KENNEDY SPACE CENTER, FL – A new Russian/American duo has arrived at the International Space Station this morning, April 20, after a six-hour flight following their successful launch aboard a Russian Soyuz capsule on a fast track trajectory to the orbiting outpost.
The two person international crew comprising NASA astronaut Jack Fischer and cosmonaut Fyodor Yurchikhin of the Russian space agency Roscosmos launched aboard a Russian Soyuz MS-04 spacecraft from the Baikonur Cosmodrome in Kazakhstan at 3:13 a.m. (1:13 p.m. Baikonur time).
After orbiting the Earth just four times on a planned accelerated trajectory they reached the station six hours later and safely docked at the station at 9:18 a.m. EDT.
“We have contact and capture confirmed at the space station at 9:18 am EDT,” said the NASA Houston mission control commentator.
The station and Soyuz vehicles were flying some 250 mi (400 km) over the northern Atlantic at the time of docking.
The dynamic duo of Yurchikhin and Fischer join three Expedition 51 crew members already onboard – Expedition 51 Commander Peggy Whitson of NASA and Flight Engineers Oleg Novitskiy of Roscosmos and Thomas Pesquet of ESA (European Space Agency).
Thus the overall station crew complement of astronauts and cosmonauts increases to five – from the US, Russia and France – representing their respective space agencies and countries.
Jack Fisher is a rookie space flyer whereas Yurchikhin is an accomplished veteran on this his 5th mission to orbit.
Prior to docking the crew accomplished an approximately 10 min flyaround inside the Soyuz shortly before sunrise and beautyfully backdropped by earth towards the end at a distance of roughly several hundred meters away.
All Soyuz systems performed as planned for what was an entirely automated rendezvous and docking using the Russian KURS docking system. The crew could have intervened if needed.
The new pair of Expedition 51 crew members will spend about four and a half months aboard the station during their increment.
They will be very busy conducting approximately 250 science investigations in fields such as biology, Earth science, human research, physical sciences and technology development.
And there will be no time to rest! Because this week’s just launched unpiloted ‘SS John Glenn’ Cygnus resupply ship is eagerly awaiting its chance to join the station and deliver nearly 4 tons of science experiment, gear and crew provisions to stock the station and further enhance its research output.
Orbital ATK’s seventh Cygnus cargo delivery flight to the station – dubbed OA-7 or CRS-7 – launched at 11:11 a.m. EDT Tuesday, April 18 atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida.
The SS John Glenn is expected to arrive at the station early Saturday morning on April 22.
Expedition 51 astronauts Thomas Pesquet of ESA and Peggy Whitson of NASA will use the space station’s Canadian-built robotic arm to grapple Cygnus, about 6:05 a.m. Saturday.
They will use the arm to maneuver and berth the unmanned vehicle to the Node-1 Earth-facing nadir port on the Unity module.
“Investigations arriving will include an antibody investigation that could increase the effectiveness of chemotherapy drugs for cancer treatment and an advanced plant habitat for studying plant physiology and growth of fresh food in space,” says NASA.
“Another new investigation bound for the U.S. National Laboratory will look at using magnetized cells and tools to make it easier to handle cells and cultures, and improve the reproducibility of experiments. Cygnus also is carrying 38 CubeSats, including many built by university students from around the world, as part of the QB50 program. The CubeSats are scheduled to deploy from either the spacecraft or space station in the coming months.”
Cygnus will remain at the space station for about 85 days until July before its destructive reentry into Earth’s atmosphere, disposing of several thousand pounds of trash.
Watch for Ken’s onsite launch reports direct from the Kennedy Space Center in Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
In 2005, the Future In-Space Operations Working Group (FISOWG) was established with the help of NASA to assess how advances in spaceflight technologies could be used to facilitate missions back to the Moon and beyond. In 2006, the FISO Working Group also established the FISO Telecon Series to conduct outreach to the public and educate them on issues pertaining to spaceflight technology, engineering, and science.
Every week, the Telecon Series holds a seminar where experts are able to share the latest news and developments from their respective fields. On Wednesday, April 19th, in a seminar titled “An Air-Breathing Metal-Combustion Power Plant for Venus in situ Exploration“, NASA engineer Michael Paul presented a novel idea where existing technology could be used to make longer-duration missions to Venus.
To recap the history of Venus exploration, very few probes have ever been able to explore its atmosphere or surface for long. Not surprising, considering that the atmospheric pressure on Venus is 92 times what it is here on Earth at sea level. Not to mention the fact that Venus is also the hottest planet in the Solar System – with average surface temperatures of 737 K (462 °C; 863.6 °F).
Hence why those few probes that actually explored the atmosphere and surface in detail – like the Soviet-era Venera probes and landers and NASA’s Pioneer Venus multiprobe – were only able to return data for a matter of hours. All other missions to Venus have either taken the form of orbiters or consisted of spacecraft conducting flybys while en route to other destinations.
Having worked in the fields of space exploration and aerospace engineering for 20 years, Michael Paul is well-versed in the challenges of mounting missions to other planets. During his time with the John Hopkins University Applied Physics Laboratory (JHUAPL), he contributed to NASA’s Contour and Stereo missions, and was also instrumental in the launch and early operations of the MESSENGER mission to Mercury.
However, it was a flagship-level study in 2008 – performed collaboratively between JHUAPL and NASA’s Jet Propulsion laboratory (JPL) – that opened his eyes to the need for missions that took advantage of the process known as In-Situ Resource Utilization (ISRU). As he stated during the seminar:
“That year we actually studied a very large mission to Europa which evolved into the current Europa Clipper mission. And we also studied a flagship mission to the Saturn, to Titan specifically. The Titan-Saturn system mission study was a real eye-opener for me in terms what could be done and why we should be doing a lot of more adventurous and more aggressive exploration of in-situ in certain places.”
The flagship mission to Titan was the subject of Paul’s work since joining Penn Sate’s Applied Research Laboratory in 2009. During his time there, he became a NASA Innovative Advanced Concepts Program (NIAC) Fellow for his co-creation of the Titan Submarine. For this mission, which will explore the methane lakes of Titan, Paul helped to develop underwater power systems that would provide energy for planetary landers that can’t see the Sun.
Having returned to JHUAPL, where he is now the Space Mission Formulation Lead, Paul continues to work on in-situ concepts that could enable missions to locations in the Solar System that present a challenge. In-situ exploration, where local resources are relied upon for various purposes, presents numerous advantages over more traditional concepts, not the least of which is cost-effectiveness.
Consider mission that rely on Multi-Mission Radioisotope Thermoelectric Generators (MMRTG) – where radioactive elements like Plutonium-238 are used to generate electricity. Whereas this type of power system – which was used by the Viking 1 and 2 landers (sent to Mars in 1979) and the more recent Curiosity rover – provides unparalleled energy density, the cost of such missions is prohibitive.
What’s more, in-situ missions could also function in places where conventional solar cells would not work. These include not only locations in the outer Solar System (i.e. Europa,Titan and Enceladus) but also places closer to home. The South Pole-Aitken Basin, for example, is a permanently shadowed location on the Moon that NASA and other space agencies are interesting in exploring (and maybe colonizing) due to the abundance of water ice there.
But there’s also the surface Venus, where sunlight is in short supply because of the planet’s dense atmosphere. As Paul explained in the course of the seminar:
“What can you do with other power systems in places where the Sun just doesn’t shine? Okay, so you want to get to the surface of Venus and last more than a couple of hours. And I think that in the last 10 or 15 years, all the missions that [were proposed] to the surface of Venus pretty much had a two-hour timeline. And those were all proposed, none of those missions were actually flown. And that’s in line with the 2 hours that the Russian landers survived when they got there, to the surface of Venus.”
The solution to this problem, as Paul sees it, is to employ a Stored-Chemical Energy and Power System (SCEPS), also known as a Sterling engine. This proven technology relies on stored chemical energy to generate electricity, and is typically used in underwater systems. But repurposed for Venus, it could provide a lander mission with a considerable amount of time (compared to previous Venus missions) with which to conduct surface studies.
For the power system Paul and his colleagues are envisioning, the Sterling engine would take solid-metal lithium (or possibly solid iodine), and then liquefy it with a pyrotechnic charge. This resulting liquid would then be fed into another chamber where it would combined with an oxidant. This would produce heat and combustion, which would then be used to boil water, spin turbines, and generate electricity.
Such a system is typically closed and produces no exhaust, which makes it very useful for underwater systems that cannot compromise their buoyancy. On Venus, such a system would allow for electrical production without short-lived batteries, an expensive nuclear fuel cell, and could function in a low solar-energy environment.
An added benefit for such a craft operating on Venus is that the oxidizer would be provided locally, thus removing the need for an heavy component. By simply letting in outside CO2 – which Venus’ atmosphere has in abundance – and combining with the system’s liquified lithium (or iodine), the SCEPS system could provide sustained energy for a period of days.
Further help came from the Glenn Research Center’s COMPASS lab, were engineers from multiple disciplines performs integrated vehicle systems analyses. From all of this, a mission concept known as the Advanced Lithium Venus Explorer (ALIVE) was developed. With the help of Steven Oleson – the head of GRC’s COMPASS lab – Paul and his team envision a mission where a lander would reach the surface of Venus and study it for 5 to 10 days.
All told, that’s an operational window of between 120 and 240 hours – in other words, 60 to 120 times as long as previous missions. However, how much such a mission would cost remains to be seen. According to Paul, that question became the basis of an ongoing debate between himself and Oleson, who disagreed as to whether it would be part of the Discovery Program or the New Frontiers Program.
As Paul explained, missions belonging to the former were recently capped at the $450 to $500 million level while the latter are capped at $850 million. “I believe that if you did this right, you could get it into a Discovery mission,” he said. “Here at APL, I’ve seen really complicated ideas fit inside a Discovery cost cap. And I believe that the way we crafted this mission, you could do this for a Discovery mission. And it would be really exciting to get that done.”
From a purely technological standpoint, this not a new idea. But in terms of space exploration, it has never been done before. Granted, there are still many tests which would need to be conducted before any a mission to Venus can be planned. In particular, there are the byproducts created by combusting lithium and CO2 under Venus-like conditions, which already produced some unexpected results during tests.
In addition, there is the problem of nitrogen gas (N2) – also present in Venus’ atmosphere – building up in the system, which would need to be vented in order to prevent a blowout. But the advantages of such a system are evident, and Paul and his colleagues are eager to take additional steps to develop it. This summer, they will be doing another test of a lithium SCEPS under the watchful eye of NAIC.
By this time next year, they hope to have completed their analysis and their design for the system, and begin building one which they hope to test in a controlled temperature environment. This will be the first step in what Paul hopes will be a three-year period of testing and development.
“The first year we’re basically going to do a lot of number crunching to make sure we got it right,” he said. “The second year we’re going to built it, and test it at higher temperatures than room temperature – but not the high temperatures of Venus! And in the third year, we’re going to do the high temperature test.”
Ultimately, the concept could be made to function in any number of high and low temperature conditions, allowing for cost-effective long-duration missions in all kinds of extreme environments. These would include Titan, Europa and Enceladus, but also Venus, the Moon, and perhaps the permanently-shadowed regions on Mercury’s poles as well.
Space exploration is always a challenge. Whenever ideas come along that make it possible to peak into more environments, and on a budget to boot, it is time to start researching and developing them!
Asteroid 2014 JO25, discovered in 2014 by the Catalina Sky Survey in Arizona, was in the spotlight today (April 19) when it flew by Earth at just four times the distance of the Moon. Today’s encounter is the closest the object has come to the Earth in 400 years and will be its closest approach for at least the next 500 years.
Lots of asteroids zip by our planet, and new ones are discovered every week. What makes 2014 JO25 different it’s one of nearly 1,800 PHAs (Potentially Hazardous Asteroids) that are big enough and occasionally pass close enough to Earth to be of concern. PHAs have diameters of at least 100-150 meters (330-490 feet) and pass less than 0.05 a.u (7.5 million km / 4.6 million miles) from our planet. Good thing for earthlings, no known PHA is predicted to impact Earth for at least the next 100 years.
Most of these Earth-approachers are on the small side, only a few to a few dozen meters (yards) across. 2014 JO25 was originally estimated at ~2,000 feet wide, but thanks to radar observations made the past couple days, we now know it’s nearly twice that size. Radar images of asteroid were made early this morning with NASA’s 230-foot (70-meter) radio antenna at Goldstone Deep Space Communications Complex in California. They reveal a peanut-shaped asteroid that rotates about once every 5 hours and show details as small as 25 feet.
NASA radar images and animation of asteroid 2015 JO25
The larger of the two lobes is about 2,000 feet (620 meters) across, making the total length closer to 4,000 feet. That’s similar in size (though not as long) as the Rock of Gibraltar that stands at the southwestern tip of Europe at the tip of the Iberian Peninsula.
“The asteroid has a contact binary structure — two lobes connected by a neck-like region,” said Shantanu Naidu, a scientist from NASA’s Jet Propulsion Laboratory in Pasadena, California, who led the Goldstone observations. “The images show flat facets, concavities and angular topography.” Contact binaries form when two separate asteroids come close enough together to touch and meld as one.
Radar observations of the asteroid have also been underway at the National Science Foundation’s Arecibo Observatory in Puerto Rico with more observations coming today through the 21st which may show even finer details. The technique of pinging asteroids with radio waves and eking out information based on the returning echoes has been used to observe hundreds of asteroids.
When these relics from the early solar system pass relatively close to Earth, astronomers can glean their sizes, shapes, rotation, surface features, and roughness, as well as determine their orbits with precision.
Because of 2014 JO25’s relatively large size and proximity, it’s bright enough to spot in a small telescope this evening. It will shine around magnitude +10.9 from North America tonight as it travels south-southwest across the dim constellation Coma Berenices behind the tail of Leo the Lion. A good map and 3-inch or larger telescope should show it.
Use the maps at this link to help you find and track the asteroid tonight. The key to spotting it is to allow time to identify and get familiar with the star field the asteroid will pass through 10 to 15 minutes in advance — then lay in wait for the moving object. Don’t be surprised if 2014 JO25 deviates a little from the predicted path depending on your location and late changes to its orbit, so keep watch not only on the path but around it, too. Good luck!
To some, art and science are opposed to one another. Art is aesthetics, expression, and intuition, while science is all cold, hard, rational thought. But that’s a simplistic understanding. They’re both quintessential human endeavours, and they’re both part of the human spirit.
Some at NASA have always understood this, and there’s actually an interesting, collaborative history between NASA and the art world, that reaches back several decades. Not the kind of art that you see hanging in elite galleries in the world’s large cities, but the kind of art that documents achievements in space exploration, and that helps us envision what our future could be.
Back in 1962, when NASA was 4 years old, NASA administrator James Webb put the wheels in motion for a collaboration between NASA and American artists. Artist Bruce Stevenson had been commissioned to produce a portrait of Alan Shepard. Shepard, of course, was the first American in space. He piloted the first Project Mercury flight, MR-3, in 1961. When Webb saw it, he got a bright idea.
When Stevenson brought is portrait of Shepard to NASA headquarters, James Webb thought that Stevenson wanted to paint portraits of all seven Mercury astronauts. But Webb thought a group portrait would be even better. The group portrait was never produced, but it got Webb thinking. In a memo, he said “…we should consider in a deliberate way just what NASA should do in the field of fine arts to commemorate the …historic events” of the American space program.
That set in motion a framework that exists to this day. Beyond just portraits, Webb wanted artists to produce paintings that would convey the excitement around the entire endeavour of space flight, and what the deeper meaning behind it might be. He wanted artists to capture all of the excitement around the preparation and countdown for launches, and activities in space.
That’s when the NASA collaboration with artists began. A young artist named James Dean was assigned to the program, and he took a page out of the Air Force’s book, which established its own art program in 1954.
There’s a whole cast of characters involved, each one contributing to the success of the program. One such person was John Walker, Director of the National Gallery. He was enthusiastic, saying in a talk in 1965 that “the present space exploration effort by the United States will probably rank among the more important events in the history of mankind.” History has certainly proven those words to be true.
Walker went on to say that it was the artists’ job “…not only to record the physical appearance of the strange new world which space technology is creating, but to edit, select and probe for the inner meaning and emotional impact of events which may change the destiny of our race.”
And that’s what they did. Artists like Norman Rockwell, Andy Warhol, Peter Hurd, Annie Liebowitz, Robert Rauschenberg, and others, all took part in the program.
In the 1970’s, thinkers like Gerard K. O’Neill began to formulate ideas of what human colonies in space might look like. NASA held a series of conferences where these ideas were shared and explored. Artists Rick Guidice and Don Davis created many paintings and illustrations of what colony designs like Bernal Spheres, Double Cylinders, and Toroidal Colonies might look like.
NASA continues to work with artists, though the nature of the relationship has changed over the decades. Artists are often used to flesh out new discoveries when images are not available. Cassini’s so-called Grand Finale, when it will orbit between Saturn and its rings 22 times before crashing into the planet, was conceptualized by an unnamed artist.
The recent discovery of the exoplanets in the TRAPPIST-1 system was huge news. It still is. But TRAPPIST-1 is over 40 light years away, and NASA relied on artists to bring the discovery to life. This illustration was widely used to help us understand what planets orbiting the TRAPPIST-1 Red Dwarf might look like.
NASA now has quite a history of relying on art to convey what words can’t do. Space colonies, distant solar systems, and spacecraft ending their missions on other worlds, have all relied on the work of artists. But if I had to choose a favorite, it would probably be the 1981 water color by artist Henry Casselli. It makes you wonder what it’s like for an individual to take part in these species-defining endeavours. Just one person, sitting, contemplating, and preparing.
Ever since the discovery of the Higgs Boson in 2012, the Large Hadron Collider has been dedicated to searching for the existence of physics that go beyond the Standard Model. To this end, the Large Hadron Collider beauty experiment (LHCb) was established in 1995, specifically for the purpose of exploring what happened after the Big Bang that allowed matter to survive and create the Universe as we know it.
Since that time, the LHCb has been doing some rather amazing things. This includes discovering five new particles, uncovering evidence of a new manifestation of matter-antimatter asymmetry, and (most recently) discovering unusual results when monitoring beta decay. These findings, which CERN announced in a recent press release, could be an indication of new physics that are not part of the Standard Model.
In this latest study, the LHCb collaboration team noted how the decay of B0 mesons resulted in the production of an excited kaon and a pair of electrons or muons. Muons, for the record, are subatomic particles that are 200 times more massive than electrons, but whose interactions are believed to be the same as those of electrons (as far as the Standard Model is concerned).
This is what is known as “lepton universality”, which not only predicts that electrons and muons behave the same, but should be produced with the same probability – with some constraints arising from their differences in mass. However, in testing the decay of B0 mesons, the team found that the decay process produced muons with less frequency. These results were collected during Run 1 of the LHC, which ran from 2009 to 2013.
The results of these decay tests were presented on Tuesday, April 18th, at a CERN seminar, where members of the LHCb collaboration team shared their latest findings. As they indicated during the course of the seminar, these findings are significant in that they appear to confirm results obtained by the LHCb team during previous decay studies.
This is certainly exciting news, as it hints at the possibility that new physics are being observed. With the confirmation of the Standard Model (made possible with the discovery of the Higgs boson in 2012), investigating theories that go beyond this (i.e. Supersymmetry) has been a major goal of the LHC. And with its upgrades completed in 2015, it has been one of the chief aims of Run 2 (which will last until 2018).
Naturally, the LHCb team indicated that further studies will be needed before any conclusions can be drawn. For one, the discrepancy they noted between the creation of muons and electrons carries a low probability value (aka. p-value) of between 2.2. to 2.5 sigma. To put that in perspective, the first detection of the Higgs Boson occurred at a level of 5 sigma.
In addition, these results are inconsistent with previous measurements which indicated that there is indeed symmetry between electrons and muons. As a result, more decay tests will have to be conducted and more data collected before the LHCb collaboration team can say definitively whether this was a sign of new particles, or merely a statistical fluctuation in their data.
The results of this study will be soon released in a LHCb research paper. And for more information, check out the PDF version of the seminar.
KENNEDY SPACE CENTER, FL – Orbital ATK’s Cygnus supply ship soared to space from the Florida Space Coast at lunchtime today, Tuesday, April 18, drenched in sunshine and carrying the ‘SS John Glenn’ loaded with over three and a half tons of precious cargo – bound for the multinational crew residing aboard the International Space Station (ISS).
Just like clockwork, Orbital ATK’s seventh cargo delivery flight to the station launched right on time at 11:11 a.m. EDT Tuesday at the opening of the launch window atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida.
The ‘SS John Glenn’ Cygnus resupply spacecraft was manufactured by NASA commercial cargo provider Orbital ATK. The vehicle is also known alternatively as the Cygnus OA-7 or CRS-7 mission.
“This was a great launch,” said Joel Montalbano, NASA’s deputy manager of the International Space Station program, at the post launch media briefing at NASA’s Kennedy Space Center.
‘We have a vehicle on its way to the ISS.”
Huge crowds gathered at public viewing areas ringing Cape Canaveral and offering spectacular views from Playalinda Beach to the north, the inland waterway and more beautiful space coast beaches to the south.
Near perfect weather conditions and extended views of the rocket roaring to orbit greeted all those lucky enough to be on hand for what amounts to a sentimental third journey to space for American icon John Glenn.
The launch was carried live on NASA TV with extended expert commentary. Indeed this launch coverage was the final one hosted by NASA commentator George Diller- the longtime and familiar ‘Voice of NASA’ – who is retiring from NASA on May 31.
The serene sky blue skies with calm winds and moderate temperatures were punctuated with wispy clouds making for a thrilling spectacle as the rocket accelerated northeast up the US East Coast on a carefully choreographed trajectory to the massive orbiting outpost.
“The status of the spacecraft is great!” said Frank Culbertson, a former shuttle and station astronaut and now Orbital ATK’s Space Systems Group president.
The mission is named the ‘S.S. John Glenn’ in tribute to legendary NASA astronaut John Glenn – the first American to orbit Earth back in February 1962.
Glenn was one of the original Mercury Seven astronauts selected by NASA. At age 77 he later flew a second mission to space aboard Space Shuttle Discovery- further cementing his status as a true American hero.
Glenn passed away in December 2016 at age 95. He also served four terms as a U.S. Senator from Ohio.
A picture of John Glenn in his shuttle flight suit and a few mementos are aboard.
After a four day orbital chase Cygnus will arrive in the vicinity of the station on Saturday, April 22.
“It will be captured at about 6 a.m. EDT Saturday,” Montalbano elaborated.
Expedition 51 astronauts Thomas Pesquet of ESA (European Space Agency) and Peggy Whitson of NASA will use the space station’s Canadian-built robotic arm to grapple Cygnus, about 6:05 a.m. Saturday.
They will use the arm to maneuver and berth the unmanned vehicle to the Node-1 Earth-facing nadir port on the Unity module.
Cygnus will remain at the space station for about 85 days until July before its destructive reentry into Earth’s atmosphere, disposing of several thousand pounds of trash.
The countdown for today’s launch of the 194-foot-tall two stage United Launch Alliance (ULA) rocket began when the rocket was activated around 3 a.m. The rocket was tested during a seven-hour long countdown.
This is the third Cygnus to launch on an Atlas V rocket from the Cape. The last one launched a year ago on March 24, 2016 during the OA-6 mission. The first one launched in December 2015 during the OA-4 mission. Each Cygnus is named after a deceased NASA astronaut.
“We’re building the bridge to history with these missions,” said Vernon Thorp, ULA’s program manager for Commercial Missions. “Every mission is fantastic and every mission is unique. At the end of the day every one of these missions is critical.”
“The Atlas V performed beautifully,” said Thorpe at the post launch briefing.
The other Cygnus spacecraft have launched on the Orbital ATK commercial Antares rocket from NASA Wallops Flight Facility on Virginia’s eastern shore.
Cygnus OA-7 is loaded with 3459 kg (7626 pounds) of science experiments and hardware, crew supplies, spare parts, gear and station hardware to the orbital laboratory in support over 250 research experiments being conducted on board by the Expedition 51 and 52 crews. The total volumetric capacity of Cygnus exceeds 27 cubic meters.
The official OA-7 payload manifest includes the following:
TOTAL PRESSURIZED CARGO WITH PACKAGING: 7,442.8 lbs. / 3,376 kg
• Science Investigations 2,072.3 lbs. / 940 kg
• Crew Supplies 2,103.2 lbs. / 954 kg
• Vehicle Hardware 2,678.6 lbs. / 1,215 kg
• Spacewalk Equipment 160.9 lbs. / 73 kg
• Computer Resources 4.4 lbs. / 2 kg
• Russian Hardware 39.7 lbs. / 18 kg
UNPRESSURIZED CARGO (CubeSats) 183 lbs. / 83 kg
The Orbital ATK Cygnus CRS-7 (OA-7) mission launched aboard an Atlas V Evolved Expendable Launch Vehicle (EELV) in the 401 configuration vehicle. This includes a 4-meter-diameter payload fairing in its longest, extra extended configuration (XEPF) to accommodate the enhanced, longer Cygnus variant being used.
“ULA is excited to be a part of the team that delivered such an important payload to astronauts aboard the ISS,” said Gary Wentz, ULA vice president of Human and Commercial Systems, in a statement.
“Not only are we delivering needed supplies as the first launch under our new RapidLaunch™ offering, but we are truly honored to launch a payload dedicated to John Glenn on an Atlas V, helping to signify the gap we plan to fill as we start launching astronauts from American soil again in 2018.”
The first stage of the Atlas V booster is powered by the RD AMROSS RD-180 engine. There are no side mounted solids on the first stage. The Centaur upper stage is powered by the Aerojet Rocketdyne RL10C-1 engine.
Overall this is the 71st launch of an Atlas V and the 36th utilizing the 401 configuration.
The 401 is thus the workhorse version of the Atlas V and accounts for half of all launches.
Watch for Ken’s onsite launch reports direct from the Kennedy Space Center in Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
It sounds like a space nerd’s dream come true: riding in a Tesla with former astronaut Chris Hadfield, doing a science version of Carpool Karaoke. And to top it off, you’re driving through the Solar System.
A new film out called “Miniverse” via CuriosityStream takes you on a ride through a scaled-down version of our Solar System. It’s similar to other scaled solar system models — which make the huge distances in our cosmic neighborhood a little less abstract — like the Voyage Scale Model Solar System in Washington, DC, the Sagan Planet Walk in Ithaca, New York or the Delmar Loop Planet Walk in St. Louis, Missouri.
But this is bigger. In the Miniverse, various points across the continental United States indicate scaled distances between the planets.
Here’s the trailer:
The first leg of the trip takes viewers on a journey from the Sun all the way to Mars. In the scaled down solar system, that’s only the distance from Long Island to the other side of New York City. In the sky, Mars appears over the Freedom Tower in New York, and Jupiter towers above the Lincoln Memorial.
Then later, as distances between planets stretch out, the gas giants and ice giants spread across the mid-section of the US. Even our friend Pluto appears over the Pacific Ocean off the West Coast of California.
Your traveling companions are pretty awesome.
Behind the wheel for the entire adventure is the funny and engaging Chris Hadfield. He’s joined by a distinguished band of interstellar hitchhikers: famed theoretical physicist Dr. Michio Kaku, as well as Derrick Pitts, Chief Astronomer at the Franklin Institute in Philadelphia, and Dr. Laura Danly, Curator of the Griffith Observatory in Los Angeles. Along the way, Hadfield poses questions to his guests about the various bodies in our solar system.
“The big takeaway is just how vast the distances are in the solar system,” Danly told Universe Today via email. “Every time we look at a drawing of our solar system it reinforces the wrong image in our minds. In reality, the planets are small and the distances are vast. Anyone who has driven cross-country knows that those miles get very long, day after day. So Miniverse provides a visceral feeling to just how great those distances are.”
If you already have a CuriosityStream account, you can watch the film here. If you don’t, you can take advantage of a 30-day free trial in order to watch Miniverse, and all the other great science offerings available, such as Stephen Hawking’s Universe, Brian Cox’s Wonders of Life, and other topics from astronomy observing tips to info about various missions to theoretical physics. Check it out. If you’re interested in continuing after your free trial, the ad-free streaming service costs $2.99, $5.99 and $11.99 per month for standard definition, high definition, and ultra high definition 4K respectively.
We suggested to the CuriosityStream folks of putting physical markers along this path across the US, which would really make a great cross country road trip. Come along for the ride!
Human-kind has a long history of looking up at the stars and seeing figures and faces. In fact, there’s a word for recognizing faces in natural objects: pareidolia. But this must be the first time someone has recognized Bart Simpson’s face on an object in space.
Researchers studying landslides on the dwarf planet Ceres noticed a pattern that resembles the cartoon character. The researchers, from the Georgia Institute of Technology, are studying massive landslides that occur on the surface of the icy dwarf. Their findings are reinforcing the idea that Ceres has significant quantities of frozen water.
In a new paper in the journal Nature Geoscience, the team of scientists, led by Georgia Tech Assistant Professor and Dawn Science Team Associate Britney Schmidt, examined the surface of Ceres looking for morphologies that resemble landslides here on Earth.
Research shows us that Ceres probably has a subsurface shell that is rich with water-ice. That shell is covered by a layer of silicates. Close examination of the type, and distribution, of landslides at different latitudes adds more evidence to the sub-surface ice theory.
Ceres is pretty big. At 945 km in diameter, it’s the largest object in the asteroid belt between Mars and Jupiter. It’s big enough to be rounded by its own gravity, and it actually comprises about one third of the mass of the entire asteroid belt.
The team used observations from the Dawn Framing Camera to identify three types of landslides on Ceres’ surface:
Type 1 are large, rounded features similar to glacier features in the Earth’s Arctic region. These are found mostly at high latitudes on Ceres, which is where most of the ice probably is.
Type 2 are the most common. They are thinner and longer than Type 1, and look like terrestrial avalanche deposits. They’re found mostly at mid-latitudes on Ceres. The researchers behind the study thought one of them looked like Bart Simpson’s face.
Type 3 occur mostly at low latitudes near Ceres’ equator. These are always found coming from large impact craters, and probably formed when impacts melted the sub-surface ice.
The authors of the study say that finding larger landslides further away from the equator is significant, because that’s where most of the ice is.
“Landslides cover more area in the poles than at the equator, but most surface processes generally don’t care about latitude,” said Schmidt, a faculty member in the School of Earth and Atmospheric Sciences. “That’s one reason why we think it’s ice affecting the flow processes. There’s no other good way to explain why the poles have huge, thick landslides; mid-latitudes have a mixture of sheeted and thick landslides; and low latitudes have just a few.”
Key to understanding these results is the fact that these types of processes have only been observed before on Earth and Mars. Earth, obviously, has water and ice in great abundance, and Mars has large quantities of sub-surface ice as well. “It’s just kind of fun that we see features on this small planet that remind us of those on the big planets, like Earth and Mars,” Schmidt said. “It seems more and more that Ceres is our innermost icy world.”
“These landslides offer us the opportunity to understand what’s happening in the upper few kilometers of Ceres,” said Georgia Tech Ph.D. student Heather Chilton, a co-author on the paper. “That’s a sweet spot between information about the upper meter or so provided by the GRaND (Gamma Ray and Neutron Detector) and VIR (Visible and Infrared Spectrometer) instrument data, and the tens of kilometers-deep structure elucidated by crater studies.”
It’s not just the presence of these landslides, but the frequency of them, that upholds the icy-mantle idea on Ceres. The study showed that 20% to 30% of craters on Ceres larger than 10 km have some type of landslide. The researchers say that upper layers of Ceres’ could be up to 50% ice by volume.
Here on Earth, a year lasts roughly 365.25 days, each of which lasts 24 hours long. During the course of a single year, our planet goes through some rather pronounced seasonal changes. This is the product of our orbital period, our rotational period, and our axial tilt. And when it comes to the other planets in our Solar System, much the same is true.
Consider Neptune. As the eight and farthest planet from the Sun, Neptune has an extremely wide orbit and a comparatively slow orbital velocity. As a result, a year on Neptune is very long, lasting the equivalent of almost 165 Earth years. Combined with its extreme axial tilt, this also means that Neptune experiences some rather extreme seasonal changes.
Orbital Period:
Neptune orbits our Sun at an average distance (semi-major axis) of 4,504.45 million km (2,798.656 million mi; 30.11 AU). Because of its orbital eccentricity (0.009456), this distance varies somewhat, ranging from 4,460 million km (2,771 million mi; 29.81 AU) at its closest (perihelion) to 4,540 million km (2,821 million mi; 30.33 AU) at its farthest (aphelion).
With an average orbital speed of 5.43 km/s, it takes Neptune 164.8 Earth years (60,182 Earth days) to complete a single orbital period. This means, in effect, that a year on Neptune lasts as long as about 165 years here on Earth. However, given its rotational period of 0.6713 Earth days (16 hours 6 minutes 36 seconds), a year on Neptune works out to 89,666 Neptunian solar days.
Given that Neptune was discovered in 1846, humanity has only known about its existence for 171 years (at the time of this article’s writing). That means that since its discovery, the planet has only completed a single orbital period (which ended in 2010) and is only seven years into its second. This orbital period will be complete by 2179.
Orbital Resonance:
Because of its location in the outer Solar System, Neptune’s orbit has a profound impact on the neighboring Kuiper Belt. This region, which is similar (but significantly larger) than the Main Asteroid Belt, consists of many small icy worlds and objects that extends from Neptune’s orbit (at 30 AU) to a distance of about 55 AU from the Sun.
So much as Jupiter’s gravity has dominated the Asteroid Belt, affecting its structure and occasionally kicking asteroids and planetoids into the inner Solar System, Neptune’s gravity dominates the Kuiper Belt. This has led to the creation of gaps in the belt, empty regions where objects have achieved an orbital resonance with Neptune.
Within these gaps, objects have a 1:2, 2:3 or 3:4 resonance with Neptune, meaning they complete one orbit of the Sun for every two completed by Neptune, two for every three, or three for every four. The over 200 known objects that exist in the 2:3 resonance (the most populous) are known as plutinos, since Pluto is the largest of them.
Although Pluto crosses Neptune’s orbit on a regular basis, their 2:3 orbital resonance ensures they can never collide. On occasion, Neptune’s gravity also causes icy bodies to be kicked out of the Kuiper Belt. Many of these then travel to the Inner Solar System, where they become comets with extremely long orbital periods.
Neptune’s largest satellite, Triton, is believed to have once been a Kuiper Belt Object (KBO) – and Trans-Neptunian Object (TNO) – that was captured by Neptune’s gravity. This is evidenced by its retrograde motion, meaning it orbits the planet in the opposite direction as its other satellites. It also has a number of Trojan Objects occupying its L4 and L5 Lagrange points. These “Neptune Trojans” can be said to be in a stable 1:1 orbital resonance with Neptune.
Seasonal Change:
Much like the other planets of the Solar System, Neptune’s axis is tilted towards the Sun’s ecliptic. In Neptune’s case, it is tilted 28.32° relative to its orbit (whereas Earth is tilted at 23.5°). Because of this, Neptune undergoes seasonal change during the course of a year because one of its hemispheres will be receiving more sunlight than the other. But in Neptune’s case, a single season lasts a whopping 40 years, making it very hard to witness a full cycle.
While much of the heat that powers Neptune’s atmosphere comes from an internal source (which is currently unknown), a study conducted by researchers from Wisconsin-Madison University and NASA’s Jet Propulsion Laboratory revealed that seasonal change is also driven by solar radiation. This consisted of examining images of Neptune taken by the Hubble Space Telescope between 1996 and 2002.
These images revealed that Neptune’s massive southern cloud bands were becoming steadily wider and brighter over the six year period – which coincided with the southern hemisphere beginning its 40-year summer. This growing cloud cover was attributed to increased solar heating, as it appeared to be concentrated in the southern hemisphere and was rather limited at the equator.
Neptune remains a planet of mystery in many ways. And yet, ongoing observations of the planet have revealed some familiar and comforting patterns. For instance, while it’s composition is vastly different and its orbit puts it much farther away from the Sun than Earth, its axial tilt and orbital period still result in its hemispheres experiencing seasonal changes.
It’s good to know that no matter how far we venture out into the Solar System, and no matter how different things may seem, there are still some things that stay the same!
Whenever I do a new livestream on Instagram (hint hint, @universetoday on Instagram), it’s generally with an audience that doesn’t have a lot of experience with my work here on Universe Today or YouTube.
They’re enthusiastic about space, but they haven’t been exposed to a lot of the modern ideas about astrobiology and the search for extraterrestrials. They have, however, seen a lot of TV and movies.