And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.
The study of Mars’ surface and atmosphere has unlocked some ancient secrets. Thanks to the efforts of the Curiosity rover and other missions, scientists are now aware of the fact that water once flowed on Mars and that the planet had a denser atmosphere. They have also been able to deduce what mechanics led to this atmosphere being depleted, which turned it into the cold, desiccated environment we see there today.
At the same time though, it has led to a rather intriguing paradox. Essentially, Mars is believed to have had warm, flowing water on its surface at a time when the Sun was one-third as warm as it is today. This would require that the Martian atmosphere had ample carbon dioxide in order to keep its surface warm enough. But based on the Curiosity rover’s latest findings, this doesn’t appear to be the case.
These findings were part of an analysis of data taken by the Curiosity’s Chemistry and Mineralogy X-ray Diffraction (CheMin) instrument, which has been used to study the mineral content of drill samples in the Gale Crater. The results of this analysis were recently published in Proceedings of the National Academy of Science, where the research team indicated that no traces of carbonates were found in any samples taken from the ancient lake bed.
To break it down, evidence collected by Curiosity (and a slew of other rovers, landers and orbiters) has led scientists to conclude that roughly 3.5 billion years ago, Mars surface had lakes and flowing rivers. They have also determined, thanks to the many samples taken by Curiosity since it landed in the Gale Crater in 2011, that this geological feature was once a lake bed that gradually became filled with sedimentary deposits.
However, for Mars to have been warm enough for liquid water to exist, its atmosphere would have had to contain a certain amount of carbon dioxide – providing a sufficient Greenhouse Effect to compensate for the Sun’s diminished warmth. Since rock samples in the Gale Crater act as a geological record for what conditions were like billions of years ago, they would surely contain plenty of carbonate minerals if this were the case.
Carbonates are minerals that result from carbon dioxide combining with positively charged ions (like magnesium and iron) in water. Since these ions have been found to be in good supply in samples of Martian rock, and subsequent analysis has shown that conditions never became acidic to the point that the carbonates would have dissolved, there is no apparent reason why they wouldn’t be showing up.
Along with his team, Thomas Bristow – the principal investigator for the CheMin instrument on Curiosity – calculated what the minimum amount of atmospheric carbon dioxide would need to be, and how this would have been indicated by the levels of carbonate found in Martian rocks today. They then sorted through the years worth of the CheMin instrument’s data to see if there were any indications of these minerals.
But as he explained in a recent NASA press release, the findings simply didn’t measure up:
“We’ve been particularly struck with the absence of carbonate minerals in sedimentary rock the rover has examined. It would be really hard to get liquid water even if there were a hundred times more carbon dioxide in the atmosphere than what the mineral evidence in the rock tells us.”
In the end, Bristow and his team could not find even trace amounts of carbonates in the rock samples they analyzed. Even if just a few tens of millibars of carbon dioxide had been present in the atmosphere when a lake existed in the Gale Crater, it would have produced enough carbonates for Curiosity’s CheMin to detect. This latest find adds to a paradox that has been plaguing Mars researchers for years.
Basically, researchers have noted that there is a serious discrepancy between what surface features indicate about Mars’ past, and what chemical and geological evidence has to say. Not only is there plenty of evidence that the planet had a denser atmosphere in the past, more than four decades of orbital imaging (and years worth of surface data) have yielded ample geomorphological evidence that Mars once had surface water and an active hydrological cycle.
However, scientists are still struggling to produce models that show how the Martian climate could have maintained the types of conditions necessary for this to have been the case. The only successful model so far has been one in which the atmosphere contained a significant amount of CO2 and hydrogen. Unfortunately, an explanation for how this atmosphere could be created and sustained remains elusive.
In addition, the geological and chemical evidence for such a atmosphere existing billions of years ago has also been in short supply. In the past, surveys by orbiters were unable to find evidence of carbonate minerals on the surface of Mars. It was hoped that surface missions, like Curiosity, would be able to resolve this by taking soil and drill samples where water had been known to exist.
But as Bristow explained, his team’s study has effectively closed the door on this:
“It’s been a mystery why there hasn’t been much carbonate seen from orbit. You could get out of the quandary by saying the carbonates may still be there, but we just can’t see them from orbit because they’re covered by dust, or buried, or we’re not looking in the right place. The Curiosity results bring the paradox to a focus. This is the first time we’ve checked for carbonates on the ground in a rock we know formed from sediments deposited under water.”
There are several possible explanations for this paradox. On the one hand, some scientists have argued that the Gale Crater Lake may not have been an open body of water and was perhaps covered in ice, which was just thin enough to still allow for sediments to get in. The problem with this explanation is that if this were true, there would be discernible indications left behind – which would include deep cracks in the soft sedimentary lakebed rock.
But since these indications have not been found, scientists are left with two lines of evidence that do not match up. As Ashwin Vasavada, Curiosity’s Project Scientist, put it:
“Curiosity’s traverse through streambeds, deltas, and hundreds of vertical feet of mud deposited in ancient lakes calls out for a vigorous hydrological system supplying the water and sediment to create the rocks we’re finding. Carbon dioxide, mixed with other gases like hydrogen, has been the leading candidate for the warming influence needed for such a system. This surprising result would seem to take it out of the running.”
Luckily, incongruities in science are what allow for new and better theories to be developed. And as the exploration of the Martian surface continues – which will benefit from the arrival of the ExoMars and the Mars 2020missions in the coming years – we can expect additional evidence to emerge. Hopefully, it will help point the way towards a resolution for this paradox, and not complicate our theories even more!
During its long mission to Saturn, the Cassini spacecraft has given us image after spectacular image of Saturn, its rings, and Saturn’s moons. The images of Saturn’s moon Enceladus are of particular interest when it comes to the search for life.
At first glance, Enceladus appears similar to other icy moons in our Solar System. But Cassini has shown us that Enceladus could be a cradle for extra-terrestrial life.
Our search for life in the Solar System is centred on the presence of liquid water. Maybe we don’t know for sure if liquid H2O is required for life. But the Solar System is huge, and the effort required to explore it is immense. So starting our search for life with the search for liquid water is wise. And in the search for liquid water, Enceladus is a tantalizing target.
Though Enceladus looks every bit like a frozen, lifeless world on its surface, it’s what lies beneath its frigid crust that is exciting. Enceladus appears to have a subsurface ocean, at least in it’s south polar region. And that ocean may be up to 10 km. deep.
Before we dive into that, (sorry), here are a few basic facts about Enceladus:
Enceladus is Saturn’s sixth largest moon
Enceladus is about 500 km in diameter (Earth’s Moon is 3,474 km in diameter)
Enceladus was discovered in 1789 by William Herschel
Enceladus is one of the most reflective objects in our Solar System, due to its icy surface
In 2005, Cassini first spied plumes of frozen water vapor erupting from the southern polar region. Called cryovolcanoes, subsequent study of them determined that they are the likely source of Saturn’s E Ring. The existence of these plumes led scientists to suspect that their source was a sub-surface ocean under Enceladus’ ice crust.
Finding plumes of water erupting from a moon is one thing, but it’s not just water. It’s salt water. Further study showed that the plumes also contained simple organic compounds. This advanced the idea that Enceladus could harbor life.
The geysers aren’t the only evidence for a sub-surface ocean on Enceladus. The southern polar region has a smooth surface, unlike the rest of the moon which is marked with craters. Something must have smoothed that surface, since it is next to impossible that the south polar region would be free from impact craters.
In 2005, Cassini detected a warm region in the south, much warmer than could be caused by solar radiation. The only conclusion is that Enceladus has a source of internal heating. That internal heat would create enough geologic activity to erase impact craters.
So now, two conditions for the existence of life have been met: liquid water, and heat.
The source of the heat on Enceladus was the next question facing scientists. That question is far from settled, and there could be several sources of heat operating together. Among all the possible sources for the heat, two are most intriguing when it comes to the search for life: tidal heating, and radioactive heating.
Tidal heating is a result of rotational and orbital forces. In Enceladus’ case, these forces cause friction which is dissipated as heat. This heat keeps the sub-surface ocean in liquid form, but doesn’t prevent the surface from freezing solid.
Radioactive heating is caused by the decay of radioactive isotopes. If Enceladus started out as a rocky body, and if it contained enough short-lived isotopes, then an enormous amount of heat would be produced for several million years. That action would create a rocky core surrounded by ice.
Then, if enough long-lived radioactive isotopes were present, they would continue producing heat for a much longer period of time. However, radioactive heating isn’t enough on its own. There would have to be tidal heating also.
More evidence for a large, sub-surface ocean came in 2014. Cassini and the Deep Space Network provided gravitometric measurements showing that the ocean is there. Those measurements showed that there is likely a regional, if not global, ocean some 10 km thick. Measurements also showed that the ocean is under an ice layer 30 to 40 km thick.
The discovery of a warm, salty ocean containing organic molecules is very intriguing, and has expanded our idea of what the habitable zone might be in our Solar System, and in others. Enceladus is much too distant from the Sun to rely on solar energy to sustain life. If moons can provide their own heat through tidal heating or radioactive heating, then the habitable zone in any solar system wouldn’t be determined by proximity to the star or stars at the centre.
Cassini’s mission is nearing its end, and it won’t fly by Enceladus again. It’s told us all it can about Enceladus. It’s up to future missions to expand our understanding of Enceladus.
Numerous missions have been talked about, including two that suggest flying through the plumes and sampling them. One proposal has a sample of the plumes being returned to Earth for study. Landing on Enceladus and somehow drilling through the ice remains a far-off idea better left to science fiction, at least for now.
Whether or not Enceladus can or does harbor life is a question that won’t be answered for a long time. In fact, not all scientists agree that there is a liquid ocean there at all. But whether it does or doesn’t harbor life, Cassini has allowed us to enjoy the tantalizing beauty of that distant object.
KENNEDY SPACE CENTER, FL – With liftoff tentatively penciled in for mid-February, SpaceX still awaits FAA approval of a launch license for what will be the firms first Falcon 9 rocket to launch from historic pad 39A at the Kennedy Space Center – on a critical NASA mission to resupply the space station – the Federal Aviation Administration (FAA) confirmed today to Universe Today.
“The FAA is working closely with SpaceX to ensure the activity described in the application meets all applicable regulations for a launch license,” FAA spokesman Hank Price confirmed to Universe Today.
As of today, Feb. 7, SpaceX has not yet received “a license determination” from the FAA – as launch vehicle, launch pad and payload preparations continue moving forward for blastoff of the NASA contracted flight to carry science experiments and supplies to the International Space Station (ISS) aboard a SpaceX cargo Dragon atop an upgraded SpaceX Falcon 9 rocket from Launch Complex 39A on the Florida Space Coast.
“The FAA will continue to work with SpaceX to provide a license determination in a timely manner,” Price told me.
SpaceX currently has license applications pending with the FAA for both the NASA cargo launch and pad 39A. No commercial launch can take place without FAA approval.
The goal of the 22-story tall SpaceX Falcon 9 is to carry an unmanned Dragon cargo freighter for the NASA customer on the CRS-10 resupply mission to the International Space Station (ISS).
Dragon will be loaded with more than two tons of equipment, gear, food, supplies and NASA’s Stratospheric Aerosol Gas Experiment III (SAGE III) ozone mapping science payload.
The historic NASA launch pad was formerly used to launch both America’s space shuttles and astronauts on Apollo/Saturn V moon landing missions.
SpaceX, founded by billionaire CEO Elon Musk, leased Launch Complex 39A from NASA back in April 2014 and is modifying and modernizing the pad for unmanned and manned launches of the Falcon 9 as well as the Falcon Heavy.
The role of the FAA is to license commercial launches and protect the public.
“The FAA licenses commercial rocket launches and reentries to ensure the protection of public health and safety,” Price elaborated.
Last week SpaceX announced a shuffled launch schedule, whereby the NASA cargo flight on the CRS-10 resupply mission was placed first in line for liftoff from pad 39A – ahead of a commercial EchoStar communications satellite.
The aerospace company said the payload switch would allow additional time was to complete all the extensive ground support work and pad testing required for repurposing seaside Launch Complex 39A from launching the NASA Space Shuttle to the SpaceX Falcon 9.
The inaugural Falcon 9 blastoff from pad 39A has slipped repeatedly from January into February 2017.
The unofficial most recently targeted ‘No Earlier Than’ NET date for CRS-10 has apparently slipped from NET Feb 14 to Feb 17.
CRS-10 counts as SpaceX’s tenth cargo flight to the ISS since 2012 under contract to NASA.
Further launch postponements are quite possible at any time and NASA is officially stating a goal of “NET mid-February” – but with no actual target date specified.
Crews have been working long hours to transform and refurbish pad 39A and get it ready for Falcon 9 launches. Furthermore, a newly built transporter erector launcher was seen raised at the pad multiple times in recent weeks. The transporter will move the rocket horizontally up the incline at the pad, and then erect it vertically for launch.
SpaceX was previously employing pad 40 on Cape Canaveral Air Force Station for Falcon 9 launches to the ISS as well as commercial launches.
But pad 40 suffered severe damage following the unexpected launch pad explosion on Sept 1, 2016 that completely destroyed a Falcon 9 and the $200 million Amos-6 commercial payload during a prelaunch fueling test.
Furthermore it is not known when pad 40 will be ready to resume launches.
Thus SpaceX has had to switch launch pads for near term future flights and press pad 39A into service much more urgently, and the refurbishing and repurposing work is not yet complete.
Pad 39A has lain dormant for launches for nearly six years since Space Shuttle Atlantis launched on the final shuttle mission STS 135 in July 2011.
To date SpaceX has not rolled a Falcon 9 rocket to pad 39A, not raised it to launch position, not conducted a fueling exercise and not conducted a static fire test. All the fit checks with a real rocket remain to be run.
Once the pad is ready, SpaceX plans an aggressive launch schedule in 2017.
“The launch vehicles, Dragon, and the EchoStar satellite are all healthy and prepared for launch,” SpaceX stated.
The history making first use of a recycled Falcon 9 carrying the SES-10 communications satellite could follow as soon as March or April, if all goes well – as outlined here.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Hankering for some cometary action? An interplanetary interloper pays us a visit this weekend, sliding swiftly through the pre-dawn northern hemisphere sky.
If you’ve never caught sight of periodic comet 45/P Honda-Mrkos-Pajdušáková, this week is a good time to try. Currently shining at magnitude +6.5, the comet makes a close 0.08 AU (7.4 million miles or 12.3 million kilometers) pass near the Earth on Saturday, February 11, at 14:44 Universal Time (UT) or 9:44 AM Eastern Standard Time. This is the closest passage of the comet for the remainder of this century, and with the Moon also reaching Full this weekend, the time to track down this comet is now.
We wrote about the first act for this comet last December, and Bob King also wrote up a preview last month. The comet passed perihelion 0.53 AU (49.3 million miles/ 82.1 million kilometers) from the Sun on New Year’s Eve 2016, reemerging into the dawn sky. It’s now on a swift sprint through the constellation Ophiuchus, and will cross Hercules at closest approach and into Corona Borealis and Boötes in just one week. At its closest, it’ll be moving at a whooping 23 arc minutes per hour, about three-quarters the diameter of a Full Moon!
At closest approach, the comet may just top naked eye brightness under dark skies at +6 magnitude.
Independently discovered by three observers worldwide in late 1948, Comet 45/P Honda-Mrkos-Pajdušáková orbits the Sun once every 5.25 years. The cumbersome name is often abbreviated as “Comet 45P HMP” or sometimes simply “Comet 45P.” The comet actually passed close enough back in 2011 for Arecibo radar to ping it, one of the very few comets to do so.
Not all apparitions of a given comet are equal, and most passages of Comet 45P were and will be uneventful. Dr. P. Clay Sharrod of the Arkansas Sky Observatory recently wrote a great account of the 1974 passage of Comet 45P, hearkening back to the same year when we were all awaiting Comet Kohoutek and Comet West was yet to come. This account might also hint at what could be in store for comet hunters this weekend.
We managed to nab Comet 45P for the first time this AM from central Florida, though its still a tough catch. Shining at magnitude +7.5, we wouldn’t have otherwise noticed it as we swept along with our trusty Canon 15×45 image-stabilized binocs. Star-hopping finally brought us to the comet, a little fuzzy ‘star’ that stubbornly refused to snap into focus.
Unfortunately, the Moon reaches Full on Friday night, entering into the dawn sky this weekend. I’d advise hunting for the comet on every clear morning leading up to this weekend as the comet vaults northward into the pre-dawn sky. Friday night’s subtle penumbral eclipse won’t help much by way of dimming the Moon, though you can always place a house or hill between yourself and the Moon in a bid to block it out and aid in your cometary quest. There’s also a great photo op on February 16, when Comet 45P passes less than three degrees from the globular cluster M3.
As close shaves go, this passage of Comet 45P ranks as the 21st closest recorded passage of a comet near the Earth. The record goes to Comet Lexell, which passed just 0.0151 AU (1.4 million miles, or just under six times the distance to the Moon) past the Earth on July 1st, 1770. At its closest, Lexell had a visible coma spanning more than two degrees, more than four times the diameter of a Full Moon. In recent times, the last close passage of a comet other than 45P was Comet IRAS-Araki-Alcock, which zipped 0.063 AU past the Earth on June 12, 1983.
The gambler’s fallacy would say we’re due for the next big bright comet, though the universe seems to stubbornly refuse to roll the dice. In addition to 45P, 2017 does host a string of binocular comets, including Comet 2P Encke (March), Comet 41P/Tuttle-Giacobini-Kresák (April), Comet C/2015 ER61 PanSTARRS (May), and Comet C/2015 V2 Johnson (June). These are all explored in detail in our free e-book guide to the year, 101 Astronomical Events for 2017 out from Universe Today.
Stay warm on your comet vigil, and let us know of those observational tales of tribulation and triumph.
Venus is often referred to as “Earth’s Sister” planet, because of the various things they have in common. For example, both planets reside within our Sun’s habitable zone (aka. “Goldilocks Zone“). In addition, Earth and Venus are also terrestrial planets, meaning they are primarily composed of metals and silicate rock that are differentiated between a metallic core and a silicate mantle and crust.
Beyond that, Earth and Venus could not be more different. And two ways in which they are in stark contrast is the time it takes for the Sun to rise, set, and return to the same place in the sky (i.e. one day). In Earth’s case, this process takes a full 24 hours. But in Venus’ case, its slow rotation and orbit mean that a single day lasts as long as 116.75 Earth days.
Sidereal Vs. Solar:
Naturally, some clarification is necessary when addressing the question of how long a day lasts. For starters, one must distinguish between a sidereal day and a solar day. A sidereal day is the time it takes for a planet to complete a single rotation on its axis. On the other hand, a solar day is the time it takes for the Sun to return to the same place in the sky.
On Earth, a sidereal days last 23 hours 56 minutes and 4.1 seconds, whereas a solar day lasts exactly 24 hours. In Venus’ case, it takes a whopping 243.025 days for the planet to rotate once on its axis – which is the longest rotational period of any planet in the Solar System. In addition, it rotates in the opposite the direction in which it orbits around the Sun (which it takes about 224.7 Earth days to complete).
In other words, Venus has a retrograde rotation, which means that if you could view the planet from above its northern polar region, it would be seen to rotate in a clockwise direction on its axis, and in a counter-clockwise direction around the Sun. It also means that if you could stand on the surface of Venus, the Sun would rise in the west and set in the east.
From all this, one might assume that a single day lasts longer than a year on Venus. But again, the distinction between a sidereal and solar days means that this is not true. Combined with its orbital period, the time it takes for the Sun to return to the same point in the sky works out to 116.75 Earth days, which is little more than a half a Venusian (or Cytherian) year.
Axial Tilt and Temperatures:
Unlike Earth or Mars, Venus has a very low axial tilt – just 2.64° relative to the ecliptic. In fact, it’s axial tilt is the one of the lowest in the Solar System, second only to Mercury (which has an extremely low tilt of 0.03°). Combined with its slow rotational period and dense atmosphere, this results in the planet being effectively isothermal, with virtually no variation in its surface temperature.
In other words, the planet experiences a mean temperature of 735 K (462 °C; 863.6 °F) – the hottest in the Solar System – with very little change between day and night, or between the equator and the poles. In addition, the planet experiences minimal seasonal temperature variation, with the only appreciable variations occurring with altitude.
Weather Patterns:
It is a well-known fact that Venus’ atmosphere is incredibly dense. In fact, the mass of Venus atmosphere is 93 times that of Earth’s, and the air pressure at the surface is estimated to be as high as 92 bar – i.e. 92 times that of Earth’s at sea level. If it were possible for a human being to stand on the surface of Venus, they would be crushed by the atmosphere.
The composition of the atmosphere is extremely toxic, consisting primarily of carbon dioxide (96.5%) with small amounts of nitrogen (3.5%) and traces of other gases – most notably sulfur dioxide. Combined with its density, the composition generates the strongest greenhouse effect of any planet in the Solar System.
According to multiple Earth-based surveys and space missions to Venus, scientists have learned that its weather is rather extreme. The entire atmosphere of the planet circulates around quickly, with winds reaching speeds of up to 85 m/s (300 km/h; 186.4 mph) at the cloud tops, which circle the planet every four to five Earth days.
At this speed, these winds move up to 60 times the speed of the planet’s rotation, whereas Earth’s fastest winds are only 10-20% of the planet’s rotational speed. Spacecraft equipped with ultraviolet imaging instruments are able to observe the cloud motion around Venus, and see how it moves at different layers of the atmosphere. The winds blow in a retrograde direction, and are the fastest near the poles.
Closer to the equator, the wind speeds die down to almost nothing. Because of the thick atmosphere, the winds move much slower as you get close to the surface of Venus, reaching speeds of about 5 km/h. Because it’s so thick, though, the atmosphere is more like water currents than blowing wind at the surface, so it is still capable of blowing dust around and moving small rocks across the surface of Venus.
Venus flybys have also indicated that its dense clouds are capable of producing lightning, much like the clouds on Earth. Their intermittent appearance indicates a pattern associated with weather activity, and the lightning rate is at least half of that on Earth.
Yes, Venus is a planet of extremes. Extreme heat, extreme weather, and extremely long days! In short, there’s a reason why nobody lives there. But who knows? Given the right kind of technology, and perhaps even some dedicated terraforming efforts, people could one day being watching the Sun rising in the west and setting in the east.
Does a distant black hole provide a new definition of pain and suffering?
The black hole, named XJ1500+0154, appears to be the real-life equivalent of the Pit of Carkoon, the nesting place of the all-powerful Sarlacc in Star Wars, which slowly digested its victims.
Over ten years ago, this giant black hole ripped apart a star and has since continued a very long lunch, feasting on the stars’ remains. Astronomers have been carefully monitoring this slow ‘digestion,’ because it is so unusual for what are called tidal disruption events (TDEs), where tidal forces from black holes tear stars apart.
“We have witnessed a star’s spectacular and prolonged demise,” said Dacheng Lin from the University of New Hampshire in Durham, New Hampshire, who led the observations of this event. “Dozens of tidal disruption events have been detected since the 1990s, but none that remained bright for nearly as long as this one.”
This decade-long feast has gone on ten times longer than any other observed TDE.
XJ1500+0154 is located in a small galaxy about 1.8 billion light years from Earth, and three telescopes have been monitoring this X-ray event: the Chandra X-ray Observatory, the Swift satellite, and the XMM-Newton.
TDEs are different from another, more common black-hole related source of X-rays in the galaxy, active galactic nuclei (AGN). Like the digestion of the Sarlacc, AGNs really can last for thousands of years. These are supermassive black holes at the center of galaxies that pull in surrounding gas and “emit copious amounts of radiation, including X-rays,” explained Lin in a blog post on the Chandra website. “Radiation from AGNs do not vary a lot because the gas surrounding them extends over a large scale and can last for tens of thousands of years.”
In contrast, TDEs are relatively short-lived, lasting only a few months. During a TDE, some of the stellar debris is flung outward at high speeds, while the rest falls toward the black hole. As it travels inwards to be consumed by the black hole, the material heats up to millions of degrees, generating a distinct X-ray flare.
XJ1500+0154 has provided an extraordinarily long, bright phase, spanning over ten years. Lin and his team said one explanation could be the most massive star ever to be completely torn apart during a TDE.
“To have the event last so long at such high luminosity requires full disruption of a relatively massive star, about twice the mass of the sun,” Lin wrote; however, “disruption of such massive stars by the SMBH is very unlikely because stars this massive are rare in most galaxies, unless the galaxy is young and actively forming stars, as in our case.
So, another more likely explanation is that this is the first TDE observed where a smaller star was completely torn apart.
Lin also said this event has broad implications for black hole physics.
“To fully explain the super-long duration of our event requires the application of recent theoretical progress on the study of TDEs,” he wrote. “In the last two years, several groups independently found that it can take a long time after the disruption of the star for the stellar debris to settle onto the accretion disk and into the SMBH. Therefore, the event can evolve much more slowly than previously thought.”
Additionally, the X-ray data also indicate that radiation from material surrounding this black hole has consistently surpassed what is called the Eddington limit, which is defined as a balance between the outward pressure of radiation from the hot gas and the inward pull of the gravity of the black hole.
Seeing evidence of such rapid growth may help astronomers understand how supermassive black holes were able to reach masses about a billion times higher than the sun when the universe was only about a billion years old.
“This event shows that black holes really can grow at extraordinarily high rates,” said co-author Stefanie Komossa of QianNan Normal University for Nationalities in Duyun City, China. “This may help understand how precocious black holes came to be.”
Lin and his team will continue to monitor this event, and they expect the X-ray brightness to fade over the next few years, meaning the supply of ‘food’ for this long lunch will soon be consumed.
Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at the Triangulum Galaxy, also known as Messier 33. Enjoy!
During the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of them so that others would not make the same mistake he did. In time, this list (known as the Messier Catalog) would come to include 100 of the most fabulous objects in the night sky.
One of these objects is known as Messier 34, an open star cluster located in the northern Perseus constellation. Located at a distance of about 1,500 light years from Earth, it is one of the closest Messier objects to Earth, and is home to an estimated 400 stars. It is also bright enough to be seen with the naked eye or binoculars, where light conditions permit.
What You Are Looking At:
This cluster of stars started its journey off together through our galaxy some 180 million years ago as part of the “Local Association”… groups of stars like the Pleiades, Alpha Persei Cluster and the Delta Lyrae Cluster that share a common origin, but have become gravitationally unbound and are still moving together through space. We know the stars are related by their common movement and ages, but what else do we know about them?
Well, one thing we do know is that out of the 354 stars in the region survey, 89 of them are actual cluster members and that all six of the visual binaries and three of the four known Ap stars are members of the cluster. There’s even a giant among them! But like almost all stars out there, we know they usually aren’t singles and actually have companions. As Theodore Simon wrote in his 2000 study regarding NGC 1039 and NGC 3532:
“Roughly half the sources detected in both images have likely optical counterparts from earlier ground-based surveys. The remainder are either prospective cluster members or foreground/background stars, which can be decided only through additional photometry, spectroscopy, and proper-motion studies. There is some indication (at the 98% confidence level) that solar-type stars may lack the extreme rotation and activity levels shown by those in the much younger Pleiades and alpha Persei clusters, but a detailed assessment of the coronal X-ray properties of these clusters must await more sensitive observations in the future. If confirmed, this finding could help to rule out the possibility that stellar dynamo activity and rotational braking are controlled by a rapidly spinning central core as stars pass through this phase of evolution from the Pleiades stage to that represented by the Hyades.”
If there’s companion stars to be discovered, what else might be in the field that we just can quite “see”? Try white dwarfs. As Kate Rubin (et al.) published in the May 2008 issue of the Astronomical Journal:
“We present the first detailed photometric and spectroscopic study of the white dwarfs (WDs) in the field of the ~225 Myr old (log ?cl = 8.35) open cluster NGC 1039 (M34) as part of the ongoing Lick-Arizona White Dwarf Survey. Using wide-field UBV imaging, we photometrically select 44 WD candidates in this field. We spectroscopically identify 19 of these objects as WDs; 17 are hydrogen-atmosphere DA WDs, one is a helium-atmosphere DB WD, and one is a cool DC WD that exhibits no detectable absorption lines. Of the 17 DAs, five are at the approximate distance modulus of the cluster. Another WD with a distance modulus 0.45 mag brighter than that of the cluster could be a double-degenerate binary cluster member, but is more likely to be a field WD. We place the five single cluster member WDs in the empirical initial-final mass relation and find that three of them lie very close to the previously derived linear relation; two have WD masses significantly below the relation. These outliers may have experienced some sort of enhanced mass loss or binary evolution; however, it is quite possible that these WDs are simply interlopers from the field WD population.”
While it sounds a little confusing, it’s all about how star clusters evolve. As David Soderblom wrote in a 2001 study:
“We analyze Keck Hires observations of rotation in F, G, and K dwarf members of the open cluster M34 (NGC 1039), which is 250 Myr old, and we compare them to the Pleiades, Hyades, and NGC 6475. The upper bound to rotation seen in M34 is about a factor of two lower than for the 100 Myr-old Pleiades, but most M34 stars are well below this upper bound, and it is the overall convergence in rotation rates that is most striking. A few K dwarfs in M34 are still rapid rotators, suggesting that they have undergone core-envelope decoupling, followed by replenishment of surface angular momentum from an internal reservoir. Our comparison of rotation in these clusters indicates that the time scale for the coupling of the envelope to the core must be close to 100 Myr if decoupling does, in fact, occur.”
History of Observation:
M34 was probably first found by Giovanni Batista Hodierna before 1654, and independently rediscovered by Charles Messier in on August 25, 1764. As he described it in his notes:
“I have determined the position of a cluster of small stars between the head of the Medusa and the left foot of Andromeda almost on the parallel of the star Gamma of that letter constellation. With an ordinary refractor of 3 feet, one distinguishes these stars; the cluster may have 15 minutes in extension. I have determined its position with regard to the star Beta in the head of the Medusa; its right ascension has been concluded at 36d 51′ 37″, and its declination as 41d 39′ 32″ north.”
Over the years, a great many historic observers would turn a telescope its way to examine it – also looking for more. Said Sir William Herschel: “A cluster of stars; with 120, I think it is accompanied with mottled light, like stars at a distance.” Yet very little more can be seen except for the fact that most of the stars seem to be arranged in pairs – the most notable being optical double in the center – h 1123 – which was cataloged by Sir John Herschel on December 23rd, 1831.
Charles Messier discovered it independently on August 25th, 1764, and included it in the Messier Catalog. As he wrote in the first edition of the catalog:
“In the same night of [August] 25 to 26, I have determined the position of a cluster of small stars between the head of the Medusa [Algol] & the left foot of Andromeda almost on the parallel of the star Gamma of that letter constellation. With an ordinary [non-achromatic] refractor of 3 feet [FL], one distinguishes these stars; the cluster may have 15 minutes in extension. I have determined its position with regard to the star Beta in the head of the Medusa; its right ascension has been concluded at 36d 51? 37?, & its declination as 41d 39? 32? north.”
But as always, it was Admiral William Henry Smyth who described the object with the most florid prose. As he wrote in his notes when observing the cluster in October 1837, he noted the following:
“A double star in a cluster, between the right foot of Andromeda and the head of Medusa; where a line from Polaris between Epsilon Cassiopeiae and Alpha Persei to within 2deg of the parallel of Algol, will meet it. A and B, 8th magnitudes, and both white. It is in a scattered but elegant group of stars from the 8th to the 13th degree of brightness, on a dark ground, and several of them form into coarse pairs. This was first seen and registered by Messier, in 1764, as a “mass of small stars;” and in 1783 was resolved by Sir W. Herschel with a seven-foot reflector: with the 20-foot he made it “a coarse cluster of large stars of different sizes.” By the method he applied to fathom the galaxy, he concluded the profundity of this object not to exceed the 144th order.”
Locating Messier 34:
M34 is easily found in binoculars about two fields of view northwest of Algol(Beta Persei). You will know when you have found this distinctive star cluster because “X” marks the spot! In a telescope finderscope, it will appear as a faint, hazy spot and will fully resolve to most average telescopes. Messier 34 makes an excellent target for moonlit nights or light polluted areas and will stand up well to less than perfect sky conditions.
It can even be seen unaided from ideal locations! Enjoy your observations!
And as always, we’ve included the quick facts on this Messier Object to help you get started:
Object Name: Messier 34 Alternative Designations: M34, NGC 1039 Object Type: Galactic Open Star Cluster Constellation: Perseus Right Ascension: 02 : 42.0 (h:m) Declination: +42 : 47 (deg:m) Distance: 1.4 (kly) Visual Brightness: 5.5 (mag) Apparent Dimension: 35.0 (arc min)
We always want to talk about how we can make Mars more Earth like, but the reality is that we’re making Earth more Venus-Like. We’re Venusforming Earth. What are the various factors we’re impacting on a global scale, and how can we fix them?
We usually record Astronomy Cast as a live Google+ Hangout on Air every Friday at 1:30 pm Pacific / 4:30 pm Eastern. You can watch here on Universe Today or from the Astronomy Cast Google+ page.
Astronomy turns up in fascinating junctures in history. Besides just the romantic angle, we can actually pin down contextual events in ancient history if we can tie them in with a spectacle witnessed in the heavens. A recent look at the story of ‘Joshua’s eclipse’ is one such possible tale.
Lunar and solar eclipses are especially dramatic events, something that would have really made the ancients stop and take notice. A recent study published in an edition of the Beit Mikra Journal (in Hebrew) by researchers from Ben Gurion University may have pinpointed a keypoint in biblical history: the date of the Battle of Gibeon.
This study first came to our attention via the Yahoo! SEML eclipse message board and a recent Times of Israel article. The article makes mention of NASA eclipse data, which is free for anyone to peruse looking over the five millennium canon of solar and lunar eclipses… hey, it’s what we do for fun.
We did obtain a look at a translation of the abstract from the paper, which ends with the following:
“In the period between 1500-1000 BCE which is the relevant time for the biblical story, there were only three eclipses seen from Jerusalem, one total eclipse and two annular eclipses. We show that the most appropriate one is the annular solar eclipse that occurred on October 30 in 1206 BCE at sunset, an appropriate date for the time of conquest and the early settlement period, at the time of Marneptah’ rule in Egypt.”
Joshua 10:12 reads: “Sun, stand still upon Gibeon; and you, Moon, in the valley of Ayalon.”
According to tradition, Joshua commanded the Sun to stand still long enough to defeat the Canaanite kings. Of course, the Sun and the Moon still move during an eclipse be it lunar or solar, though its mostly our planet that’s doing the moving. Still, the actual biblical term “-dom” is open to interpretation, and the researchers chose the Hebrew “to become dark” instead of the King James translation of “to stand still,” or “stationary”.
If this Bible verse sounds familiar, that’s because it turns up in astronomical history again in medieval Europe, when Church proponents used it as supposed proof of geocentricism.
It’s tough to predict eclipses in distant time. The rotation of the Earth is not entirely smooth, and the minute change in the length of the day (known as Delta T) accumulates to the point that a leap second must be inserted on occasion to keep observed time in sync with reckoned terrestrial time. Braking action by the Sun and Moon, tectonic activity, and even global warming all cause small changes in the Earth’s rotation that slowly build up over time. This means that it’s tough to predict eclipses more than a few thousand years out, where at best we can only judge which continent they might have or will fall on.
“Not everyone likes the idea of using physics to prove things from the Bible,” said researcher Hezi Yitzhak to the Israeli news site Haaretz. “We do not claim that everything written in the Bible is true or took place… but there is also a grain of historical truth that has archaeological evidence behind it.”
The eclipse in question occurred on October 30th, 1206 BC. This was an annular eclipse, crossing the Atlantic and the Mediterranean and ending over Israel and Jordan at sunset. Researchers pegged this suspect eclipse because of its fit for historical context and visibility. Annularity for the eclipse was 86% obscuration and started at an altitude of nine degrees above the western horizon, and would have still been in progress during its final phases at sunset.
Lots of eclipses turn up in history. A partial lunar eclipse preceded the fall of Constantinople in 1453, seeming to fulfill prophecy. Solar and lunar eclipses made a showing at lots of battles, including the Second Battle of Syracuse on August 28th, 412 BC and during the Zulu War on January 22nd, 1879. A solar eclipse on June 15th, 762 BC mentioned in Assyrian texts pinpoints a crucial time in ancient history, giving us a benchmark for later dates. It’s worth noting that prior to modern times, it seems that battles were the only thing worth writing down…
Still, it’s interesting to imagine the scene as ancient armies clash, only to stop and gaze at the wondrous sight on the horizon: a pair of glowing horns, hanging low in the pre-dusk sky. We caught the 1994 annular eclipse from the Sandusky, Ohio on the shores of Lake Erie and can attest that even a 98% eclipsed Sun is still pretty bright, giving even a clear day a deep steely blue tint. Lower to the horizon though, an annular eclipse is more readily visible to the unaided eye.
You have to be careful when attempting to read ancient texts as astronomical guide books. Great minds, including Kepler and Newton, expended lots of mental juice on attempting to link biblical accounts such as Ezekiel’s Wheel and the Star of Bethlehem with actual astronomical events. We’ll probably never know for sure if a coincidental conjunction graced the sky over the manger in Bethlehem, or if Ezekiel saw the breakup of a brilliant comet, but it’s always fun to imagine and wonder. Then, there’s the inevitable embellishment that accompanies stories that may have been first sparked by meteor showers or sundogs, centuries ago. We don’t, for example, see flaming swords or banners emblazoned with Latin inscriptions across the sky today, though if you can believe medieval accounts, they seemed common back in the day.
And don’t forget: we’ve got our very own history making eclipse (hopefully sans battlefields) this coming August 21st, 2017 crossing the United States from coast-to-coast.
Though far from conclusive, the results of the study concerning Joshua’s eclipse and the battle of Gideon are interesting to consider. Most likely we’ll never truly know what happened that ancient afternoon, unless, of course, we perfect time travel. What other events remain hidden and lost to time, ready for some historical astro-sleuth to uncover them?