Webb Finds Dozens of Supernovae Remnants in the Triangulum Galaxy

M33, the Triangulum Spiral Galaxy, seen here in a 4.3 hour exposure image. Astronomers used JWST to examine a section of its south spiral arm to search out and find nearly 800 newly forming stars. Credit and copyright: John Chumack.
M33, the Triangulum Spiral Galaxy, seen here in a 4.3 hour exposure image. Astronomers used JWST to examine a section of its south spiral arm to search out and find nearly 800 newly forming stars. Credit and copyright: John Chumack.

Infrared astronomy has revealed so much about the Universe, ranging from protoplanetary disks and nebulae to brown dwarfs, aurorae, and volcanoes on together celestial bodies. Looking to the future, astronomers hope to conduct infrared studies of supernova remnants (SNRs), which will provide vital information about the physics of these explosions. While studies in the near-to-mid infrared (NIR-MIR) spectrum are expected to provide data on the atomic makeup of SNRs, mid-to-far IR (MIR-FIR) studies should provide a detailed look at heated dust grains they eject into the interstellar medium (ISM).

Unfortunately, these studies have been largely restricted to the Milky Way and the Magellanic Clouds due to the limits of previous IR observatories. However, these observational regimes are now accessible thanks to next-generation instruments like the James Webb Space Telescope (JWST). In a recent study, a team led by researchers from Ohio State University presented the first spatially resolved infrared images of supernova remnants (SNRs) in the Triangulum Galaxy (a.k.a. Messier 33). Their observations allowed them to acquire images of 43 SNRs, thanks to the unprecedented sensitivity and resolution of Webb’s IR instruments.

Continue reading “Webb Finds Dozens of Supernovae Remnants in the Triangulum Galaxy”

The Search for Exomoons is On

An artist's conception of a potentially-habitable exomoon. It seems reasonable that exoplanets have exomoons, and now we're going to look for them. Credit: NASA

Moons are the norm in our Solar System. The International Astronomical Union recognizes 288 planetary moons, and more keep being discovered. Saturn has a whopping 146 moons. Every planet except Mercury and Venus has moons, and their lack of moons is attributed to their small size and proximity to the Sun.

It seems reasonable that there are moons around exoplanets in other Solar Systems, and now we’re going to start looking for them with the James Webb Space Telescope.

Continue reading “The Search for Exomoons is On”

The Milky Way’s Supermassive Black Hole Photo Might Need a Retake

Radio image of Sagittarius A* black hole in the center of the Milky Way galaxy, obtained from re-analysis by new research. The structure is elongated from east to west. The east side is bright and the west side is dark, which the research team interprets to mean that the east side is moving towards us. Credit Miyoshi et al.
Radio image of Sagittarius A* black hole in the center of the Milky Way galaxy, obtained from re-analysis by new research. The structure is elongated from east to west. The east side is bright and the west side is dark, which the research team interprets to mean that the east side is moving towards us. Credit: Miyoshi et al.

Remember that amazing “first image” of Sagittarius A* (Sgr A) black hole at the heart of the Milky Way? Well, it may not be completely accurate, according to researchers at the National Astronomical Observatory of Japan (NAOJ). Instead, the accretion disk around Sgr A* may be more elongated, rather than the circular shape we first saw in 2022.

Continue reading “The Milky Way’s Supermassive Black Hole Photo Might Need a Retake”

Here are Some Potentially Habitable World Targets for the Upcoming LIFE Mission

Illustration of the Large Interferometer For Exoplanets (LIFE) mission. Credit: ETH Zurich / Life Initiative

The odds are good that we are not alone in the Universe. We have found thousands of exoplanets so far, and there are likely billions of potentially habitable planets in our galaxy alone. But finding evidence of extraterrestrial life is challenging, and even the most powerful telescopes we currently have may not produce definitive proof. But there are telescopes in the pipeline that may uncover life. It will be decades before they are built and launched, but when they are, which systems should they target first? That’s the question answered in a recent paper.

Continue reading “Here are Some Potentially Habitable World Targets for the Upcoming LIFE Mission”

Chinese Company is Taking Space Tourism Orders for 2027 Flights

Infographic publicizing Deep Blue Space's first commercial flight, scheduled for 2027. Credit: Deep Blue Space (via Weixin)

China has some bold plans for space research and exploration that will be taking place in the coming decades. This includes doubling the size of their Tiangong space station, sending additional robotic missions to the Moon, and building the International Lunar Research Station (ILRS) around the lunar south pole. They also hope to begin sending crewed missions to Mars by 2033, becoming the first national space agency to do so. Not to be left behind in the commercial space sector, China is also looking to create a space tourism industry that offers suborbital flights for customers.

One of the companies offering these services is Jiangsu Deep Blue Aerospace Technology, a private launch company founded in November 2016 by Chinese entrepreneur Huo Liang. On October 24th, at 6:00 pm local time (03:00 am PDT; 06:00 am EDT), during a “Make Friends” Taobao live broadcast, Huo shared the companies’ latest progress on their commercial spacecraft. He also announced the pre-sale of tickets for the first suborbital launch in 2027. The company also posted an infographic with the details of the flight on the Chinese social media platform Weixin (WeChat).

Continue reading “Chinese Company is Taking Space Tourism Orders for 2027 Flights”

Measuring How Much Dust Spacecraft Kick Up When they Land

The instrument called Radar Interferometry For Landing Ejecta set up inside of a vacuum chamber to simulate the atmosphere in space. Credit : University of Illinois

The arrival of spacecraft on alien worlds uses a number of different techniques from giant air bags to parachutes and small rockets. The use of rockets can pose a problem to onboard technology though as the dust kicked up can effect sensors and cameras and the landing site can be disturbed in the process. A team of researchers have developed a new instrument that can measure the dust that is kicked up on landing to inform future instrument design. 

Continue reading “Measuring How Much Dust Spacecraft Kick Up When they Land”

Did Some of Earth’s Water Come from the Solar Wind?

The Sun releases a steady stream of charged particles called the Solar Wind. When it strikes unprotected surfaces like asteroids or the Moon, it can change the chemistry and even create water molecules. Image Credit: NASA’s Goddard Space Flight Center/Mary Pat Hrybyk-Keith

The source of Earth’s water is an enduring mystery that extends to exoplanets and the notion of habitability. In broad terms, Earth’s water was either part of the planet from the beginning of its formation in the solar nebula or delivered later, maybe by asteroids and comets.

New research suggests that the Sun’s relentless solar wind could’ve played a role.

Continue reading “Did Some of Earth’s Water Come from the Solar Wind?”

Ion Engines Could Take Us to the Solar Gravitational Lens in Less Than 13 Years

Sending an object to another star is still the stuff of science fiction. But some concrete missions could get us at least part way there. These “interstellar precursor missions” include a trip to the Solar Gravitational Lens point at 550 AU from the Sun – farther than any artificial object has ever been, including Voyager. To get there, we’ll need plenty of new technologies, and a recent paper presented at the 75th International Astronautical Congress in Milan this month looks at one of those potential technologies – electric propulsion systems, otherwise known as ion drives. 

Continue reading “Ion Engines Could Take Us to the Solar Gravitational Lens in Less Than 13 Years”

The First Triple Star System Found Containing a Black Hole

V404 Cygni in the process of consuming a nearby star while a second star orbits at a distance. Credit: Jorge Lugo

Neutron stars and black holes are the remnants of dead stars. They typically form as part of a supernova explosion, where the outer layers of an old star are violently cast off while the core of the star collapses to form the remnant. This violent origin can have significant consequences for both the remnant and the surrounding environment.

Continue reading “The First Triple Star System Found Containing a Black Hole”

Building Bricks out of Lunar Regolith

Samples of the lunar bricks. /China Media Group

It was 1969 that humans first set foot on the Moon. Now, over 50 years later we are setting sights on building lunar bases. The ability to complete that goal is dependent on either transporting significant amounts of material to the Moon to construct bases or somehow utilising raw lunar materials. A team of Chinese researchers have developed a technique to create bricks from material that is very similar to the soil found on the Moon. The hope is that the lunar soil can in the future, be used to build bricks on the Moon.

Continue reading “Building Bricks out of Lunar Regolith”