What's the Earliest the Moon Could Have Formed?

Artist's impression of the giant impact that shaped the Earth and created the Moon. Credit: NASA/JPL-Caltech.

Astronomers are pretty sure they know where the Moon came from. In the early Solar System, a Mars-sized object dubbed Theia smashed into Earth. This cataclysmic collision knocked a huge mass of material into orbit, which coalesced and cooled into the Moon. But establishing exactly when this occurred is a difficult task. At the 55th annual Lunar and Planetary Science Conference (LPSC 55) last month in The Woodlands, Texas, researchers proposed a new timeline of events that moves the giant impact earlier than previous predictions, at just 50 million years after the formation of the Solar System.

Continue reading “What's the Earliest the Moon Could Have Formed?”

How Animal Movements Help Us Study the Planet

This map shows how elephants moved across Kruger National Park in South Africa over one year. Image Credit: Thaker, M., et al. (2019)

Scientists have been underutilizing a key resource we can use to help us understand Earth: animals. Our fellow Earthlings have a much different, and usually much more direct, relationship with the Earth. They move around the planet in ways and to places we don’t.

What can their movements tell us?

Continue reading “How Animal Movements Help Us Study the Planet”

Mapping Lava Tubes on the Moon and Mars from Space

Sometimes, all you need for a new discovery is some creative math. That was the case for a new paper by Edward Williams and Laurent Montési of the University of Maryland’s Department of Geology. They released a brief paper at the Lunar and Planetary Science Conference last month that describes a mathematical way to estimate the size of a lava tube using only remote sensing techniques.

Continue reading “Mapping Lava Tubes on the Moon and Mars from Space”

A Robot Hopper to Explore the Moon’s Dangerous Terrain

Intuitive Machines recently had a major breakthrough, successfully becoming the first non-governmental entity to land on the Moon in February. At least the landing was partially successful – the company’s Odysseus lander ended up on its side, though its instruments and communication links remained at least partially functional. That mission, dubbed IM-1, was the first in a series of ambitious missions the company has planned. And they recently released a paper detailing features of a unique hopping robot that will hitch a ride on its next Moon mission.

Continue reading “A Robot Hopper to Explore the Moon’s Dangerous Terrain”

Inside a Week to Totality: Weather Prospects, Solar Activity and More

Eclipse
Totality and the 'diamond ring effect,' captured during the 2023 total solar eclipse as seen from Ah Chong Island, Australia. Credit: Eliot Herman

Looking at prospects for eclipse day and totality.

Have you picked out your site to observe the eclipse on April 8th? Next Monday, the shadow of the Moon crosses Mexico, the contiguous United States from Texas to Maine, and the Canadian Maritimes for the last time for this generation. And while over 30 million people live in the path of totality, millions more live within an easy day drive of the path. I’m expecting that many folks will decide to make a three-day weekend of it, and eclipse travel traffic will really pick up this coming Saturday, April 6th.

Continue reading “Inside a Week to Totality: Weather Prospects, Solar Activity and More”

Want to Leave the Solar System? Here’s a Route to Take

A future interstellar probe mission aims to travel beyond the heliosphere to the local interstellar medium to understand where our home came from and where it is going. Credit: John Hopkins Applied Physics Laboratory.

The edge of the Solar System is defined by the heliosphere and its heliopause. The heliopause marks the region where the interstellar medium stops the outgoing solar wind. But only two spacecraft, Voyager 1 and Voyager 2, have ever travelled to the heliopause. As a result, scientists are uncertain about the heliopause’s extent and its other properties.

Some scientists are keen to learn more about this region and are developing a mission concept to explore it.

Continue reading “Want to Leave the Solar System? Here’s a Route to Take”

Curiosity has Reached an Ancient Debris Channel That Could Have Been Formed by Water

The steep path NASA’s Curiosity Mars rover took to reach Gediz Vallis channel is indicated in yellow in this visualization made with orbital data. At lower right is the point where the rover veered off to get an up-close look at a ridge formed long ago by debris flows from higher up on Mount Sharp. NASA/JPL-Caltech/UC Berkeley

Like a pilgrim seeking wisdom, NASA’s MSL Curiosity has been working its way up Mt. Sharp, the dominant central feature in Gale Crater. Now, almost 12 years into its mission, the capable rover has reached an interesting feature that could tell them more about Mars and its watery history. It’s called the Gediz Vallis channel.

Continue reading “Curiosity has Reached an Ancient Debris Channel That Could Have Been Formed by Water”

Where Are All These Rogue Planets Coming From?

An artist's illustration of a rogue planet, dark and mysterious. Image Credit: NASA

There’s a population of planets that drifts through space untethered to any stars. They’re called rogue planets or free-floating planets (FFPs.) Some FFPs form as loners, never having enjoyed the company of a star. But most are ejected from solar systems somehow, and there are different ways that can happen.

One researcher set out to try to understand the FFP population and how they came to be.

rogue

Extremophiles: Why study them? What can they teach us about finding life beyond Earth?

Image of a tardigrade, which is a microscopic species and one of the most well-known extremophiles, having been observed to survive some of the most extreme environments, including outer space. (Credit: Katexic Publications, unaltered, CC2.0)

Universe Today has conducted some incredible examinations regarding a plethora of scientific fields, including impact cratersplanetary surfacesexoplanetsastrobiologysolar physicscometsplanetary atmospheresplanetary geophysicscosmochemistry, meteorites, and radio astronomy, and how these disciplines can help scientists and the public gain greater insight into searching for life beyond Earth. Here, we will discuss the immersive field of extremophiles with Dr. Ivan Paulino-Lima, who is a Senior Research Investigator at Blue Marble Space Institute of Science and the Co-Founder and Chief Science Officer for Infinite Elements Inc., including why scientists study extremophiles, the benefits and challenges, finding life beyond Earth, and proposed routes for upcoming students. So, why is it so important to study extremophiles?

Continue reading “Extremophiles: Why study them? What can they teach us about finding life beyond Earth?”

It Takes a Supercomputer to Properly Simulate a Neutron Star’s Surface

Neutron stars, the remains of massive stars that have imploded and gone supernova at the end of their life, can still create massive flares. These incredible bursts of energy release X-rays that propagate through space. It is a complex process to simulate but astronomers have turned to a supercomputer to help. Modelling the twisting magnetic fields, the interaction with gas and dust, the surface of flaring neutron stars has been revealed in incredible 3D.

Continue reading “It Takes a Supercomputer to Properly Simulate a Neutron Star’s Surface”