NASA’s Experimental Hurricane Monitoring Fleet Launched by Pegasus rocket

Launch of the Orbital ATK Pegasus XL rocket carrying NASA’s CYGNSS spacecraft at 8:37 a.m. EST on Dec. 15, 2016. Credit: NASA TV/Ken Kremer
Launch of the Orbital ATK Pegasus XL rocket carrying NASA’s CYGNSS spacecraft at 8:37 a.m. EST on Dec. 15, 2016.  Credit: NASA TV/Ken Kremer
Launch of the Orbital ATK Pegasus XL rocket carrying NASA’s CYGNSS spacecraft at 8:37 a.m. EST on Dec. 15, 2016. Credit: NASA TV/Ken Kremer

KENNEDY SPACE CENTER, FL – NASA’s constellation of experimental hurricane monitoring CYGNSS microsatellites was successfully air launched by the unique Orbital ATK winged Pegasus rocket on Thursday, Dec 15 – opening a new era in weather forecasters ability to measure the buildup of hurricane intensity in the tropics from orbit that will eventually help save lives and property from impending destructive storms here on Earth.

The agency’s innovative Cyclone Global Navigation Satellite System (CYGNSS) earth science mission was launched at 8:37 a.m. EST, Dec. 15, aboard a commercially developed Orbital ATK Pegasus XL rocket from a designated point over the Atlantic Ocean off the east coast of Florida.

Officials just announced this morning Dec. 16 that the entire fleet is operating well.

“NASA confirmed Friday morning that all eight spacecraft of its latest Earth science mission are in good shape.”

“The launch of CYGNSS is a first for NASA and for the scientific community,” said Thomas Zurbuchen, associate administrator for the agency’s Science Mission Directorate in Washington.

“As the first orbital mission in our Earth Venture program, CYGNSS will make unprecedented measurements in the most violent, dynamic, and important portions of tropical storms and hurricanes.”

An Orbital ATK L-1011 “Stargazer” aircraft carrying a Pegasus XL rocket with NASA’s CYGNSS spacecraft takes off from the Skid Strip at Cape Canaveral Air Force Station, Florida on Dec. 15, 2016 and successfully launches the spacecraft. Credit: Ken Kremer/kenkremer.com
An Orbital ATK L-1011 “Stargazer” aircraft carrying a Pegasus XL rocket with NASA’s CYGNSS spacecraft takes off from the Skid Strip at Cape Canaveral Air Force Station, Florida on Dec. 15, 2016 and successfully launches the spacecraft. Credit: Ken Kremer/kenkremer.com

Late Thursday, NASA announced that contact had been made with the entire fleet of eight small satellites after they had been successfully deployed and safely delivered to their intended position in low Earth orbit.

“We have successfully contacted each of the 8 observatories on our first attempt,” announced Chris Ruf, CYGNSS principal investigator with the Department of Climate and Space Sciences and Engineering at the University of Michigan.

“This bodes very well for their health and “status, which is the next thing we will be carefully checking with the next contacts in the coming days.”

The three stage Pegasus XL rocket housing the CYGNSS earth science payload inside the payload fairing had been carried aloft to 39,000 feet by an Orbital ATK L-1011 Tristar and dropped from the aircrafts belly for an air launch over the Atlantic Ocean and about 110 nautical miles east-northeast of Daytona Beach.

The Orbital ATK Pegasus XL rocket with NASA’s CYGNSS hurricane observing microsatellites  is attached to the belly of the Stargazer L-1011 as technicians work at the Skid Strip at Cape Canaveral Air Force Station in Florida.  It launched the payload to orbit on Dec. 15, 2016.  Credit: Ken Kremer/kenkremer.com
The Orbital ATK Pegasus XL rocket with NASA’s CYGNSS hurricane observing microsatellites is attached to the belly of the Stargazer L-1011 as technicians work at the Skid Strip at Cape Canaveral Air Force Station in Florida. It launched the payload to orbit on Dec. 15, 2016. Credit: Ken Kremer/kenkremer.com

The L-1011 nicknamed Stargazer took off at about 7:30 a.m. EST from NASA’s Skid Strip on Cape Canaveral Air Force Station in Florida as the media including myself watched the events unfold under near perfect Sunshine State weather with brilliantly clear blue skies.

After flying to the dropbox point – measuring about 40-miles by 10-miles (64-kilometers by 16-kilometers) – the Pegasus rocket was dropped from the belly, on command by the pilot, for a short freefall of about 5 seconds to initiate the launch sequence and engine ignition.

Pegasus launches horizontally in midair with ignition of the first stage engine burn, and then tilts up to space to begin the approximate ten minute trek to LEO.

The rocket launch and satellite release when exactly as planned with no hiccups.

It’s a beautiful day, with gorgeous weather,” said NASA CYGNSS launch director Tim Dunn. “We had a nominal flyout, and all three stages performed beautifully. We had no issues at all with launch vehicle performance.”

Deployment of the first pair of CYGNSS satellites in the eight satellite fleet started just 13 minutes after launch. The other six followed sequentially staged some 30 seconds apart.

“It’s a great event when you have a successful spacecraft separation – and with eight microsatellites, you get to multiply that times eight,” Dunn added.

“The deployments looked great — right on time,” said John Scherrer, CYGNSS Project Manager at the Southwest Research Institute and today’s CYGNSS mission manager, soon after launch.

“We think everything looks really, really good. About three hours after launch we’ll attempt first contact, and after that, we’ll go through a series of four contacts where we hit two [observatories] each time, checking the health and status of each spacecraft,” Scherrer added several prior to contact..

CYGNSS small satellite constellation launch came after a few days postponement due to technical issues following an aborted attempt on Monday, when the release mechanism failed and satellite parameter issues cropped up on Tuesday, both of which were rectified.

NASA’s innovative Cyclone Global Navigation Satellite System (CYGNSS) mission is expected to revolutionize hurricane forecasting by measuring the intensity buildup for the first time.

“The CYGNSS constellation consists of eight microsatellite observatories that will measure surface winds in and near a hurricane’s inner core, including regions beneath the eyewall and intense inner rainbands that previously could not be measured from space,” according to a NASA factsheet.

CYGNSS is an experimental mission to demonstrate proof-of-concept that could eventually turn operational in a future follow-up mission if the resulting data returns turn out as well as the researchers hope.

The CYGNSS constellation of 8 identical satellites works in coordination with the Global Positioning System (GPS) satellite constellation.

The eight satellite CYGNSS fleet “will team up with the Global Positioning System (GPS) constellation to measure wind speeds over Earth’s oceans and air-sea interactions, information expected to help scientists better understand tropical cyclones, ultimately leading to improved hurricane intensity forecasts.”

They will receive direct and reflected signals from GPS satellites.

“The direct signals pinpoint CYGNSS observatory positions, while the reflected signals respond to ocean surface roughness, from which wind speed is retrieved.”

This schematic outlines the key launch events:

Schematic of Orbital ATK L-1011 aircraft and Pegasus XL rocket air drop launch of NASA’s CYGNSS microsatellite fleet.  Credit: Orbital ATK
Schematic of Orbital ATK L-1011 aircraft and Pegasus XL rocket air drop launch of NASA’s CYGNSS microsatellite fleet. Credit: Orbital ATK

The $157 million fleet of eight identical spacecraft comprising the Cyclone Global Navigation Satellite System (CYGNSS) system were all delivered to low Earth orbit by the Orbital ATK Pegasus XL rocket.

The nominal mission lifetime for CYGNSS is two years but the team says they could potentially last as long as five years or more if the spacecraft continue functioning.

Artist's concept of the deployment of the eight Cyclone Global Navigation Satellite System (CYGNSS) microsatellite observatories in space.  Credits: NASA
Artist’s concept of the deployment of the eight Cyclone Global Navigation Satellite System (CYGNSS) microsatellite observatories in space. Credits: NASA

Pegasus launches from the Florida Space Coast are infrequent. The last once took place over 13 years ago in late April 2003 for the GALEX mission.

Typically they take place from Vandenberg Air Force Base in California or the Reagan Test Range on the Kwajalein Atoll.

An Orbital ATK L-1011 “Stargazer” aircraft carrying a Pegasus XL rocket with NASA’s CYGNSS spacecraft takes off from the Skid Strip at Cape Canaveral Air Force Station, Florida on Dec. 12, 2016. Credit: Ken Kremer/kenkremer.com
An Orbital ATK L-1011 “Stargazer” aircraft carrying a Pegasus XL rocket with NASA’s CYGNSS spacecraft takes off from the Skid Strip at Cape Canaveral Air Force Station, Florida on Dec. 12, 2016. Credit: Ken Kremer/kenkremer.com

CYGNSS counts as the 20th Pegasus mission for NASA and the 43rd mission overall for Orbital ATK.

The CYGNSS spacecraft were built by Southwest Research Institute in San Antonio, Texas.

The solar panels and spacecraft dispenser were built by Sierra Nevada Corporation (SNC).

Each one weighs approx 29 kg. The deployed solar panels measure 1.65 meters in length.

The solar panels measure 5 feet in length and will be deployed within about 15 minutes of launch.

“We are thrilled to be a part of a project that helps gain better hurricane data that can eventually help keep a lot of people safe, but from a business side, we are also glad we could help SwRI achieve their mission requirements with better performance and lower cost and risk,” said Bryan Helgesen, director of strategy and business development for Space Technologies in SNC’s Space Systems business area, in a statement.

Rear view into the first stage engine of Orbital ATK Pegasus XL rocket that will launch NASA's CYGNSS experimental hurricane observation payload on Dec. 14, 2016. They are mated to the bottom of the Orbital ATK L-1011 Stargazer aircraft at the Skid Strip at Cape Canaveral Air Force Station in Florida.  Credit: Ken Kremer/kenkremer.com
Rear view into the first stage engine of Orbital ATK Pegasus XL rocket that will launch NASA’s CYGNSS experimental hurricane observation payload on Dec. 14, 2016. They are mated to the bottom of the Orbital ATK L-1011 Stargazer aircraft at the Skid Strip at Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

The Space Physics Research Laboratory at the University of Michigan College of Engineering in Ann Arbor leads overall mission execution in partnership with the Southwest Research Institute in San Antonio, Texas.

The Climate and Space Sciences and Engineering Department at the University of Michigan leads the science investigation, and the Earth Science Division of NASA’s Science Mission Directorate oversees the mission.

The Orbital ATK L-1011 Stargazer aircraft at the Skid Strip at Cape Canaveral Air Force Station in Florida. Attached beneath the Stargazer is the Orbital ATK Pegasus XL with NASA's CYGNSS payload on board, being processed for launch on Dec. 12, 2016.  Credit: Ken Kremer/kenkremer.com
The Orbital ATK L-1011 Stargazer aircraft at the Skid Strip at Cape Canaveral Air Force Station in Florida. Attached beneath the Stargazer is the Orbital ATK Pegasus XL with NASA’s CYGNSS payload on board, being processed for launch on Dec. 12, 2016. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

An Orbital ATK technician checks the installation of two of the eight the CYGNSS microsatellites on their deployment module at Vandenberg Air Force Base in California.  Credits: Photo credit: USAF
An Orbital ATK technician checks the installation of two of the eight the CYGNSS microsatellites on their deployment module at Vandenberg Air Force Base in California. Credits: Photo credit: USAF

………….

Learn more about ULA Atlas V EchoStar 19 comsat launch, GOES-R launch, Heroes and Legends at KSCVC, OSIRIS-REx, InSight Mars lander, ULA, SpaceX and Orbital ATK missions, Juno at Jupiter, SpaceX AMOS-6 & CRS-9 rocket launch, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Dec. 16-18: “ULA Atlas V EchoStar 19 comsat launch,GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Win “The Year in Space” Wall and Desk Calendars

What’s the perfect holiday gift for any space fan? It’s the 2017 version of Steve Cariddi’s amazing Year in Space Calendars, which are now available to order. And thanks to Steve, Universe Today has 2 sets of the wall and desk calendars to give away!

Both the gigantic wall calendar and the spiral-bound desk calendar are full of amazing color images, daily space facts, and historical references. These calendars even show you where you can look in the sky for all the best astronomical sights.

For our giveaway, to be entered into the drawing, just put your email address into the box at the bottom of this post (where it says “Enter the Giveaway”) by Monday, December 19, 2016.

This giveaway is open to anyone around the world!

These calendars normally sell for $19.95, but Universe Today readers can buy the calendar for only $14.95 or less (using the “Internet” discount), with additional discounts that appear during checkout if you buy more than 1 copy at a time. Check out all the details here.

There’s also the 136-Page Desk Calendar at a similar discounts.

You can preview the entire calendar at the Year in Space Calendar website, or see our preview article about the calendars here.

Ice, Ice Everywhere, says New Study on Ceres

This image of Ceres was taken by NASA's Dawn spacecraft on May 7, 2015, from a distance of 8,400 miles (13,600 kilometers). Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

As the single-largest body in the Asteroid Belt, Ceres has long been a source of fascination to astronomers. In addition to being the only asteroid large enough to become rounded under its own gravity, it is also the only minor planet to be found within the orbit of Neptune. And with the arrival of the Dawn probe around Ceres in March of 2015, we have been treated to a steady stream of scientific finds about this protoplanet.

The latest find, which has come as something of a surprise, has to do with the composition of the planet. Contrary to what was previously suspected, new evidence shows that Ceres has large deposits of water ice near its surface. This and other evidence suggests that beneath its rocky, icy surface, Ceres has deposits of liquid water that could have played a major role in its evolution.

This evidence were presented at the 2016 American Geophysical Union meeting, which kicked off on Monday, Dec. 12th, in San Fransisco. Amid the thousands of seminars that detailed the biggest findings made during the past year in the fields of space and Earth science – which included updates from the Curiosity mission – members of the Dawn mission team shared the results of their research, which were recently published in Science.

This graphic shows a theoretical path of a water molecule on Ceres. Some water molecules fall into cold, dark craters called "cold traps," where very little of the ice turns into vapor, even over the course of a billion years. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Graphic showing a theoretical path of a water molecule on Ceres. Some water molecules fall into cold, dark craters called “cold traps,” where very little of the ice turns into vapor, even over the course of a billion years. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Titled “Extensive water ice within Ceres’ aqueously altered regolith: Evidence from nuclear spectroscopy“, the mission team’s study details how data gathered by Dawn’s Gamma Ray and Neutron Detector (GRaND) determined the concentrations of hydrogen, iron and potassium in Ceres crust. In so doing, it was able to place constraints on the planet’s ice content, and how the surface was likely altered by liquid water in Ceres’ interior.

In short, the GRaND instrument detected high levels of hydrogen in Ceres’ uppermost structure (10% by weight), which appeared most prominently around the mid-latitudes. These readings were consistent with broad expanses of water ice. The GRaND data also showed that rather than consisting of a solid ice layer, the ice was likely to take the form of a porous mixture of rocky materials (in which ice fills the pores).

Previously, ice was thought to only exist within certain cratered regions on Ceres, and was thought to be the result of impacts that deposited water ice over the course of Ceres’ long history. But as Thomas Prettyman – the principal investigator of Dawn’s GRaND instrument – said in a NASA press release, scientists are now rethinking this position:

“On Ceres, ice is not just localized to a few craters. It’s everywhere, and nearer to the surface with higher latitudes. These results confirm predictions made nearly three decades ago that ice can survive for billions of years just beneath the surface of Ceres. The evidence strengthens the case for the presence of near-surface water ice on other main belt asteroids.”

The concentrations of iron, potassium and carbon detected by the GRaND instrument also supports the theory that Ceres’ surface was altered by liquid water in the interior. Basically, scientists theorize that the decay of radioactive elements within Ceres created enough heat to cause the protoplanet’s structure to differentiate between a rocky interior and icy outer shell – which also allowed minerals like those observed to be deposited in the surface.

Similarly, a second study produced by researchers from the Max Planck Institute for Solar Research examined hundreds of permanently-shadowed craters located in Ceres’ northern hemisphere. According to this study, which appeared recently in Nature Astronomy, these craters are “cold traps”, where temperatures drop to less than 11o K (-163 °C; -260 °F), thus preventing all but the tiniest amounts of ice from turning into vapor and escaping.

Within ten of these craters, the researcher team found deposits of bright material, reminiscent to what Dawn spotted in the Occator Crater. And in one that was partially sunlit, Dawn’s infrared mapping spectrometer confirmed the presence of ice. This suggests that water ice is being stored in Ceres darker craters in a way that is similar to what has been observed around the polar regions of both Mercury and the Moon.

Where this water came from (i.e. whether or not it was deposited by meteors) remains something of a mystery. But regardless, it shows that water molecules on Ceres could be moving from warmer mid-latitudes to the colder, darker polar regions. This lends further weight to the theory that Ceres might have a tenuous water vapor atmosphere, which was suggested back in 2012-13 based on evidence obtained by the Herschel Space Observatory.

f images from NASA's Dawn spacecraft shows a crater on Ceres that is partly in shadow all the time. Such craters are called "cold traps." Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
f images from NASA’s Dawn spacecraft shows a crater on Ceres that is partly in shadow all the time. Such craters are called “cold traps.” Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

All of this adds up to Ceres being a watery and geologically active protoplanet, one which could hold clues as to how life existed billions of years ago. As Carol Raymond, deputy principal investigator of the Dawn mission, also explained in the NASA press release:

“These studies support the idea that ice separated from rock early in Ceres’ history, forming an ice-rich crustal layer, and that ice has remained near the surface over the history of the solar system. By finding bodies that were water-rich in the distant past, we can discover clues as to where life may have existed in the early solar system.”

Back in July Dawn began its extended mission phase, which consists of it conducting several more orbits of Ceres. At present, it is flying in an elliptical orbit at a distance of more than 7,200 km (4,500 mi) from the protoplanet. The spacecraft is expected to operate until 2017, remaining a perpetual satellite of Ceres until the end.

Further Reading: NASA, IfA, PSI

Juno Captures a Stunning Jovian ‘Pearl’

New Juno image of Jupiter taken on Dec. 11, 2016. Processed by Damian Peach
Damian Peach reprocessed one of the latest images taken by Juno's JunoCam during its 3rd close flyby of the planet on Dec. 11. The photo highlights two large 'pearls' or storms in Jupiter's atmosphere. Credit: NASA/JPL-Caltech/SwRI/MSSS
Astro-imager Damian Peach reprocessed one of the latest images taken by Juno’s JunoCam during its 3rd close flyby of the planet on Dec. 11. The photo highlights one of the large ‘pearls’ (right) that forms a string of  storms in Jupiter’s atmosphere. A smaller isolated storm is seen at left. Credit: NASA/JPL-Caltech/SwRI/MSSS

Jupiter looks beautiful in pearls! This image, taken by the JunoCam imager on NASA’s Juno spacecraft, highlights one of the eight massive storms that from a distance form a ‘string of pearls’ on Jupiter’s turbulent atmosphere. They’re counterclockwise rotating storms that appear as white ovals in the gas giant’s southern hemisphere. The larger pearl in the photo above is roughly half the size of Earth. Since 1986, these white ovals have varied in number from six to nine with eight currently visible.

Four more 'pearls' in the string of eight photographed on Dec. 10, 2016. They show up well in photos but require good seeing and at least and 8-inch telescope to see. Credit: Christopher Go
Four more ‘pearls’ photographed on Dec. 10, 2016 in the planet’s South Temperate Belt below the Great Red Spot. The moon Ganymede is at left. The show up well in photos but require good seeing and at least and 8-inch telescope to see visually. Credit: Christopher Go

The photos were taken during Sunday’s close flyby. At the time of closest approach — called perijove — Juno streaked about 2,580 miles (4,150 km) above the gas giant’s roiling, psychedelic cloud tops traveling about 129,000 mph or nearly 60 km per second relative to the planet. Seven of Juno’s eight science instruments collected data during the flyby. At the time the photos were taken, the spacecraft was about 15,300 miles (24,600 km) from the planet.

This is the original image sent by JunoCam on Dec. 11 and shows the 8th of the eight oval or 'pearls'in Jupiter's roiling atmosphere. Credit: NASA/JPL-Caltech/SwRI/MSSS
This is the original image sent by JunoCam on Dec. 11 and features the eighth in a string of large storms in the planet’s southern hemisphere. Credit: NASA/JPL-Caltech/SwRI/MSSS

JunoCam is a color, visible-light camera designed to capture remarkable pictures of Jupiter’s poles and cloud tops. As Juno’s eyes, it will provide a wide view, helping to provide context for the spacecraft’s other instruments. JunoCam was included on the spacecraft specifically for purposes of public engagement; although its images will be helpful to the science team, it is not considered one of the mission’s science instruments.

4-frame animation spans 24 Jovian days, or about 10 Earth days. The passage of time is accelerated by a factor of 600,000. Credit: NASA
4-frame animation spans 24 Jovian days, or about 10 Earth days. The passage of time is accelerated by a factor of 600,000. Some of the ovals are visible as well as a variety of jets – west to east and east to west. Credit: NASA

The crazy swirls of clouds we see in the photos are composed of ammonia ice crystals organized into a dozen or so bands parallel to the equator called belts (the darker ones) and zones. The border of each is bounded by a powerful wind flow called a jet, resembling Earth’s jet streams, which alternate direction from one band to the next.

Zones are colder and mark latitudes where material is upwelling from below. Ammonia ice is thought to give the zones their lighter color. Belts in contrast indicate sinking material; their color is a bit mysterious and may be due to the presence of hydrocarbons — molecules that are made from hydrogen, carbon, and oxygen as well as exotic sulfur and phosphorus compounds.

Use this guide to help you better understand Jupiter's arrangement of belts and zones, many of which are visible in amateur telescopes. Credit: NASA/JPL/Wikipedia
Use this guide to help you better understand Jupiter’s arrangement of belts and zones, many of which are visible in amateur telescopes. Credit: NASA/JPL/Wikipedia

The pearls or storms form in windy Jovian atmosphere and can last many decades. Some eventually dissipate while others merge to form even larger storms. Unlike hurricanes, which fall apart when they blow inland from the ocean, there’s no “land” on Jupiter, so storms that get started there just keep on going. The biggest, the Great Red Spot, has been hanging around causing trouble and delight (for telescopic observers) for at least 350 years.

Juno’s next perijove pass will happen on Feb. 2, 2017.

James Webb Space Telescope Celebrated in Stunning New Video

Behold, the mighty primary mirror of the James Webb Space Telescope, in all its gleaming glory! Image: NASA/Chris Gunn
The primary mirror of the James Webb Space Telescope, in all its gleaming glory! Image: NASA/Chris Gunn

NASA has some high hopes for the James Webb Space Telescope, which finished the “cold” phase of its construction at the end of November 2016. The result of 20 years of engineering and construction, this telescope is seen as Hubble’s natural successor. Once it is deployed in October of 2018, it will use a 6.5 meter (21 ft 4 in) primary mirror to examine the Universe in the visible, near-infrared, and mid-infrared wavelengths.

All told, the JWST will be 100 times more powerful than its predecessor and will be capable of looking over 13 billion years in time. To honor the completion of the telescope, Northrop Grumman – the company contracted by NASA to build it – and Crazy Boat Pictures teamed up to produce a short film about it. Titled “Into the Unknown – the Story of NASA’s James Webb Space Telescope“, the video chronicles the project from inception to completion.

The film (which you can watch at the bottom of the page) shows the construction of the telescope’s large mirrors, its instrument package, and its framework. It also features conversations with the scientists and engineers who were involved and some stunning visuals. In addition to detailing the creation process, the film also delves into the telescope’s mission and all the cosmological questions it will address.

In addressing the nature of James Webb’s mission, the film also pays homage to the Hubble Space Telescope and its many accomplishments. Over the course of its 26 years of operation, it has revealed auroras and supernovas and discovered billions of stars, galaxies, and exoplanets, some of which were shown to orbit within their star’s respective habitable zones.

On top of that, Hubble was used to determine the age of the Universe (13.8 billion years) and confirmed the existence of the supermassive black hole (SMBH) – Sagittarius A* – at the center of our galaxy, not to mention many others. It was also responsible for measuring the rate at which the Universe is expanding – in other words, measuring the Hubble Constant.

This played a pivotal role in helping scientists to develop the theory of Dark Energy, one of the most profound discoveries since Edwin Hubble (the telescope’s namesake) proposed that the Universe is in a state of expansion back in 1929. So it goes without saying that the deployment of the Hubble Space Telescope led to some of the greatest discoveries in modern astronomy.

That being said, Hubble is still subject to limitations, which astronomers are now hoping to push past. For one, its instruments are not able to pick up the most distant (and hence, dimmest) galaxies in the Universe, which date to just a few hundred million years after the Big Bang. Even with “The Deep Fields” initiative, Hubble is still limited to seeing back to about half a billion years after the Big Bang.

Illustration of the depth by which Hubble imaged galaxies in prior Deep Field initiatives, in units of the Age of the Universe. The goal of the Frontier Fields is to peer back further than the Hubble Ultra Deep Field and get a wealth of images of galaxies as they existed in the first several hundred million years after the Big Bang. Note that the unit of time is not linear in this illustration. Illustration Credit: NASA and A. Feild (STScI)
Illustration of the depth by which Hubble imaged galaxies in prior Deep Field initiatives in units of the Age of the Universe. Credit: NASA and A. Feild (STScI)

As Dr. John Mather, the project scientist for the James Webb Telescope, told Universe Today via email:

“Hubble showed us that we could not see the first galaxies being born, because they’re too far away, too faint, and too red. JWST is bigger, colder, and observes infrared light to see those first galaxies.  Hubble showed us there’s a black hole in the center of almost every galaxy. JWST will look as far back in time as possible to see when and how that happened: did the galaxy form the black hole, or did the galaxy grow around a pre-existing black hole?  Hubble showed us great clouds of glowing gas and dust where stars are being born. JWST will look through the dust clouds to see the stars themselves as they form in the cloud. Hubble showed us that we can see some planets around other stars, and that we can get chemical information about other planets that happen to pass directly in front of their stars.  JWST will extend this to longer wavelengths with a bigger telescope, with a possibility of detecting water on a super-Earth exoplanet. Hubble showed us details of planets and asteroids close to home, and JWST will give a closer look, though it’s still better to send a visiting robot if we can.”
Basically, the JWST will be able to see farther back to about 100 million years after the Big Bang, when the first stars and galaxies were born. It is also designed to operate at the L2 Lagrange Point, farther away from the Earth than Hubble – which was designed to remain in low-Earth orbit. This means the JWST will be subject to less thermal and optical interference from the Earth and the Moon, but will also make it more difficult to service.

With its much larger set of segmented mirrors, it will observe the Universe as it captures light from the first galaxies and stars. Its extremely-sensitive suite of optics will also be able to gather information in the long-wavelength (orange-red) and infrared wavelengths with greater accuracy, measuring the redshift of distant galaxies and even helping in the hunt for extra-solar planets.

A primary mirror segments of the James Webb Space Telescope, made of beryllium. Credit: NASA/MSFC/David Higginbotham/Emmett Given
A primary mirror segments of the James Webb Space Telescope, made of beryllium. Credit: NASA/MSFC/David Higginbotham/Emmett Given

With the assembly of its major components now complete, the telescope will spend the next two years undergoing tests before its scheduled launch date in October 2018. These will include stress tests that will subject the telescope to the types of intense vibrations, sounds, and g forces (ten times Earth’s gravity) it will experience inside the Ariane 5 rocket that will take it into space.

Six months before its deployment, NASA also plans to send the JWST to the Johnson Space Center, where it will be subjected to the kinds of conditions it will experience in space. This will consist of scientists placing the telescope in a chamber where temperatures will be lowered to 53 K (-220 °C; -370 °F), which will simulate its operating conditions at the L2 Lagrange Point.

Once all of that is complete, and the JWST checks out, it will be launched aboard an Ariane 5 rocket from Arianespace’s ELA-3 launch pad in French Guayana. And thanks to experience gained from Hubble and updated algorithms, the telescope will be focused and gathering information shortly after it is launched. And as Dr. Mather explained, the big cosmological questions it is expected to address are numerous:

“Where did we come from? The Big Bang gave us hydrogen and helium spread out almost uniformly across the universe. But something, presumably gravity, stopped the expansion of the material and turned it into galaxies and stars and black holes. JWST will look at all these processes: how did the first luminous objects form, and what were they? How and where did the black holes form, and what did they do to the growing galaxies? How did the galaxies cluster together, and how did galaxies like the Milky Way grow and develop their beautiful spiral structure? Where is the cosmic dark matter and how does it affect ordinary matter? How much dark energy is there, and how does it change with time?”

Needless to say, NASA and the astronomical community are quite excited that the James Webb Telescope is finished construction, and can’t wait until it is deployed and begins to send back data. One can only imagine the kinds of things it will see deep in the cosmic field. But in the meantime, be sure to check out the film and see how this effort all came together:

Further Reading: NASA – JWST, Northrop Grumman

The Car Alan Stern Drove to Pluto

Alan Stern’s 2006 Nissan 350Z and Percival Lowell’s 1912 car in front of the Lowell Observatory. Percival Lowell’s car nicknamed his car “Big Red,” and Stern’s car is nicknamed “New Red.” Credit: Lowell Observatory

Many of the rocket and space flight enthusiasts I know are also car buffs. If you fit into that category, here’s an opportunity you won’t want to miss: a chance to own the car that New Horizons principal investigator Alan Stern drove all the way to Pluto.

Well, technically, he drove his shiny red Nissan 350Z the entire time the New Horizons’ spacecraft was making a beeline for the icy dwarf planet. But Stern has now donated this car to the Lowell Observatory, the facility where Pluto was discovered. The car is being auctioned off on eBay, with proceeds going to support “Lowell’s mission of scientific research and education.” You can make your bid now, as bids are being accepted from December 15-24, and the winner will not only have the privilege of owning the car, but also enjoy a dinner with Stern.

New Horizons Principal Investigator Alan Stern and the Nissan sports car he has donated to the Lowell Observatory for a fundraiser. Credit: Lowell Observatory.
New Horizons Principal Investigator Alan Stern and the Nissan sports car he has donated to the Lowell Observatory for a fundraiser. Credit: Lowell Observatory.

Stern bought the car in 2006, the year New Horizons launched (it has a bumper sticker that says “My other vehicle is on its way to Pluto”) and he continued driving it until earlier this year, well past the spacecraft’s flyby of Pluto in July 2015.

It is a two-door model with red exterior and carbon interior, and has just over 77,000 miles on it, which, as Stern points out, is almost 10 times fewer miles than New Horizons clocked on its first day of flight. A November 9, 2016 appraisal states the vehicle is in excellent shape and has a life expectancy of 300,000 miles.

“It was Percival Lowell’s perseverance and dedication that resulted in the discovery of Pluto and, ultimately, resulted in the flight of New Horizons to explore this distant, small planet,” Stern said in a press release from the Lowell Observatory. “New Horizons was, and is, the best aspect of my career so far, so I wanted to donate this car to Lowell Observatory as a fundraising vehicle to recognize the fact that New Horizons could not have happened without the historic and pioneering work that took place at Lowell Observatory early in the last century.”

Bumper sticker on Alan Stern's car. Credit: Lowell Observatory.
Bumper sticker on Alan Stern’s car. Credit: Lowell Observatory.

Stern was the impetus behind New Horizons, billed as the fastest spacecraft ever launched, so he calls the Nissan 350Z his “second fastest vehicle.” He still oversees the New Horizons mission, as the spacecraft continues on its journey through the Kuiper Belt. It will fly past another object, named 2014 MU69, which Stern said is an ancient KBO that formed where it orbits now.

“It’s the type of object scientists have been hoping to study for decades, and this will be the most distant world we’ve ever been able to see up close,” Stern told me during an interview for my upcoming book, “Incredible Stories From Space.” Chapter 1 tells the stories of the New Horizons mission, including many stories from Stern.

With a penchant for both creating and driving state-of-the-art vehicles, Stern revealed earlier this year that his new car is a Tesla.

Lowell director Jeff Hall said, “It’s been a real pleasure working with Alan over the past few years leading up to and past the Pluto flyby. He’s been tremendously supportive of Lowell, and his donation of his car for us to auction is a sterling example of this. We’re thrilled by this gesture, and we look forward to meeting the lucky winner.”

The Lowell Observatory was founded in 1894 by Percival Lowell and has been home to many important discoveries including the detection of the large recessional velocities (redshift) of galaxies by Vesto Slipher in 1912-1914 (a result that led to the realization the universe is expanding), and the discovery of Pluto by Clyde Tombaugh in 1930. Today, Lowell’s 14 astronomers use ground-based telescopes around the world, telescopes in space, and NASA planetary spacecraft to conduct research in astronomy and planetary science. Lowell is a private, non-profit research institution and is located near Flagstaff, Arizona.

Find out more at this link from the Lowell Observatory, and check out the auction at eBay.

SpaceX and NASA Confirm Delay of First Crewed Dragon Flight to 2018

SpaceX Crew Dragon docks at the ISS. Credit: SpaceX
SpaceX Dragon V2 docks at the ISS. Credit: SpaceX
SpaceX Dragon V2 docks at the ISS. Credit: SpaceX

KENNEDY SPACE CENTER, FL – Launching Americans back to space and the International Space Station (ISS) from American soil on American rockets via NASA’s commercial crew program (CCP) has just suffered another significant but not unexpected delay, with an announcement from NASA that the target date for inaugural crewed flight aboard a SpaceX commercial Crew Dragon has slipped significantly from 2017 to 2018.

NASA announced the revised schedule on Dec. 12 and SpaceX media affairs confirmed the details of the launch delay to Universe Today.

The postponement of the demonstration mission launch is the latest fallout from the recent launch pad explosion of a SpaceX Falcon 9 rocket at Cape Canaveral, Florida, on Sept. 1 during final preparations and fueling operations for a routine preflight static fire test.

Since the Falcon 9 is exactly the same booster that SpaceX will employ to loft American astronauts in the SpaceX Crew Dragon to the space station, the stakes could not be higher with astronauts lives on the line.

Blastoff of the first Crew Dragon spacecraft on its first unmanned test flight is postponed from May 2017 to August 2017, according to the latest quarterly revision just released by NASA. Liftoff of the first piloted Crew Dragon with a pair of NASA astronauts strapped in has slipped from August 2017 to May 2018.

“The Commercial crew updated dates for Demo 1 (no crew) is Q4 2017,” SpaceX’s Phil Larson told Universe Today. “For Demo 2 (with 2 crew members) the updated commercial crew date is Q2 2018 [for Crew Dragon].”

Meet Dragon V2 - SpaceX CEO Elon pulls the curtain off manned Dragon V2 on May 29, 2014 for worldwide unveiling of SpaceX's new astronaut transporter for NASA. Credit: SpaceX
Meet Dragon V2 – SpaceX CEO Elon pulls the curtain off manned Dragon V2 on May 29, 2014 for worldwide unveiling of SpaceX’s new astronaut transporter for NASA. Credit: SpaceX

Although much has been accomplished since NASA’s commercial crew program started in 2010, much more remains to be done before NASA will approve these launches.

“The next generation of American spacecraft and rockets that will launch astronauts to the International Space Station are nearing the final stages of development and evaluation,” said NASA KSC public affairs officer Stephanie Martin.

Above all both of the commercial crew providers – namely Boeing and SpaceX – must demonstrate safe, reliable and robust spacecraft and launch systems.

“NASA’s Commercial Crew Program will return human spaceflight launches to U.S. soil, providing reliable and cost-effective access to low-Earth orbit on systems that meet our safety and mission requirements. To meet NASA’s requirements, the commercial providers must demonstrate that their systems are ready to begin regular flights to the space station.”

SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL,  on Sept. 1, 2016.  A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport
SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL, on Sept. 1, 2016. A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport

These latest launch delays come on top of other considerable delays announced earlier this year when SpaceX has still hoping to launch the unpiloted Crew Dragon mission before the end of 2016 – prior to the Sept 1 launch pad catastrophe.

“We are finalizing the investigation of our Sept. 1 anomaly and are working to complete the final steps necessary to safely and reliably return to flight,” Larson told me.

“As this investigation has been conducted, our Commercial Crew team has continued to work closely with NASA and is completing all planned milestones for this period.”

SpaceX is still investigating the root causes of the Sept. 1 anomaly, working on fixes and implementing any design changes – as well as writing the final report that must be submitted to the FAA, before they can launch the planned ‘Return to Flight’ mission from their California launch pad at Vandenberg Air Force Base.

No launch can occur until the FAA grants a license after fully assessing the SpaceX anomaly report.

Last week SpaceX announced a delay in resuming launches at Vandenberg until no earlier than January 2017.

“We are carefully assessing our designs, systems, and processes taking into account the lessons learned and corrective actions identified. Our schedule reflects the additional time needed for this assessment and implementation,” Larson elaborated.

Launch of SpaceX Falcon 9 carrying JCSAT-16 Japanese communications satellite to orbit on Aug. 14, 2016 at 1:26 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com
Launch of SpaceX Falcon 9 carrying JCSAT-16 Japanese communications satellite to orbit on Aug. 14, 2016 at 1:26 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

Boeing has likewise significantly postponed their debut unpiloted and piloted launches of their CST-100 Starliner astronaut space taxi by more than six months this year alone.

The first crewed Boeing Starliner is now slated for a launch in August 2018, possibly several months after SpaceX. But the schedules keep changing so it’s anyone’s guess as to when these commercial crew launches will actually occur.

Another big issue that has cropped up since the Sept. 1 pad disaster, regards the procedures and timing for fueling the Falcon 9 rocket with astronauts on board. SpaceX is proposing to load the propellants with the crew already on board, unlike the practice of the past 50 years where the astronauts climbed aboard after the extremely dangerous fueling operation was completed.

SpaceX proposes this change due to their recent use of superchilled liquid oxygen and resulting new operational requirement to fuel the rocket in the last 30 minutes prior to liftoff.

Although a SpaceX hazard report outlining these changes was approved by NASA’s Safety Technical Review Board in July 2016, an objection was raised by former astronaut Maj. Gen. Thomas Stafford and the International Space Station Advisory Committee.

“SpaceX has designed a reliable fueling and launch process that minimizes the duration and number of personnel exposed to the hazards of launching a rocket,” Larson explained.

“As part of this process, the crew will safely board the Crew Dragon, ground personnel will depart, propellants will be carefully loaded and then the vehicle will launch. During this time the Crew Dragon launch abort system will be enabled.”

SpaceX says they have performed a detailed safety analysis with NASA of all potential hazards with this process.

“The hazard report documenting the controls was approved by NASA’s Safety Technical Review Board in July 2016.”

SpaceX representatives recently met with Stafford and the ISS review board to address their concerns, but the outcome and whether anything was resolved is not known.

“We recently met with Maj. Gen. Stafford and the International Space Station Advisory Committee to provide them detailed information on our approach and answer a number of questions. SpaceX and NASA will continue our ongoing assessment while keeping the committee apprised of our progress,” Larson explained.

The Falcon 9 fueling procedure issue relating to astronaut safety must be satisfactorily resolved before any human launch with Dragon can take place, and will be reported on further here.

Whenever the Crew Dragon does fly it will launch from the Kennedy Space Center (KSC) at Launch Complex 39A – the former shuttle launch pad which SpaceX has leased from NASA.

SpaceX is renovating Launch Complex 39A at the Kennedy Space Center for launches of the Falcon Heavy and human rated Falcon 9.  Credit: Ken Kremer/kenkremer.com
SpaceX is renovating Launch Complex 39A at the Kennedy Space Center for launches of the Falcon Heavy and human rated Falcon 9. Credit: Ken Kremer/kenkremer.com

SpaceX is currently renovating pad 39A for launches of manned Falcon 9/Dragon missions. And the firm has decided to use it for commercial missions as well while pad 40 is repaired following the pad accident.

This week a Falcon 9 first stage was spotted entering Cape Canaveral to prepare for an upcoming launch.

SpaceX Falcon 9 first stage arrives at Cape Canaveral Air Force Station on Dec. 12, 2016 for launch sometime in 2017. Credit: Julian Leek
SpaceX Falcon 9 first stage arrives at Cape Canaveral Air Force Station on Dec. 12, 2016 for launch sometime in 2017. Credit: Julian Leek

Getting our astronauts back to space with home grown technology is proving to be far more difficult and time consuming than anyone anticipated – despite the relative simplicity of developing capsule-like vehicles vs. NASA’s highly complex and hugely capable Space Shuttle vehicles.

And time is of the essence for the commercial crew program.

Because for right now, the only path to the ISS for all American astronauts is aboard a Russian Soyuz capsule through seats purchased by NASA – at about $82 million each. But NASA’s contract with Roscosmos for future flight opportunities runs out at the end of 2018. So there is barely a few months margin left before the last available contracted seat is taken.

It takes about 2 years lead time for Russia to build the Soyuz and NASA is not planning to buy any new seats.

So any further delays to SpaceX or Boeing could result in an interruption of US and partner flights to the ISS in 2019 – which is primarily American built.

Exterior of the Crew Dragon capsule. Credit: SpaceX.
Exterior of the Crew Dragon capsule. Credit: SpaceX.

Since its inception, the commercial crew program has been severely and shortsightedly underfunded by the US Congress. They have repeatedly cut the Administration’s annual budget requests, delaying forward progress and first crewed flights from 2015 to 2018, and forcing NASA to buy additional Soyuz seats from Russia at a cost of hundreds of millions of dollars.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Hydraulic Pump Glitch Aborts NASA’s Hurricane MicroSat Fleet Launch to Dec. 15 – Live Coverage

An Orbital ATK L-1011 “Stargazer” aircraft carrying a Pegasus XL rocket with NASA’s CYGNSS spacecraft takes off from the Skid Strip at Cape Canaveral Air Force Station, Florida on Dec. 12, 2016. Credit: Ken Kremer/kenkremer.com
An Orbital ATK L-1011 “Stargazer” aircraft carrying a Pegasus XL rocket with NASA’s CYGNSS spacecraft takes off from the Skid Strip at Cape Canaveral Air Force Station, Florida on Dec. 12. Credit: Ken Kremer/kenkremer.com
An Orbital ATK L-1011 “Stargazer” aircraft carrying a Pegasus XL rocket with NASA’s CYGNSS spacecraft takes off from the Skid Strip at Cape Canaveral Air Force Station, Florida on Dec. 12, 2016. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – Monday’s (Dec. 12) planned launch of NASA’s innovative Cyclone Global Navigation Satellite System (CYGNSS) hurricane microsatellite fleet was aborted when a pump in the hydraulic system that releases the Pegasus air-launch booster from its L-1011 carrier aircraft failed in flight. UPDATE: launch delayed to Dec 15, story revised

NASA and Orbital ATK confirmed this afternoon that the launch of the Orbital ATK commercial Pegasus-XL rocket carrying the CYGNSS small satellite constellation has been rescheduled again to Thursday, Dec. 15 at 8:26 a.m. EST from a drop point over the Atlantic Ocean.

Late last night the launch was postponed another day from Dec. 14 to Dec. 15 to solve a flight parameter issue on the CYGNSS spacecraft. New software was uploaded to the spacecraft that corrected the issue, NASA officials said.

“NASA’s launch of CYGNSS spacecraft is targeted for Thursday, Dec. 15,” NASA announced.

“We are go for launch of our #Pegasus rocket carrying #CYGNSS tomorrow, December 15 from Cape Canaveral Air Force Station,” Orbital ATK announced.

An Orbital ATK L-1011 “Stargazer” aircraft carrying a Pegasus XL rocket with NASA’s CYGNSS spacecraft takes off from the Skid Strip at Cape Canaveral Air Force Station, Florida on Dec. 12. Credit: Ken Kremer/kenkremer.com
An Orbital ATK L-1011 “Stargazer” aircraft carrying a Pegasus XL rocket with NASA’s CYGNSS spacecraft takes off from the Skid Strip at Cape Canaveral Air Force Station, Florida on Dec. 12. Credit: Ken Kremer/kenkremer.com

“The CYGNSS constellation consists of eight microsatellite observatories that will measure surface winds in and near a hurricane’s inner core, including regions beneath the eyewall and intense inner rainbands that previously could not be measured from space,” according to a NASA factsheet.

Despite valiant efforts by the flight crew to restore the hydraulic pump release system to operation as the L-1011 flew aloft near the Pegasus drop zone, they were unsuccessful before the launch window ended and the mission had to be scrubbed for the day by NASA Launch Director Tim Dunn.

The Pegasus/CYGNSS vehicle is attached to the bottom of the Orbital ATK L-1011 Stargazer carrier aircraft.

Orbital ATK L-1011 “Stargazer” aircraft carrying a Pegasus XL rocket with NASA’s CYGNSS spacecraft takes off from the Skid Strip at Cape Canaveral Air Force Station, Florida on Dec. 12, 2016. Credit: Ken Kremer/kenkremer.com
Orbital ATK L-1011 “Stargazer” aircraft carrying a Pegasus XL rocket with NASA’s CYGNSS spacecraft takes off from the Skid Strip at Cape Canaveral Air Force Station, Florida on Dec. 12, 2016. Credit: Ken Kremer/kenkremer.com

The hydraulic release system passed its pre-flight checks before takeoff of the Stargazer.

“Launch of the Pegasus rocket was aborted due to an issue with the launch vehicle release on the L-1011 Stargazer. The hydraulic release system operates the mechanism that releases the Pegasus rocket from the carrier aircraft. The hydraulic system functioned properly during the pre-flight checks of the airplane,” said NASA.

A replacement hydraulic pump system component was flown in from Mojave, California, and successfully installed and checked out. Required crew rest requirements were also met.

Technician works on Orbital ATK Pegasus XL rocket with NASA's CYGNSS payload on board on Dec. 10, 2016 in this rear side view showing the first stage engine. They are mated to the bottom of the Orbital ATK L-1011 Stargazer aircraft at the Skid Strip at Cape Canaveral Air Force Station in Florida.  Launch is slated for Dec. 12, 2016.  Credit: Ken Kremer/kenkremer.com
Technician works on Orbital ATK Pegasus XL rocket with NASA’s CYGNSS payload on board on Dec. 10, 2016 in this rear side view showing the first stage engine. They are mated to the bottom of the Orbital ATK L-1011 Stargazer aircraft at the Skid Strip at Cape Canaveral Air Force Station in Florida. Launch is slated for Dec. 12, 2016. Credit: Ken Kremer/kenkremer.com

The one-hour launch window opens at 8:20 a.m and the actual deployment of the rocket from the L-1011 Tristar is timed to occur 5 minutes into the window at 8:26 a.m.

NASA’s Pegasus/CYGNUS launch coverage and commentary will be carried live on NASA TV – beginning at 7 a.m. EDT

You can watch the launch live on NASA TV at – http://www.nasa.gov/nasatv

Live countdown coverage on NASA’s Launch Blog begins at 6:30 a.m. Dec. 15.

Coverage will include live updates as countdown milestones occur, as well as video clips highlighting launch preparations and the flight.

A prelaunch program by NASA EDGE will begin at 6 a.m.

NASA’s Kennedy Space Center is also providing live coverage on social media at:

http://www.twitter.com/NASAKennedy

https://www.facebook.com/NASAKennedy

Orbital ATK is also providing launch and mission update at:
twitter.com/OrbitalATK

The weather forecast from the Air Force’s 45th Weather Squadron at Cape Canaveral has significantly increased to predicting a 90% chance of favorable conditions on Thursday, Dec. 15.

The primary weather concerns are for flight cumulus clouds.

The Pegasus rocket cannot fly through rain or clouds due to a negative impact and possible damage on the rocket’s thermal protection system (TPS).

In the event of a delay, the range is also reserved for Friday, Dec. 16 where the daily outlook remains at a 90% chance of favorable weather conditions.

Rear view into the first stage engine of Orbital ATK Pegasus XL rocket that will launch NASA's CYGNSS experimental hurricane observation payload on Dec. 14, 2016. They are mated to the bottom of the Orbital ATK L-1011 Stargazer aircraft at the Skid Strip at Cape Canaveral Air Force Station in Florida.  Credit: Ken Kremer/kenkremer.com
Rear view into the first stage engine of Orbital ATK Pegasus XL rocket that will launch NASA’s CYGNSS experimental hurricane observation payload on Dec. 14, 2016. They are mated to the bottom of the Orbital ATK L-1011 Stargazer aircraft at the Skid Strip at Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

After Stargazer takes off from the Skid Strip early Thursday around 6:30 a.m. EST, it will fly north to a designated drop point box about 126 miles east of Daytona Beach, Florida over the Atlantic Ocean. The crew can search for a favorable launch point if needed, just as they did Monday morning.

The drop box point measures about 40-miles by 10-miles (64-kilometers by 16-kilometers). The flight crew flew through the drop box twice on Monday, about a half an hour apart, as they tried to repair the hydraulic system by repeatedly cycling it on and off and sending commands.

“It was not meeting the prescribed launch release pressures, indicating a problem with the hydraulic pump,” said NASA CYGNSS launch director Tim Dunn.

“Fortunately, we had a little bit of launch window to work with, so we did a lot of valiant troubleshooting in the air. As you can imagine, everyone wanted to preserve every opportunity to have another launch attempt today, so we did circle around the race once, resetting breakers on-board the aircraft, doing what we could in flight to try to get that system back into function again.”

The rocket will be dropped for a short freefall of about 5 seconds to initiate the launch sewuence. It launches horizontally in midair with ignition of the first stage engine burn, and then tilts up to space to begin the trek to LEO.

Here’s a schematic of key launch events:

Schematic of Orbital ATK L-1011 aircraft and Pegasus XL rocket air drop launch of NASA’s CYGNSS microsatellite fleet.  Credit: Orbital ATK
Schematic of Orbital ATK L-1011 aircraft and Pegasus XL rocket air drop launch of NASA’s CYGNSS microsatellite fleet. Credit: Orbital ATK

The $157 million fleet of eight identical spacecraft comprising the Cyclone Global Navigation Satellite System (CYGNSS) system will be delivered to low Earth orbit by the Orbital ATK Pegasus XL rocket.

The nominal mission lifetime for CYGNSS is two years but the team says they could potentially last as long as five years or more if the spacecraft continue functioning.

Artist's concept of the deployment of the eight Cyclone Global Navigation Satellite System (CYGNSS) microsatellite observatories in space.  Credits: NASA
Artist’s concept of the deployment of the eight Cyclone Global Navigation Satellite System (CYGNSS) microsatellite observatories in space. Credits: NASA

Pegasus launches from the Florida Space Coast are infrequent. The last once took place over 13 years ago in April 2003 for the GALEX mission.

Typically they take place from Vandenberg Air Force Base in California or the Reagan Test Range on the Kwajalein Atoll.

CYGNSS counts as the 20th Pegasus mission for NASA.

The CYGNSS spacecraft were built by Southwest Research Institute in San Antonio, Texas. Each one weighs approx 29 kg. The deployed solar panels measure 1.65 meters in length.

The solar panels measure 5 feet in length and will be deployed within about 15 minutes of launch.

The Orbital ATK L-1011 Stargazer aircraft at the Skid Strip at Cape Canaveral Air Force Station in Florida. Attached beneath the Stargazer is the Orbital ATK Pegasus XL with NASA's CYGNSS payload on board, being processed for launch on Dec. 12, 2016.  Credit: Ken Kremer/kenkremer.com
The Orbital ATK L-1011 Stargazer aircraft at the Skid Strip at Cape Canaveral Air Force Station in Florida. Attached beneath the Stargazer is the Orbital ATK Pegasus XL with NASA’s CYGNSS payload on board, being processed for launch on Dec. 12, 2016. Credit: Ken Kremer/kenkremer.com

The Space Physics Research Laboratory at the University of Michigan College of Engineering in Ann Arbor leads overall mission execution in partnership with the Southwest Research Institute in San Antonio, Texas.

The Climate and Space Sciences and Engineering Department at the University of Michigan leads the science investigation, and the Earth Science Division of NASA’s Science Mission Directorate oversees the mission.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Martian Mineral Points Toward Past Habitability

Curiosity picture showing color variations on Mount Sharp, Mars. Credit: NASA/JPL

For over a year, the Curiosity rover has been making its way up the slopes of Mount Sharp, the central peak within the Gale Crater. As the rover moves higher along this formation, it has been taking drill samples so that it might look into Mars’ ancient past. Combined with existing evidence that water existed within the crater, this would have provided favorable conditions for microbial life.

And according to the most recent findings announced by the Curiosity science team, the upper levels of the mountain are rich in minerals that are not found at the lower levels. These findings reveal much about how the Martian environment has changed over the past few billion years, and are further evidence that Mars may have once been habitable.

The findings were presented at the Fall meeting of the American Geophysical Union (AGU), which began on Monday, Dec. 12th, in San Fransisco. During the meeting, John Grotzinger – the Fletcher Jones Professor of Geology at Caltech and the former Project Scientist for the Curiosity mission – and other members of Curiosity’s science team shared what the rover discovered while digging into mineral veins located in the higher, younger layers of Mount Sharp.

This pair of drawings depicts the same location at Gale Crater on at two points in time: now and billions of years ago. Water moving beneath the ground, as well as water above the surface in ancient rivers and lakes, provided favorable conditions for microbial life, if Mars has ever hosted life. Credit: NASA/JPL-Caltech
Artist’s illustration showing the Gale Crater as it appears today, with the Curiosity rover climbing Mount Sharp. Credit: NASA/JPL-Caltech

To put it simply, mineral veins are a great way to study the movements of water in an area. This is due to the fact that veins are the result of cracks in layered rock being filled with chemicals that are dissolved in water – a process which alters the chemistry and composition of rock formations. What the rover found was that at higher layers hematite, clay minerals and boron are more abundant than what has been observed at lower, older layers.

These latest findings paint a complex picture of the region, where groundwater interactions led to clay-bearing sediments and diverse minerals being deposited over time. As Grotzinger explained, this kind of situation is favorable as far as habitability is concerned:

“There is so much variability in the composition at different elevations, we’ve hit a jackpot. A sedimentary basin such as this is a chemical reactor. Elements get rearranged. New minerals form and old ones dissolve. Electrons get redistributed. On Earth, these reactions support life.”

At present, no evidence has been found that microbial life actually existed on Mars in the past. However, since it first landed back in 2012, the Curiosity mission has uncovered ample evidence that conditions favorable to life existed billions of years ago. This is possible thanks to the fact that Mount Sharp consists of layered sedimentary deposits, where each one is younger than the one beneath it.

The Gale Crater, billions of years ago, showing how the circulation of groundwater led to chemical changes and deposits. Credit: NASA/JPL-Caltech
The Gale Crater, billions of years ago, showing how the circulation of groundwater led to chemical changes and deposits. Credit: NASA/JPL-Caltech

These sedimentary layers act as a sort of geological and environmental record for Mars; and by digging into them, scientists are able to get an idea of what Mars’ early history looked like. In the past, Curiosity spent many years digging around in the lower layers, where it found evidence of liquid water and all the key chemical ingredients and energy needed for life.

Since that time, Curiosity has climbed higher along Mount Sharp and examined younger layers, the purpose of which has been to reconstruct how the Martian environment changed over time. As noted, the samples Curiosity recently obtained showed greater amounts of hematite, clay minerals and boron. All of these provide very interesting clues as to what kinds of changes took place.

For instance, compared to previous samples, hematite was the most dominant iron oxide mineral detected, compared to magnetite (which is a less-oxidized form of iron oxide). The presence of hematite, which increases with distance up the slope of Mount Sharp, suggests both warmer conditions and more interaction with the atmosphere at higher levels.

The increasing concentration of this minerals – relative to magnetite at lower levels – also indicates that environmental changes have occurred where the oxidation of iron increased over time. This process, in which more electrons are lost via chemical exchanges, can provide the energy necessary for life.

Credit: NASA/JPL
Hi-resolution pictures showing the Curiosity rover’s various drilling sites, up until Nov. 2016. Credit: NASA/JPL

In addition, Curiosity’s Chemistry and Camera (ChemCam) instrument has also noted increased (but still minute)) levels of borons within veins composed primarily of calcium sufate. On Earth, boron is associated with arid sites where water has evaporated, and its presence on Mars was certainly unexpected. No previous missions have ever detected it, and the environmental implications of it being present in such tiny amounts are unclear.

On the one hand, it is possible that evaporation within the lake bed created a boron-deposit deeper inside Mount Sharp. The movement of groundwater within could have then dissolved some of this, redepositing trace amounts at shallower levels where Curiosity was able to reach it. On the other hand, it could be that changes in the chemistry of clay-bearing deposits affected how boron was absorbed by groundwater and then redeposited.

Either way, the differences in terms of the composition of upper and lower levels in the Gale Crater creates a very interesting picture of how the local environment changed over time:

“Variations in these minerals and elements indicate a dynamic system. They interact with groundwater as well as surface water. The water influences the chemistry of the clays, but the composition of the water also changes. We are seeing chemical complexity indicating a long, interactive history with the water. The more complicated the chemistry is, the better it is for habitability. The boron, hematite and clay minerals underline the mobility of elements and electrons, and that is good for life.”

It seems that with every discovery, the long history of “Earth’s Twin” is becoming more accessible, yet more mysterious. The more we learn about it past and how it came to be the cold, desiccated place we know today, the more we want to know!

Further Reading: NASA

Hubble Watches Spinning Black Hole Swallow a Star

Close-up of star near a supermassive black hole (artist’s impression). Credit: ESA/Hubble, ESO, M. Kornmesser

In 2015, the All-Sky Automated Survey for Supernovae (aka. ASAS-SN, or Assassin) detected something rather brilliant in a distant galaxy. At the time, it was thought that the event (named ASASSN-15lh) was a superluminous supernova – an extremely bright explosion caused by a massive star reaching the end of its lifepsan. This event was thought to be brightest supernova ever witnessed, being twice as bright as the previous record-holder.

But new observations provided by an international team of astronomers have provided an alternative explanation that is even more exciting. Relying on data from several observatories – including the NASA/ESA Hubble Space Telescope – they have proposed that the source was a star being ripped apart by a rapidly spinning black hole, an event which is even more rare than a superluminous supernova.

According to the ASAS-SN’s findings – which were published in January of 2016 in Science – the superluminous light source appeared in a galaxy roughly 4 billion light-years from Earth. The luminous source was twice as bright as the brightest superluminous supernova observed to date, and its peak luminosity was 20 times brighter than the total light output of the entire Milky Way.

Credit: ESA/Hubble, ESO, M. Kornmesser
This artist’s impression depicts a rapidly spinning supermassive black hole surrounded by an accretion disc. Credit: ESA/Hubble, ESO, M. Kornmesse

What seemed odd about it was the fact that the superluminous event appeared within a massive, red (i.e. “quiescent”) galaxy, where star formation has largely ceased. This was in contrast to most super-luminous supernovae that have been observed in the past, which are typically located in blue, star-forming dwarf galaxies. In addition, the star (which is Sun-like in size) is not nearly massive enough to become an extreme supernova.

As such, the international team of astronomers – led by Giorgos Leloudas of the Weizmann Institute of Science in Israel and the Dark Cosmology Center in Denmark – conducted follow-up observations using space-based and Earth-based observatories. These included the Hubble Space Telescope, the Very Large Telescope (VLT) at the ESO’s Paranal Observatory and the New Technology Telescope (NTT) at the La Silla Observatory.

With information from these facilities, they arrived at a much different conclusion. As Dr. Leloudas explained in a Hubble press release:

“We observed the source for 10 months following the event and have concluded that the explanation is unlikely to lie with an extraordinary bright supernova. Our results indicate that the event was probably caused by a rapidly spinning supermassive black hole as it destroyed a low-mass star.”

The process is colloquially known as “spaghettification”, where an object is ripped apart by the extreme tidal forces of a black hole. In this case, the team postulated that the star drifted too close to the supermassive black hole (SMBH) at the center of the distant galaxy. The resulting heat and the shocks created by colliding debris led to a massive burst of light – which was mistakenly believed to be a very bright supernova.

Multiple lines of evidence support this theory. As they explain in their paper, this included the fact that over the ten-months that they observed it, the star went through three distinct spectroscopic phases. This included a period of substanial re-brightening, where the star emitted a burst of UV light that accorded with a sudden increase in its temperature.

Combined with the unlikely location and the mass of the star, this all pointed towards tidal disruption rather than a massive supernova event. But as Dr. Leloudas admits, they cannot be certain of this just yet. “Even with all the collected data we cannot say with 100% certainty that the ASASSN-15lh event was a tidal disruption event.” he said. “But it is by far the most likely explanation.”

As always, additional observations are necessary before anyone can say for sure what caused this record-breaking luminous event. But in the meantime, the mere fact that something so rare was witnessed should be enough to cause some serious excitement! Speaking of which, be sure to check out the simulation videos (above and below) to see what such an event would look like:

Further Reading: Hubble Space Telescope