30 April 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

In case of a scrub for any reason on April 30, the backup launch opportunity Monday, May 1.

The path to launch was paved following a successful static hotfire test of the first stage booster on pad 39A which took place shortly after 3 p.m. Tuesday, April 25, as I reported here.

SpaceX conducts successful static hot fire test of Falcon 9 booster atop Launch Complex 39A at the Kennedy Space Center on 25 Apr. 2017 as seen from Merritt Island National Wildlife Refuge, Titusville, FL. The Falcon 9 is slated to launch the NROL-76 super secret spy satellite for the U.S. National Reconnaissance Office (NRO) on 30 April 2017. Credit: Ken Kremer/Kenkremer.com

Until now launch competitor United Launch Alliance (ULA) and its predecessors have held a virtual monoploy on the US military’s most critical satellite launches.

The last first stage booster during the SES-10 launch of the first recycled rocket landed on a droneship barge at sea last month.

SpaceX will also attempt to achieve the secondary mission goal of landing the 156 foot tall first stage of the Falcon 9 rocket on land at Cape Canaveral Air Force Station’s Landing Zone 1, located a few miles south of launch pad 39A.

This counts as the fourth time SpaceX will attempt a dramatic land landing potentially visible to hundreds of thousands of locals and tourists.

NROL-76 will be the fifth SpaceX launch of 2017.

Watch for Ken’s continuing onsite launch reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station in Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

LEGO Apollo Saturn V: Tallest LEGO Ideas Set Ever Made

The New LEGO Apollo Saturn V set displayed in horizontal position. Credit: LEGO
The New LEGO Apollo Saturn V set displayed in horizontal position. Credit: LEGO

LEGO Saturn V in launch configuration. Credit: LEGO
LEGO Saturn V in launch configuration. Credit: LEGO

Yesterday LEGO announced that their new LEGO Apollo Saturn V set will be available to buy on June 1, 2017. And let me tell you, this thing is going to be a monster. In fact, it’ll be the tallest LEGO set ever made from their crowdsourced LEGO Ideas competition, with a total height of 1 meter (39 inches). It’s going have a total of 1969 pieces (got to assume this isn’t a coincidence), and it contains all the separate parts to run your own simulated Moon mission (LEGO Moon not included).

The LEGO Ideas competitions allow LEGO builders to propose construction ideas to the LEGO community. Fans vote up their favorite designs, and then winning sets are chosen by LEGO to be turned into actual sets. At any time, there are a bunch of space-related LEGO sets in the running, including a Hubble Space Telescope (not approved), Cassini-Huygens (expired), and the Mars Curiosity Rover (approved and in stores now).

LEGO NASA Apollo 11 Set. Credit: LEGO
LEGO NASA Apollo 11 Set. Credit: LEGO

The NASA Apollo Saturn V set was originally created by Felix Stiessen (saabfan) and Valérie Roche (whatsuptoday), and pitched to the LEGO Ideas community back in 2014. It gained enough votes to pass through each stage of approval, and yesterday, LEGO announced it’ll be available as a full set on June 1, 2017.

What’s going to be in the set? According to LEGO, it can be stacked up in its original launch profile, with all the stages attached, service module and command module attached. Or, you can display it horizontally, with the three stages separately on stands. You’ll actually be able to extract the lunar lander, dock it with the various modules, descend to your own LEGO Moon (again, you’re going to need to supply your own Moon here, maybe that’ll be a future set?), and return the command module back to an ocean landing on Earth (again, Earth not supplied).

Command, Service and Lunar Lander Modules in various configurations. Credit: LEGO
Command, Service and Lunar Lander Modules in various configurations. Credit: LEGO

This is the tallest set to ever come out of the LEGO Ideas Community, and the one with the most pieces – 1969, which coincidentally, was the same year that humans first walked on the Moon with Apollo 11. The initial prototype set was crated by Stiessen and Roche, but then the LEGO team took over when the idea was approved, enhancing it and preparing it for its final release as an official LEGO set.

It’s going to have a scale of 1:110. Since the set will be 1-metre high, that’ll give you a sense of just how big the original Saturn V rocket really was: 110 metres (or 363 feet). Regular LEGO minifigs have a scale of 1:47 or so, which means that regular minifigs won’t fit as astronauts into the set, but LEGO is planning to release a team of 3 new astronaut minifigs so you can play out the lunar landings.

This won’t be the tallest LEGO set ever built, though, that honor goes to the Eiffel Tower which is 7cm taller. That’s not much, though, they should have considered building the launch pad too, but now I’m just getting greedy.

Story credit: LEGO Ideas