What is a Planet?

Planets and other objects in our Solar System. Credit: NASA.

Humanity’s understanding of what constitutes a planet has changed over time. Whereas our most notable magi and scholars once believed that the world was a flat disc (or ziggurat, or cube), they gradually learned that it was in fact spherical. And by the modern era, they came to understand that the Earth was merely one of several planets in the known Universe.

And yet, our notions of what constitutes a planet are still evolving. To put it simply, our definition of planet has historically been dependent upon our frame of reference. In addition to discovering extra-solar planets that have pushed the boundaries of what we consider to be normal, astronomers have also discovered new bodies in our own backyard that have forced us to come up with new classification schemes.

History of the Term:

To ancient philosophers and scholars, the Solar Planets represented something entirely different than what they do today. Without the aid of telescopes, the planets looked like particularly bright stars that moved relative to the background stars. The earliest records on the motions of the known planets date back to the 2nd-millennium BCE, where Babylonian astronomers laid the groundwork for western astronomy and astrology.

These include the Venus tablet of Ammisaduqa, which catalogued the motions of Venus. Meanwhile, the 7th-century BCE MUL.APIN tablets laid out the motions of the Sun, the Moon, and the then-known planets over the course of the year (Mercury, Venus, Mars, Jupiter and Saturn). The Enuma anu enlil tablets, also dated to the 7th-century BCE, were a collection of all the omens assigned to celestial phenomena and the motions of the planets.

By classical antiquity, astronomers adopted a new concept of planets as bodies that orbited the Earth. Whereas some advocated a heliocentric system – such as 3rd-century BCE astronomer Aristarchus of Samos and 1st-century BCE astronomer Seleucus of Seleucia – the geocentric view of the Universe remained the most widely-accepted one. Astronomers also began creating mathematical models to predict their movements during this time.

This culminated in the 2nd century CE with Ptolemy’s (Claudius Ptolemaeus) publication of the Almagest, which became the astronomical and astrological canon in Europe and the Middle East for over a thousand years. Within this system, the known planets and bodies (even the Sun) all revolved around the Earth. In the centuries that followed, Indian and Islamic astronomers would added to this system based on their observations of the heavens.

By the time of the Scientific Revolution (ca. 15th – 18th centuries), the definition of planet began to change again. Thanks to Nicolaus Copernicus, Galileo Galilei, and Johannes Kepler, who proposed and advanced the heliocentric model of the Solar System, planets became defined as objects that orbited the Sun and not Earth. The invention of the telescope also led to an improved understanding of the planets, and their similarities with Earth.

A comparison of the geocentric and heliocentric models of the universe. Credit: history.ucsb.edu

Between the 18th and 20th centuries, countless new objects, moons and planets were discovered. This included Ceres, Vesta, Pallas (and the Main Asteroid Belt), the planets Uranus and Neptune, and the moons of Mars and the gas giants. And then in 1930, Pluto was discovered by Clyde Tombaugh, which was designated as the 9th planet of the Solar System.

Throughout this period, no formal definition of planet existed. But an accepted convention existed where a planet was used to described any “large” body that orbited the Sun. This, and the convention of a nine-planet Solar System, would remain in place until the 21st century. By this time, numerous discoveries within the Solar System and beyond would lead to demands that a formal definition be adopted.

Working Group on Extrasolar Planets:

While astronomers have long held that other star systems would have their own system of planets, the first reported discovery of a planet outside the Solar System (aka. extrasolar planet or exoplanet) did not take place until 1992. At this time, two radio astronomers working out of the Arecibo Observatory (Aleksander Wolszczan and Dale Frail) announced the discovery of two planets orbiting the pulsar PSR 1257+12.

The first confirmed discovery took place in 1995, when astronomers from the University of Geneva (Michel Mayor and Didier Queloz) announced the detection of 51 Pegasi. Between the mid-90s and the deployment of the Kepler space telescope in 2009, the majority of extrasolar planets were gas giants that were either comparable in size and mass to Jupiter or significantly larger (i.e. “Super-Jupiters”).

Earlier today, NASA announced that Kepler had confirmed the existence of 1,284 new exoplanets, the most announced at any given time. Credit: NASA

These new discoveries led the International Astronomical Union (IAU) to create the Working Group of Extrasolar Planets (WGESP) in 1999. The stated purpose of the WGESP was to “act as a focal point for international research on extrasolar planets.” As a result of this ongoing research, and the detection of numerous extra-solar bodies, attempts were made to clarify the nomenclature.

As of February 2003, the WGESP indicated that it had modified its position and adopted the following “working definition” of a planet:

1) Objects with true masses below the limiting mass for thermonuclear fusion of deuterium (currently calculated to be 13 Jupiter masses for objects of solar metallicity) that orbit stars or stellar remnants are “planets” (no matter how they formed). The minimum mass/size required for an extrasolar object to be considered a planet should be the same as that used in our Solar System.

2) Substellar objects with true masses above the limiting mass for thermonuclear fusion of deuterium are “brown dwarfs”, no matter how they formed nor where they are located.

3) Free-floating objects in young star clusters with masses below the limiting mass for thermonuclear fusion of deuterium are not “planets”, but are “sub-brown dwarfs” (or whatever name is most appropriate).

As of January 22nd, 2017, more than 2000 exoplanet discoveries have been confirmed, with 3,565 exoplanet candidates being detected in 2,675 planetary systems (including 602 multiple planetary systems).

The number of confirmed exoplanet discoveries, by year. Credit: NASA

2006 IAU Resolution:

During the early-to-mid 2000s, numerous discoveries were made in the Kuiper Belt that also stimulated the planet debate. This began with the discovery of Sedna in 2003 by a team of astronomers (Michael Brown, Chad Trujillo and David Rabinowitz) working at the Palomar Observatory in San Diego. Ongoing observations confirmed that it was approx 1000 km in diameter, and large enough to undergo hydrostatic equilibrium.

This was followed by the discovery of Eris – an even larger object (over 2000 km in diameter) – in 2005, again by a team consisting of Brown, Trujillo, and Rabinowitz. This was followed by the discovery of Makemake on the same day, and Haumea a few days later. Other discoveries made during this period include Quaoar in 2002, Orcus in 2004,  and 2007 OR10 in 2007.

The discovery of a several objects beyond Pluto’s orbit that were large enough to be spherical led to efforts on behalf of the IAU to adopt a formal definition of a planet. By October 2005, a group of 19 IAU members narrowed their choices to a shortlist of three characteristics. These included:

  • A planet is any object in orbit around the Sun with a diameter greater than 2000 km. (eleven votes in favour)
  • A planet is any object in orbit around the Sun whose shape is stable due to its own gravity. (eight votes in favour)
  • A planet is any object in orbit around the Sun that is dominant in its immediate neighbourhood. (six votes in favour)

After failing to reach a consensus, the committee decided to put these three definitions to a wider vote. This took place in August of 2006 at the 26th IAU General Assembly Meeting in Prague. On August 24th, the issue was put to a final draft vote, which resulted in the adoption of a new classification scheme designed to distinguish between planets and smaller bodies. These included:

(1) A “planet” is a celestial body that (a) is in orbit around the Sun, (b) has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round) shape, and (c) has cleared the neighborhood around its orbit.

(2) A “dwarf planet” is a celestial body that (a) is in orbit around the Sun, (b) has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round) shape, (c) has not cleared the neighborhood around its orbit, and  (d) is not a satellite.

(3) All other objects, except satellites, orbiting the Sun shall be referred to collectively as “Small Solar-System Bodies”.

In accordance with this resolution, the IAU designated Pluto, Eris, and Ceres into the category of “dwarf planet”, while other Trans-Neptunian Objects (TNOs) were left undeclared at the time. This new classification scheme spawned a great deal of controversy and some outcries from the astronomical community, many of whom challenged the criteria as being vague and debatable in their applicability.

The presently-known largest trans-Neptunian objects (TNO), the discovery of which prompted the current IAU definition of planet. Credit: Larry McNish, Data: M.Brown)

For instance, many have challenged the idea of a planet clearing its neighborhood, citing the existence of near-Earth Objects (NEOs), Jupiter’s Trojan Asteroids, and other instances where large planets share their orbit with other objects. However, these have been countered by the argument that these large bodies do not share their orbits with smaller objects, but dominate them and carry them along in their orbits.

Another sticking point was the issue of hydrostatic equilibrium, which is the point where a planet has sufficient mass that it will collapse under the force of its own gravity and become spherical. The point at which this takes place remains entirely unclear thought, and some astronomers therefore challenge it being included as a criterion.

In addition, some astronomers claim that these newly-adopted criteria are only useful insofar as Solar planets are concerned. But as exoplanet research has shown, planets in other star star systems can be significantly different. In particular, the discovery of numerous “Super Jupiters” and “Super Earths” has confounded conventional notions of what is considered normal for a planetary system.

In June 2008, the IAU executive committee announced the establishment of a subclass of dwarf planets in the hopes of clarifying the definitions further. Comprising the recently-discovered TNOs, they established the term “plutoids”, which would thenceforth include Pluto, Eris and any other future trans-Neptunian dwarf planets (but excluded Ceres). In time, Haumea, Makemake, and other TNOs were added to the list.

Despite these efforts and changes in nomenclature, for many, the issue remains far from resolved. What’s more, the possible existence of Planet 9 in the outer Solar System has added more weight to the discussion. And as our research into exoplanets continues – and uncrewed (and even crewed) mission are made to other star systems – we can expect the debate to enter into a whole new phase!

We have written many interesting articles about the planets here at Universe Today. Here’s How Many Planets are there in the Solar System?, What are the Planets of the Solar System, The Planets of our Solar System in Order of Size, Why Pluto is no Longer a Planet, Evidence Continues to Mount for Ninth Planet, and What are Extrasolar Planets?.

For more information, take a look at this article from Scientific American, What is a Planet?, and the video archive from the IAU.

Astronomy Cast has an episode on Pluto’s planetary identity crisis.

Sources:

Unprecedented Views of Saturn’s Rings as Cassini Dances Death Spiral

This image shows a region in Saturn's outer B ring. NASA's Cassini spacecraft viewed this area at a level of detail twice as high as it had ever been observed before. And from this view, it is clear that there are still finer details to uncover. Credit: NASA/JPL-Caltech/Space Science Institute

As the Cassini spacecraft moves ever closer to Saturn, new images provide some of the most-detailed views yet of the planet’s spectacular rings. From its “Ring-Grazing” orbit phase, Cassini’s cameras are resolving details in the rings as small as 0.3 miles (550 meters), which is on the scale of Earth’s tallest buildings.

On Twitter, Cassini Imaging Team Lead Carolyn Porco called the images “outrageous, eye-popping” and the “finest Cassini images of Saturn’s rings.”

Project Scientist Linda Spilker said the ridges and furrows in the rings remind her of the grooves in a phonograph record.

These images are giving scientists the chance to see more details about ring features they saw earlier in the mission, such as waves, wakes, and things they call ‘propellers’ and ‘straw.’

This Cassini image features a density wave in Saturn’s A ring (at left) that lies around 134,500 km from Saturn. Density waves are accumulations of particles at certain distances from the planet. This feature is filled with clumpy perturbations, which researchers informally refer to as “straw.” Credit: NASA/JPL-Caltech/Space Science Institute

As of this writing, Cassini just started the 10th orbit of the 20-orbit ring-grazing phase, which has the spacecraft diving past the outer edge of the main ring system. The ring-grazing orbits began last November, and will continue until late April, when Cassini begins its grand finale. During the 22 finale orbits, Cassini will repeatedly plunge through the gap between the rings and Saturn. The first of these plunges is scheduled for April 26.

The spacecraft is actually close enough to the ‘F’ ring that occasionally tenuous particle strike Cassini, said project scientist Linda Spilker, during a Facebook Live event today.

“These are very small and tenuous, only a few microns in size,” Spilker said, “like dust particles you’d see in the sunlight. We can actually ‘hear’ them hitting the spacecraft in our data, but these particles are so small, they won’t hurt Cassini.”

I talked with Spilker about ring particles for my book “Incredible Stories From Space:”

Spilker has envisioned holding a ring particle in her hand. What would it look like?

“We have evidence of the particles that have an icy core covered with fluffy regolith material that is very porous,” she said, “and that means the particle can heat up and cool down very quickly compared to a solid ice cube.”

The straw features are caused by clumping ring particles and the propellers are caused by small, embedded moonlets that creates propeller shaped wakes in the rings.

The wavemaker moon, Daphnis, is featured in this view, taken as NASA’s Cassini spacecraft made one of its ring-grazing passes over the outer edges of Saturn’s rings on Jan. 16, 2017. This is the closest view of the small moon obtained yet. Daphnis is 5 miles or 8 kilometers across. Credit: NASA/JPL-Caltech/Space Science Institute

This stunning view of the moon Daphnis shows the moon interacting with the ring particles, creating waves in the rings around it.

A close-up of Saturn and its rings. Assembled using raw uncalibrated RGB filtered images taken by the Cassini spacecraft on January 18 2017. Credit:
NASA/JPL-Caltech/SSI/image editing by Kevin M. Gill

“These close views represent the opening of an entirely new window onto Saturn’s rings, and over the next few months we look forward to even more exciting data as we train our cameras on other parts of the rings closer to the planet,” said Matthew Tiscareno, a Cassini scientist who studies Saturn’s rings at the SETI Institute, Mountain View, California. Tiscareno planned the new images for the camera team.

Further reading: JPL, CICLOPS

Messier 33 – The Triangulum Galaxy

M33, the Triangulum Spiral Galaxy, seen here in a 4.3 hour exposure image. Astronomers used JWST to examine a section of its south spiral arm to search out and find nearly 800 newly forming stars. Credit and copyright: John Chumack.
M33, the Triangulum Spiral Galaxy, seen here in a 4.3 hour exposure image. Astronomers used JWST to examine a section of its south spiral arm to search out and find nearly 800 newly forming stars. Credit and copyright: John Chumack.

Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at the Triangulum Galaxy, also known as Messier 33. Enjoy!

During the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of them so that others would not make the same mistake he did. In time, this list (known as the Messier Catalog) would come to include 100 of the most fabulous objects in the night sky.

One of these is the Triangulum Galaxy, a spiral galaxy located approximately 3 million light-years from Earth in the direction of the Triangulum constellation. As the third-largest member of the Local Group of galaxies (behind the Andromeda Galaxy and the Milky Way), it is the one of the most distant objects that can be seen with the naked eye. Much like M32, M33 is very close to Andromeda, and is believed to be a satellite of this major galaxy.

Description:

At some 3 million light years away from Earth, the Triangulum Galaxy is the third largest galaxy in our Local Group and it may be a gravitationally bound companion of the Andromeda Galaxy. Its beautiful spiral arms show multitudes of red HII regions and blue clouds of young stars. The largest of these HII regions (NGC 604) spans nearly 1500 across and is the largest so far known.

The Triangulum Galaxy (M33), taken by the Swift Gamma-Ray Burst Mission. Credit: NASA/Swift

It has a spectrum similar to the Orion Nebula – our own Milky Way’s most celebrated starbirth region. “M33 is a gigantic laboratory where you can watch dust being created in novae and supernovae, being distributed in the winds of giant stars, and being reborn in new stars,” said University of Minnesota researcher and lead author Elisha Polomski. By studying M33, “you can see the Universe in a nutshell.”

Of course, our curiousity about our neighboring galaxy has driven us to try to understand more over the years. Once Edwin Hubble set the standard with Cepheid variables, we began measuring distance by discovering about 25 of them in M33. By 2004 we were studying the red giant star branch to peer even further. As A.W. McConnachie said in a 2004 study of the galaxy:

“The absolute bolometric luminosity of the point of core helium ignition in old, metal-poor, red giant stars is of roughly constant magnitude, varying only very slightly with mass or metallicity. It can thus be used as a standard candle. This technique then allows for the determination of realistic uncertainties which reflect the quality of the luminosity function used. Finally, we apply our technique to the Local Group spiral galaxy M33 and the dwarf galaxies Andromeda I and II, and derive distance. The result for M33 is in excellent agreement with the Cepheid distances to this galaxy, and makes the possibility of a significant amount of reddening in this object unlikely.”

By 2005, astronomers had detected two water masers on either side of M33 and for the first time ever – revealed what direction it as going in. According to Andreas Brunthaler (et al), who published a study about the distance and proper motion of the galaxy in 2005:

“We measured the angular rotation and proper motion of the Triangulum Galaxy (M33) with the Very Long Baseline Array by observing two H2O masers on opposite sides of the galaxy. By comparing the angular rotation rate with the inclination and rotation speed, we obtained a distance of 730 +/- 168 kiloparsecs. This distance is consistent with the most recent Cepheid distance measurement. This distance is consistent with the most recent Cepheid distance measurement. M33 is moving with a velocity of 190 +/- 59 kilometers per second relative to the Milky Way. These measurements promise a method to determine dynamical models for the Local Group and the mass and dark-matter halos of M31, M33, and the Milky Way.”

Composite image of the Triangulum Galaxy (Messier 33), taken at Mount Lemmon Observatory. Credit: Adam Block/Mount Lemmon SkyCenter/University of Arizona

Yes, it’s moving toward the Andromeda Galaxy, much like how Andromeda is moving towards us! In 2006, a group of astronomers announced the discovery of an eclipsing binary star in M33. As A.Z. Bonanos, the lead author of the study that detailed the discovery, said:

“We present the first direct distance determination to a detached eclipsing binary in M33, which was found by the DIRECT Project. Located in the OB 66 association, it was one of the most suitable detached eclipsing binaries found by DIRECT for distance determination, given its 4.8938 day period.”

By studying the eclipsing binary, astronomers soon knew their size, distance, temperature and absolute magnitude. But more was yet to come! In 2007, the Chandra X-ray Observatory revealed even more when a black hole nearly 16 times the mass of the Sun was revealed. The black hole, named M33 X-7, orbits a companion star which it eclipses every 3.5 days. This means the companion star must also have an incredibly large mass as well….

Yet how huge must the parent star have been to have formed a black hole in advance of its companion? As Jerome Orosz, of San Diego State University, was quoted as saying in a 2007 Chandra press release:

“This discovery raises all sorts of questions about how such a big black hole could have been formed. Massive stars can be much less extravagant than people think by hanging onto a lot more of their mass toward the end of their lives. This can have a big effect on the black holes that these stellar time-bombs make.”

Artist’s rendering of the black hole found in orbit of the large blue star in M33 . Credit: Chandra/Harvard/HST

Stellar bombs? You bet. Gigantic stellar explosions even. Although no supernovae events have been detected in the Triangulum galaxy, it certainly doesn’t lack for evidence of supernova remnants. According to a 2004 study by F. Haberl and W. Pietsch of the Max-Planck-Institute:

“We present a catalogue of 184 X-ray sources within 50′ of the nucleus of the local group spiral galaxy M 33. The catalogue is derived from an analysis of the complete set of ROSAT archival data pointed in the direction of M 33 and contains X-ray position, existence likelihood, count rates and PSPC spectral hardness ratios. To identify the sources the catalog was correlated with previous X-ray catalogues, optical and radio catalogues. In addition sources were classified according to their X-ray properties. We find seven candidates for supersoft X-ray sources, of which two may be associated with known planetary nebulae in M 33. The majority of X-ray detected supernova remnants is also detected at radio frequencies and seen in optical lines. The low overall X-ray detection rate of optically selected SNRs can probably be attributed to their expansion into interstellar matter of low density.”

Or the creation of black holes…

History of Observation:

While the Triangulum Galaxy was probably first observed by Hodierna before 1654 (back when skies were dark), it was independently rediscovered by Charles Messier, and cataloged by him on August 25, 1764. As he recorded in his notes on the occasion:

“I have discovered a nebula between the head of the northern Fish and the large Triangle, a bit distant from a star which had not been known, of sixth magnitude, of which I have determined the position; the right ascension of that star was 22d 7′ 13″, and its declination 29d 54′ 10″ north: near that star, there is another one which is the first of Triangulum, described by the letter b. Flamsteed described it in his catalog, of sixth magnitude; it is less beautiful than that of which I have given the position, and one should set it to the rank of the stars of the eighth class. The nebula is a whitish light of 15 minutes in diameter, of an almost even density, despite a bit more luminous at two third of its diameter; it doesn’t contain any star: one sees it with difficulty with an ordinary refractor of one foot.”

The location of the Triangulum Galaxy in the night sky. Credit: Wikisky

While Sir William Herschel wouldn’t publish papers on Messier’s findings, he was an astronomically curious soul and couldn’t help but study M33 intently on his own, writing:

“There is a suspicion that the nebula consists of exceedingly small stars. With this low power it has a nebulous appearance; and it vanishes when I put on the higher magnifying powers of 278 and 460.” He would continue to observe this grand galaxy again and again over the years, cataloging its various regions with their own separate numbers and keeping track of his findings: “The stars of the cluster are the smallest points imaginable. The diameter is nearly 18 minutes.”

Yet it would take a very special observer, one named Bill Parsons – the third Earl of Rosse – to become the very first to describe it as spiral. As he wrote of it:

“September 16, 1849. – New spiral: Alpha the brighter branch; Gamma faint; Delta short but pretty bright; Beta pretty distinct; Epsilon but suspected; the whole involved in a faint nebula, which probably extends past several knots which lie about it in different directions. Faint nebula seems to extend very far following: drawing taken.”

Quite the description indeed, since it would eventually lead to Rosse’s description of M33 being “…full of knots. Spiral arrangement. Two similar curves like an “S” cross in the center”, and to other astronomers discovering that these “spiral nebulae” were extra-galactic!

The location of Messier 33 in the Triangulum constellation. Credit: IAU and Sky & Telescope magazine (Roger Sinnott & Rick Fienberg)

Locating Messier 33:

While actually locating Messier 33 isn’t so difficult, seeing Messier 33 can be. Even though it is billed at nearly unaided eye magnitude, this huge, low surface brightness galaxy requires some experience with equipment and observing conditions or you may hunt forever in the right place and never find it. Let’s begin first by getting you in the proper area! First locate the Great Square of Pegasus – and its easternmost bright star, Alpha. About a hand span further east you will see the brightest star in Triangulum – Alpha.

M33 is just a couple of degrees (about 2 finger widths) west. Now, the most important part to understand is that you must use the lowest magnification possible, or you won’t be able to see the proverbial forest because of the trees. The image you see here at the top of the page is around a full degree of sky – about 1/3 the field of view of average binoculars and far larger than your average telescope eyepiece.

However, by using the least amount of magnification with a telescope you are causing M33 to appear much smaller – allowing it to fit within eyepiece field of view range. The larger the aperture, the more light it gathers and the brighter the image will be. The next thing to understand is M33 really is low surface brightness… Light pollution, a fine haze in the sky, moonlight… All of these things will make it difficult to find. Yet, there are places left here on Earth where the Triangulum Galaxy can be seen with no optical aid at all!

Enjoy your quest for M33. You may find it your first time out and it may be years before you see it in all its glory. But when you do, we guarantee you’ll never forget! Be sure to enjoy this video of the Triangulum galaxy too, courtesy of the European Southern Observatory:

Enjoy your quest for M33. You may find it your first time out and it may be years before you see it in all its glory. But when you do, we guarantee you’ll never forget!

And here are the quick facts on M33 to help you get started:

Object Name: Messier 33
Alternative Designations: M33, NGC 598, Triangulum Galaxy, Pinwheel Galaxy
Object Type: Type Sc, Spiral Galaxy
Constellation: Triangulum
Right Ascension: 01 : 33.9 (h:m)
Declination: +30 : 39 (deg:m)
Distance: 3000 (kly)
Visual Brightness: 5.7 (mag)
Apparent Dimension: 73×45 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier Objects, , M1 – The Crab Nebula, M8 – The Lagoon Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Sources:

NASA Tribute Exhibit Honors Fallen Apollo 1 Crew 50 Years After Tragedy

The new tribute to Apollo 1 at NASA’s Kennedy Space Center was opened during a dedication ceremony on Jan. 27, 2017, 50 years after the crew was lost - with a keynote speech by Kennedy Space Center Director and former astronaut Bob Cabana. The entrance to the Apollo 1 tribute shows the three astronauts who perished in a fire at the launch pad on Jan. 27, 1967 during training for the mission. The astronauts are, from left, Gus Grissom, Ed White II and Roger Chaffee. Credit: Ken Kremer/kenkremer.com
The new tribute to Apollo 1 at NASA’s Kennedy Space Center was opened during a dedication ceremony on Jan. 27, 2017, 50 years after the crew was lost – with a keynote speech by Kennedy Space Center Director and former astronaut Bob Cabana. The entrance to the Apollo 1 tribute shows the three astronauts who perished in a fire at the launch pad on Jan. 27, 1967 during training for the mission. The astronauts are, from left, Gus Grissom, Ed White II and Roger Chaffee. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER VISITOR COMPLEX, FL – NASA unveiled a new tribute exhibit honoring three fallen astronaut heroes 50 years to the day of the Apollo 1 tragedy on January 27, 1967 when the three man crew perished in a flash fire on the launch pad during a capsule test that was not considered to be dangerous.

The Apollo 1 prime crew comprising NASA astronauts Gus Grissom, Ed White II and Roger Chaffee were killed during routine practice countdown testing when a fire suddenly erupted inside the cockpit as they were strapped to their seats in their Apollo command module capsule, on a Friday evening at 6:31 p.m. on January 27, 1967.

“It’s been 50 years since the crew of Apollo 1 perished in a fire at the launch pad, but the lives, accomplishments and heroism of the three astronauts are celebrated in a dynamic, new tribute that is part museum, part memorial and part family scrapbook,” says a NASA narrative that aptly describes the exhibit and the memorial ceremony I attended at the Apollo/Saturn V Center at NASA’s Kennedy Space Center in Florida on Friday, Jan. 27, 2017 on behalf of Universe Today.

It was the first disaster with a human crew and the worst day in NASA’s storied history to that point.

The tribute is named called “Ad Astra Per Aspera – A Rough Road Leads to the Stars.”

A new tribute to the crew of Apollo 1, who perished in a fire at the launch pad on Jan. 27, 1967, opened at NASA’s Kennedy Space Center on the 50th anniversary of that fatal day that cost the lives of all three crewmembers. The tribute exhibit at the Apollo/Saturn Center highlights the lives and careers of NASA astronauts Gus Grissom, Ed White II and Roger Chaffee with artifacts and photos. Credit: Ken Kremer/kenkremer.com

At the tribute dedication ceremony Kennedy Space Center Director and former astronaut Bob Cabana said the families of the fallen crew gave their approvals and blessing to the efforts that would at last tell the story of Apollo 1 to all generations – those who recall it and many more to young or not yet born to remember the tragedy of the early days of America’s space program.

“It’s long overdue,” said KSC center director and former astronaut Bob Cabana at the KSC dedication ceremony to family, friends and invited guests colleagues. “I’m proud of the team that created this exhibit.”

“Ultimately, this is a story of hope, because these astronauts were dreaming of the future that is unfolding today,” said Cabana. Generations of people around the world will learn who these brave astronauts were and how their legacies live on through the Apollo successes and beyond.”

The exhibit “showcases clothing, tools and models that define the men as their parents, wives and children saw them as much as how the nation viewed them.”

The main focus was to introduce the astronauts to generations who never met them and may not know much about them or the early space program, says NASA.

“This lets you now meet Gus Grissom, Ed White and Roger Chaffee as members of special families and also as members of our own family,” said NASA’s Luis Berrios, who co-led the tribute design that would eventually involve more than 100 designers, planners and builders to realize.

“You get to know some of the things that they liked to do and were inspired by. You look at the things they did and if anyone does just one of those things, it’s a lifetime accomplishment and they did all of it and more.”

Apollo 1 astronauts Gus Grissom, Ed White II and Roger Chaffee stand near Cape Kennedy’s Launch Complex 34 during mission training in January 1967. On Jan. 27, 1967, the three astronauts were preparing for what was to be the first manned Apollo flight. The astronauts were sitting atop the launch pad for a pre-launch test when a fire broke out in their Apollo capsule and they perished. Credit: NASA

The crew and the Apollo 1 command module were stacked atop the Saturn 1B rocket at Launch Complex 34 on what is now Cape Canaveral Air Force Station in Florida.

During the “plugs out” test the Saturn 1B rocket was not fueled. But the fatal flaw was the atmosphere of pure oxygen for the astronauts to breath inside the sealed Apollo 1 command module which was pressurized to 16.7 psi.

The three-part hatch that was in place on the Apollo 1 spacecraft is shown in a tribute to the crew of Apollo 1 who perished in a fire at the launch pad on Jan. 27, 1967 during training for the mission. This is the first time any part of the Apollo 1 spacecraft has been displayed publicly and is part of the tribute exhibit at NASA’s Kennedy Space Center, Florida. A version of the hatch after it was redesigned is also showcased as an example of improvements NASA made throughout the agency and to the Apollo spacecraft that would later carry astronauts to the moon. Credit: Ken Kremer/kenkremer.com

Another significantly contributing fatal flaw was the inward opening three layered hatch that took some 90 seconds to open under the best of conditions.

After working all afternoon through the practice countdown and encountering numerous problems, something went terribly awry. Without warning a flash fire erupted in the cockpit filled with 100 percent oxygen and swiftly spread uncontrollably creating huge flames licking up the side of the capsule, acrid smoke and a poisonous atmosphere that asphyxiated, burned and killed the crew.

With the scorching temperatures spiking and pressures rapidly rising in a closed system, the capsule exploded some 20 seconds after the fire started. And because of the pressure buildup inside with flames licking up the sides and the toxic atmosphere generated from burning materials, the crew succumbed and could not turn the latch to pull open the hatch against the pressure.

The pad crew tried bravely in vain to save them, fighting heavy smoke and fire and fearing that the attached launch abort system on top of the capsule would ignite and kill them all too.

An investigation would determine that the fire was likely caused by a spark from frayed wiring, perhaps originating under Grissom’s seat.

“An electrical short circuit inside the Apollo Command Module ignited the pure oxygen environment and within a matter of seconds all three Apollo 1 crewmembers perished,” NASA concluded.

NASA and contractor North American Aviation completely redesigned the capsule with major engineering changes including an atmosphere of 60 percent oxygen and 40 percent nitrogen at 5 psi blower pressure, new hatch that could open outwards in 5 seconds, removing flammable materials among many others that would make the Apollo spacecraft much safer for the upcoming journeys to the moon.

The multi-layed hatch serves as the centerpiece of the tribute exhibit. No piece of Apollo 1 has ever before been put on public display. Alongside the old hatch, the new hatch is displayed that was used on all the remaining Apollo missions.

The three-part hatch that was in place on the Apollo 1 spacecraft is shown in a tribute to the crew of Apollo 1 who perished in a fire at the launch pad on Jan. 27, 1967 during training for the mission. This is the first time any part of the Apollo 1 spacecraft has been displayed publicly and is part of the tribute exhibit at NASA’s Kennedy Space Center, Florida. A version of the hatch after it was redesigned is also showcased (right) as an example of improvements NASA made throughout the agency and to the Apollo spacecraft that would later carry astronauts to the moon. Credit: Ken Kremer/kenkremer.com

Display cases highlights the lives and careers of the three astronauts in these NASA descriptions.

Gus Grissom was “one of NASA’s Original Seven astronauts who flew the second Mercury mission, a hunting jacket and a pair of ski boots are on display, along with a small model of the Mercury spacecraft and a model of an F-86 Sabre jet like the one he flew in the Korean War. A slide rule and engineering drafts typify his dedication to detail.”

“The small handheld maneuvering thruster that Ed White II used to steer himself outside his Gemini capsule during the first American spacewalk features prominently in the display case for the West Point graduate whose athletic prowess nearly equaled his flying acumen. An electric drill stands alongside the “zip gun,” as he called the thruster.”

“It was great to juxtaposition it with a drill which was also a tool that Ed loved to use,” Berrios said. “He had a tremendous passion for making things for his family.”

“Roger Chaffee, for whom Apollo 1 would have been his first mission into space, was an esteemed Naval aviator who became a test pilot in his drive to qualify as an astronaut later. Displayed are board games he played with his wife and kids on rare evenings free of training.”

Grissom, White and Chaffee composed NASA’s first three person crew following the one man Mercury program and two man Gemini program, that had just concluded in November 1966 with Gemini 12.

The trio had been scheduled to blastoff on February 21, 1967 on a 14 day long mission in Earth orbit to thoroughly check out the Apollo command and service modules.

Apollo 1 was to be the first launch in NASA’s Apollo moon landing program initiated by President John F. Kennedy in 1961.

Apollo 1 was planned to pave the way to the Moon so that succeeding missions would eventually “land a man on the Moon and return him safely to Earth before this decade is out” as Kennedy eloquently challenged the nation to do.

Legendary Gemini and Apollo astronaut General Thomas Stafford speaks at dedication of new tribute exhibit at NASA’s Kennedy Space Center about the heroic Apollo 1 crew and their contributions to getting us to the Moon on the 50th anniversary of their deaths in the flash fire on Jan. 27, 1967. Stafford was the backup commander of Apollo 1. Credit: Ken Kremer/kenkremer.com

I remember seeing the first news flashes about the Apollo 1 fire on the TV as a child, as it unfolded on the then big three networks. It is indelibly marked in my mind. This new exhibit truly tells the story of these astronaut heroes vividly to those with distant memories and those with little or no knowledge of Apollo 1.

Exit walkway passing through misty projection of Apollo 1 mission patch and crossing over to mock capsule and crew of Grissom, White and Chaffee seated in Apollo 1 Command Module. Family member quotes at left. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

A Proposal For Juno To Observe The Volcanoes Of Io

Io and volcanic plume. Credit: NASA/JPL-Caltech
To accomplish its science objectives, NASA’s Juno spacecraft orbits over Jupiter’s poles and passes repeatedly through hazardous radiation belts. Two Boston University researchers propose using Juno to probe the ever-changing flux of volcanic gases-turned-ions spewed by Io’s volcanoes. Credit: NASA/JPL-Caltech

Jupiter may be the largest planet in the Solar System with a diameter 11 times that of Earth, but it pales in comparison to its own magnetosphere. The planet’s magnetic domain extends sunward at least 3 million miles (5 million km) and on the back side all the way to Saturn for a total of 407 million miles or more than 400 times the size of the Sun.

Jupiter’s large magnetic field interacts with the solar wind to form an invisible magnetosphere. If we were able to see it, it would span at least several degrees of sky. It would show its greatest extent when viewing Jupiter from the side at quadrature, when the planet stands due south at sunrise or sunset.In the artist’s depiction, the planet would be located between the two “purple eyes” — too small to see at this scale. Credit: NASA.

If we had eyes adapted to see the Jovian magnetosphere at night, its teardrop-like shape would easily extend across several degrees of sky! No surprise then that Jove’s magnetic aura has been called one of the largest structures in the Solar System.

A 5-frame sequence taken by the New Horizons spacecraft in May 2007 shows a cloud of volcanic debris from Io’s Tvashtar volcano. The plume extends some 200 miles (330 km) above the moon’s surface. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Io, Jupiter’s innermost of the planet’s four large moons, orbits deep within this giant bubble. Despite its small size — about 200 miles smaller than our own Moon — it doesn’t lack in superlatives. With an estimated 400 volcanoes, many of them still active, Io is the most volcanically active body in the Solar System. In the moon’s low gravity, volcanoes spew sulfur, sulfur dioxide gas and fragments of basaltic rock up to 310 miles (500 km) into space in beautiful, umbrella-shaped plumes.

This schematic of Jupiter’s magnetic environments shows the planets looping magnetic field lines (similar to those generated by a simple bar magnet), Io and its plasma torus and flux tube. Credit: John Spencer / Wikipedia CC-BY-SA3.0 with labels by the author

Once aloft, electrons whipped around by Jupiter’s powerful magnetic field strike the neutral gases and ionize them (strips off their electrons). Ionized atoms and molecules (ions) are no longer neutral but possess a positive or negative electric charge. Astronomers refer to swarms of ionized atoms as plasma.

Jupiter rotates rapidly, spinning once every 9.8 hours, dragging the whole magnetosphere with it. As it spins past Io, those volcanic ions get caught up and dragged along for the ride, rotating around the planet in a ring called the Io plasma torus. You can picture it as a giant donut with Jupiter in the “hole” and the tasty, ~8,000-mile-thick ring centered on Io’s orbit.

That’s not all. Jupiter’s magnetic field also couples Io’s atmosphere to the planet’s polar regions, pumping Ionian ions through two “pipelines” to the magnetic poles and generating a powerful electric current known as the Io flux tube. Like firefighters on fire poles, the ions follow the planet’s magnetic field lines into the upper atmosphere, where they strike and excite atoms, spawning an ultraviolet-bright patch of aurora within the planet’s overall aurora. Astronomers call it Io’s magnetic footprint. The process works in reverse, too, spawning auroras in Io’s tenuous atmosphere.

The tilt of Juno’s orbit relative to Jupiter changes over the course of the mission, sending the spacecraft increasingly deeper into the planet’s intense radiation belts. Orbits are numbered from early in the mission to late. Credit: NASA/JPL-Caltech

Io is the main supplier of particles to Jupiter’s magnetosphere. Some of the same electrons stripped from sulfur and oxygen atoms during an earlier eruption return to strike atoms shot out by later blasts. Round and round they go in a great cycle of microscopic bombardment! The constant flow of high-speed, charged particles in Io’s vicinity make the region a lethal environment not only for humans but also for spacecraft electronics, the reason NASA’s Juno probe gets the heck outta there after each perijove or closest approach to Jupiter.

Io’s flux tube directs ions down Jupiter’s magnetic field lines to create magnetic footprints of enhanced aurora in Jupiter’s polar regions. An electric current of 5 million amps flows along Io’s flux tube.Credit: NASA/J.Clarke/HST

But there’s much to glean from those plasma streams.  Astronomy PhD student Phillip Phipps and assistant professor of astronomy Paul Withers of Boston University have hatched a plan to use the Juno spacecraft to probe Io’s plasma torus to indirectly study the timing and flow of material from Io’s volcanoes into Jupiter’s magnetosphere. In a paper published on Jan. 25, they propose using changes in the radio signal sent by Juno as it passes through different regions of the torus to measure how much stuff is there and how its density changes over time.

The technique is called a radio occultation. Radio waves are a form of light just like white light. And like white light, they get bent or refracted when passing through a medium like air (or plasma in the case of Io). Blue light is slowed more and experiences the most bending; red light is slowed less and refracted least, the reason red fringes a rainbow’s outer edge and blue its inner. In radio occultations, refraction results in changes in frequency caused by variations in the density of plasma in Io’s torus.

The best spacecraft for the attempt is one with a polar orbit around Jupiter, where it cuts a clean cross-section through different parts of the torus during each orbit. Guess what? With its polar orbit, Juno’s the probe for the job! Its main mission is to map Jupiter’s gravitational and magnetic fields, so an occultation experiment jives well with mission goals. Previous missions have netted just two radio occultations of the torus, but Juno could potentially slam dunk 24.

New Horizons took this photo of Io in infrared light. The Tvastar volcano is bright spot at top. At least 10 other volcanic hot spots dot the moon’s night side. Credit: NASA/JHUPL/SRI

Because the paper was intended to show that the method is a feasible one, it remains to be seen whether NASA will consider adding a little extra credit work to Juno’s homework. It seems a worthy and practical goal, one that will further enlighten our understanding of how volcanoes create aurorae in the bizarre electric and magnetic environment of the largest planet.

Harvard Physicist Creates Metallic Hydrogen Using Diamond Vise

Using two diamonds, scientists squeezed hydrogen to pressures above those in Earth's core. Credit: Sang-Heon Shim, Arizona State University

For some time, scientists have been fascinated by the concept of metallic hydrogen. Such an element is believed to exist naturally when hydrogen is placed under extreme pressures (like in the interior of gas giants like Jupiter). But as a synthetic material, it would have endless applications, since it is believed to have superconducting properties at room temperature and the ability to retain its solidity once it has been brought back to normal pressure.

For this reason, condensed matter physicists have been attempting to create metallic hydrogen for decades. And according to a recent study published in Science Magazine, a pair of physicists from the Lyman Laboratory of Physics at Harvard University claim to have done this very thing. If true, this accomplishment could usher in a new age of super materials and high-pressure physics.

The existence of metallic hydrogen was first predicted in 1935 Princeton physicists Eugene Wigner and Hillard Bell Huntington. For years, Isaac Silvera (the Thomas D. Cabot Professor at Harvard University) and Ranga Dias, a postdoctorate fellow, have sought to create it. They claim to have succeeded, using a process which they described in their recently-published study, “Observation of the Wigner-Huntington transition to metallic hydrogen“.

This cut-away illustrates a model of the interior of Jupiter, with a rocky core overlaid by a deep layer of liquid metallic hydrogen. Credit: Kelvinsong/Wikimedia Commons

Such a feat, which is tantamount to creating the heart of Jupiter between two diamonds, is unparalleled in the history of science. As Silvera described the accomplishment in a recent Harvard press release:

“This is the Holy Grail of high-pressure physics. It’s the first-ever sample of metallic hydrogen on Earth, so when you’re looking at it, you’re looking at something that’s never existed before.”

In the past, scientists have succeeded in creating liquid hydrogen at high temperature conditions by ramping up the pressures it was exposed to (as opposed to cryogenically cooling it). But metallic hydrogen has continued to elude experimental scientists, despite repeated (and unproven) claims in the past to have achieved synthesis. The reason for this is because such experiments are extremely temperamental.

For instance, the diamond anvil method (which Silvera and Dias used a variation of) consists of holding a sample of hydrogen in place with a thin metal gasket, then compressing it between two diamond-tipped vices. This puts the sample under extreme pressure, and a laser sensor is used to monitor for any changes. In the past, this has proved problematic since the pressure can cause the hydrogen to fill imperfections in the diamonds and crack them.

While protective coatings can ensure the diamonds don’t crack, the additional materials makes it harder to get accurate readings from laser measurements. What’s more, scientists attempting to experiment with hydrogen have found that pressures of ~400 gigapascals (GPa) or more need to be involved – which turns the hydrogen samples black, thus preventing the laser light from being able to penetrate it.

Microscopic images of the stages in the creation of metallic hydrogen: Transparent molecular hydrogen (left) at about 200 GPa, which is converted into black molecular hydrogen, and finally reflective atomic metallic hydrogen at 495 GPa. Credit: Isaac Silvera

For the sake of their experiment, Professors Ranga Dias and Isaac Silvera took a different approach. For starters, they used two small pieces of polished synthetic diamond rather than natural ones. They then used a reactive ion etching process to shave their surfaces, then coated them with a thin layer of alumina to prevent hydrogen from diffusing into the crystal structure.

They also simplified the experiment by removing the need for high-intensity laser monitoring, relying on Raman spectroscopy instead. When they reached a pressure of 495 GPa (greater than that at the center of the Earth), their sample reportedly became metallic and changed from black to shiny red. This was revealed by measuring the spectrum of the sample, which showed that it had become highly reflective (which is expected for a sample of metal).

As Silvera explained, these experimental results (if verified) could lead to all kinds of possibilities:

“One prediction that’s very important is metallic hydrogen is predicted to be meta-stable. That means if you take the pressure off, it will stay metallic, similar to the way diamonds form from graphite under intense heat and pressure, but remain diamonds when that pressure and heat are removed. As much as 15 percent of energy is lost to dissipation during transmission, so if you could make wires from this material and use them in the electrical grid, it could change that story.”

Superconducting links developed to carry currents of up to 20,000 amperes are being tested at CERN. Credit: CERN

In short, metallic hydrogen could speed the revolution in electronics already underway, thanks to the discovery of materials like graphene. Since metallic hydrogen is also believed to be a superconductor at room temperature, its synthetic production would have immense implications for high-energy research and physics – such as that being conducted by CERN.

Beyond that, it would also enable research into the interior’s of gas giants. For some time, scientists have suspected that a layer of metallic hydrogen may surround the cores of gas giants like Jupiter and Saturn. Naturally, the temperature and pressure conditions in the interiors of these planets make direct study impossible. But by being able to produce metallic hydrogen synthetically, scientists could conduct experiment to see how it behaves.

Naturally, the news of this experiment and its results is being met with skepticism. For instance, critics wonder if the pressure reading of 495 GPa was in fact accurate, since Silvera and Dias only obtained that as a final measurement and were forced to rely on estimates prior to that. Second, there are those who question if the reddish speck that resulted is in fact hydrogen, and some material that came from the gasket or diamond coating during the process.

However, Silvera and Dias are confident in their results and believe they can be replicated (which would go far to silence doubts about their results). For one, they emphasize that a comparative measurement of the reflective properties of the hydrogen dot and the surrounding gasket suggest that the hydrogen is pure. They also claim their pressure measurements were properly calibrated and verified.

In the future, they intend to obtain additional spectrographic readings from the sample to confirm that it is in fact metallic. Once that is done, they plan to test the sample to see if it is truly metastable, which will consist of them opening the vise and seeing if it remains in a solid state. Given the implications of success, there are many who would like to see their experiment borne out!

Be sure to check out this video produced by Harvard University that talks about the experiment:

Further Reading: Science Magazine, Harvard Gazette

Four Planet System Directly Imaged In Motion

Artist's concept of the multi-planet system around HR 8799, initially discovered with Gemini North adaptive optics images. Credit: Gemini Observatory/Lynette Cook"

Located about 129 light years from Earth in the direction of the Pegasus constellation is the relatively young star system of HR 8799. Beginning in 2008, four orbiting exoplanets were discovered in this system which – alongside the exoplanet Formalhaut b – were the very first to be confirmed using the direct imaging technique. And over time, astronomer have come to believe that these four planets are in resonance with each other.

In this case, the four planets orbit their star with a 1:2:4:8 resonance, meaning that each planet’s orbital period is in a nearly precise ratio with the others in the system. This is a relatively unique phenomena, one which inspired a Jason Wang – a graduate student from the Berkeley arm of the NASA-sponsored Nexus for Exoplanet System Science (NExSS) – to produce a video that illustrates their orbital dance.

Using images obtained by the W.M. Keck Observatory over a seven year period, Wang’s video provides a glimpse of these four exoplanets in motion. As you can see below, the central star is blacked out so that the light reflecting off of its planets can be seen. And while it does not show the planets completing a full orbital period (which would take decades and even centuries) it beautifully illustrates the resonance that exists between the star’s four planets.

As Jason Wang told Universe Today via email:

“The data was obtained over 7 years from one of the 10 meter Keck telescopes by a team of astronomers (Christian Marois, Quinn Konopacky, Bruce Macintosh, Travis Barman, and Ben Zuckerman). Christian reduced each of the 7 epochs of data, to make 7 frames of data. I then made a movie by using a motion interpolation to interpolate those 7 frames into 100 frames to get a smooth video so that it’s not choppy (as if we could observe them every month from Earth).”

The images of the four exoplanets were originally captured by Dr. Christian Marois of the National Research Council of Canada’s Herzberg Institute of Astrophysics. It was in 2008 that Marois and his colleagues discovered the first three of HR 8799’s planets – HR 8799 b, c and d – using direct imaging technique. At around the same time, a team from UC Berkeley announced the discovery of Fomalhaut b, also using direct imaging.

These planets were all determined to be gas giants of similar size and mass, with between 1.2 and 1.3 times the size of Jupiter, and 7 to 10 times its mass. At the time of their discovery, HR 8799 d was believed to be the closest planet to its star, at a distance of about 27 Astronomical Units (AUs) – while the other two orbit at distances of about 42 and 68 AUs, respectively.

Image of HR 8799 (left) taken by the HST in 1998, image processed to remove scattered starlight (center), and illustration of the planetary system (right). Credit: NASA/ESA/STScI/R. Soummer

It was only afterwards that the team realized the planets had already been observed in 1998. Back then, the Hubble Space Telescope’s Near Infrared Camera and Multi-Object Spectrometer (NICMOS) had obtained light from the system that indicated the presence of planets. However, this was not made clear until after a newly-developed image-processing technique had been installed. Hence, the “pre-discovery” went unnoticed.

Further observations in 2009 and 2010 revealed the existence of fourth planet – HR 8799 e – which had an orbit placing it inside the other three. Even so, this planet is fifteen times farther from its star than the Earth is from the Sun, which results in an orbital period of about 18,000 days (49 years). The others take around 112, 225, and 450 years (respectively) to complete an orbit of HR 8799.

Ultimately, Wang decided to produce the video (which was not his first), to illustrate how exciting the search for exoplanets can be. As he put it:

“I had written this motion interpolation algorithm for another exoplanet system, Beta Pictoris b, where we see one planet on an edge-on orbit looking like it’s diving into its star (it’s actually just circling in front of it). We wanted to do the same thing for HR 8799 to bring this system to life and share our excitement in directly imaging exoplanets. I think it’s quite amazing that we have the technology to watch other worlds orbit other stars.”

In addition, the video draws attention to a star system that presents some unique opportunities for exoplanet research. Since HR 8799 was the first multi-planetary system to be directly-imaged means that astronomers can directly observe the orbits of the four planets, observe their dynamical interactions, and determine how they came to their present-day configuration.

Astronomers will also be able to take spectra of these planet’s atmospheres to study their composition, and compare this to our own Solar System’s gas giants. And since the system is really quite young (just 40 million years old), it can tell us much about the planet-formation process. Last, but not least, their wide orbits (a necessity given their size) could mean the system is less than stable.

In the future, according to Wang, astronomers will be watching to see if any planets get ejected from the system. I don’t know about you, but I would consider a video that illustrates one of HR 8799’s gas giants getting booted out of its system would be pretty inspiring too!

Further Reading: NASA

JPL Needs Citizen Scientists To Hunt Martian Polygonal Ridges

Using its HiRISE camera, the MRO has noted existence of tall networks of ridges on Mars that have diverse origins. Credit: NASA/JPL-Caltech/Univ. of Arizona

Mars has some impressive geological features across its cold, desiccated surface, many of which are similar to featured found here on Earth. By studying them, scientists are able to learn more about the natural history of the Red Planet, what kinds of meteorological phenomena are responsible for shaping it, and how similar our two planets are. A perfect of example of this are the polygon-ridge networks that have been observed on its surface.

One such network was recently discovered by the Mars Reconnaissance Orbiter (MRO) in the Medusae Fossae region, which straddles the planet’s equator. Measuring some 16 story’s high, this ridge network is similar to others that have been spotted on Mars. But according to a survey produced by researchers from NASA’s Jet Propulsion Laboratory, these ridges likely have different origins.

This survey, which was recently published in the journal Icarus, examined both the network found in the Medusae Fossae region and similar-looking networks in other regions of the Red Planet. These ridges (sometimes called boxwork rides), are essentially blade-like walls that look like multiple adjoining polygons (i.e. rectangles, pentagons, triangles, and similar shapes).

 Shiprock, a ridge-feature in northwestern New Mexico that is 10 meters (30 feet) tall, which formed from lava filling an underground fracture that resisted erosion better than the material around it did. Credit: NASA

While similar-looking ridges can be found in many places on Mars, they do not appear to be formed by any single process. As Laura Kerber, of NASA’s Jet Propulsion Laboratory and the lead author of the survey report, explained in a NASA press release:

“Finding these ridges in the Medusae Fossae region set me on a quest to find all the types of polygonal ridges on Mars… Polygonal ridges can be formed in several different ways, and some of them are really key to understanding the history of early Mars. Many of these ridges are mineral veins, and mineral veins tell us that water was circulating underground.”

Such ridges have also been found on Earth, and appear to be the result of various processes as well. One of the most common involves lava flowing into preexisting fractures in the ground, which then survived when erosion stripped the surrounding material away. A good example of this is the Shiprock (shown above), a monadrock located in San Juan County, New Mexico.

Examples of polygon ridges on Mars include the feature known as “Garden City“, which was discovered by the Curiosity rover mission. Measuring just a few centimeters in height, these ridges appeared to be the result of mineral-laden groundwater moving through underground fissures, which led to standing mineral veins once the surrounding soil eroded away.

Mineral veins at the “Garden City” site, examined by NASA’s Curiosity Mars rover. Credit: NASA/JPL

At the other end of the scale, ridges that measure around 2 kilometers (over a mile) high have also been found. A good example of this is “Inca City“, a feature observed by the Mars Global Surveyor near Mars’ south pole. In this case, the feature is believed to be the result of underground faults (which were formed from impacts) filling with lava over time. Here too, erosion gradually stripped away the surrounding rock, exposing the standing lava rock.

In short, these features are evidence of underground water and volcanic activity on Mars. And by finding more examples of these polygon-ridges, scientists will be able to study the geological record of Mars more closely. Hence why Kerber is seeking help from the public through a citizen-science project called Planet Four: Ridges.

Established earlier this month on Zooniverse – a volunteer-powered research platform – this project has made images obtained by the MRO’s Context Camera (CTX) available to the public. Currently, this and other projects using data from CTX and HiRISE have drawn the participation of more than 150,000 volunteers from around the world.

By getting volunteers to sort through the CTX images for ridge formations, Kerber and her team hopes that previously-unidentified ones will be identified and that their relationship with other Martian features will be better understood.

Further Reading: NASA

Boeing Unveils Blue Spacesuits for Starliner Crew Capsule

Chris Ferguson, Boeing director of Starliner Crew and Mission Systems and a former NASA astronaut and Space Shuttle commander wears the brand new spacesuit from Boeing and David Clark that crews will wear on Starliner missions to the ISS. Credit: Boeing
Chris Ferguson, Boeing director of Starliner Crew and Mission Systems and a former NASA astronaut and Space Shuttle commander wears the brand new spacesuit from Boeing and David Clark that crews will wear on Starliner missions to the ISS. Credit: Boeing

Boeing has unveiled the advanced new lightweight spacesuits that astronauts will sport as passengers aboard the company’s CST-100 Starliner space taxi during commercial taxi journey’s to and from and the International Space Station (ISS) and other low Earth orbit destinations.

The signature ‘Boeing Blue’ spacesuits will be much lighter, as well as more flexible and comfortable compared to earlier generations of spacesuits worn by America’s astronauts over more than five decades of human spaceflight, starting with the Mercury capsule to the latest gear worn by Space Shuttle astronauts.

“The suit capitalizes on historical designs, meets NASA requirements for safety and functionality, and introduces cutting-edge innovations,” say NASA officials.

The suits protect the astronauts during both launch and reentry into the Earth’s atmosphere during the return home.

Indeed, Chris Ferguson, a former NASA Space Shuttle Commander who now works for Boeing as a Starliner program director, helped reveal the ‘Boeing Blue’ spacesuits during a Facebook live event, where he modeled the new suit.

“We slogged through some of the real engineering challenges and now we are getting to the point where those challenges are largely behind us and it’s time to get on to the rubber meeting the road,” Ferguson said.

The suits offer superior functionality, comfort and protection for astronauts who will don them when crewed Starliner flights to the space station begin as soon as next year.

Astronaut Eric Boe evaluates Boeing Starliner spacesuit in mockup of spacecraft cockpit. Credits: Boeing

At roughly half the weight (about 10 pounds vs. 20 pounds) compared to the launch-and-entry suits worn by space shuttle astronauts, crews look forward to wearing the ‘Boeing Blue’ suits.

“Spacesuits have come in different sizes and shapes and designs, and I think this fits the Boeing model, fits the Boeing vehicle,” said Chris Ferguson.

Among the advances cited are:

• Lighter and more flexible through use of advanced materials and new joint patterns
• Helmet and visor incorporated into the suit instead of detachable. The suit’s hood-like soft helmet sports a wide polycarbonate visor to give Starliner passengers better peripheral vision throughout their ride to and from space.
• A communications headset within the helmet also helps connect astronauts to ground and space crews
• Touchscreen-sensitive gloves that allow astronauts to interact with the capsule’s tablets screens overhead
• Vents that allow astronauts to be cooler, but can still pressurize the suit immediately
• Breathable, slip resistant boots
• Zippers in the torso area will make it easier for astronauts to comfortably transition from sitting to standing
• Innovative layers will keep astronauts cooler

“The most important part is that the suit will keep you alive,” astronaut Eric Boe said, in a statement. “It is a lot lighter, more form-fitting and it’s simpler, which is always a good thing. Complicated systems have more ways they can break, so simple is better on something like this.”

The astronauts help the designers to perfect the suits very practically by wearing them inside Starliner mock-ups, moving around to accomplish tasks, reaching for the tablets screens, and climbing in and out of the capsule repeatedly, says Boe “so they can establish the best ways for astronauts to work inside the spacecraft’s confines.”

Astronaut Sunni Williams puts on the communications carrier of Boeing’s new Starliner spacesuit. Credits: Boeing

“The spacesuit acts as the emergency backup to the spacecraft’s redundant life support systems,” said Richard Watson, subsystem manager for spacesuits for NASA’s Commercial Crew Program.

“If everything goes perfectly on a mission, then you don’t need a spacesuit. It’s like having a fire extinguisher close by in the cockpit. You need it to be effective if it is needed.”

Boeing graphic of Starliner spacesuit features. Credit: NASA/Boeing

Boe is one of four NASA astronauts that form the core cadre of astronauts training for the initial flight tests aboard either the Boeing Starliner or SpaceX Crew Dragon now under development as part of NASA’s Commercial Crew program.

The inaugural flight tests are slated to begin in 2018 under contract to NASA.

The procedure on launch day will be similar to earlier manned launches. For Starliner, however, the capsule will launch atop a United Launch Alliance Atlas V rocket – currently being man-rated.

Fiery blastoff of a United Launch Alliance (ULA) Atlas V rocket carrying the EchoStar XIX satellite from Space Launch Complex-41 on Cape Canaveral Air Force Station, Fl., at 2:13 p.m. EST on Dec. 18, 2016. Note recently installed crew access tower and arm to be used for launches of Boeing Starliner crew spacecraft. Credit: Ken Kremer/kenkremer.com

Astronauts will don the new ‘Boeing Blue’ suit in the historic Crew Quarters. The will ride out to the rocket inside an astrovan. After reaching Space Launch Complex 41, they will take the elevator up, stride across the recently installed Crew Access Arm and board Starliner as it stands atop a United Launch Alliance Atlas V rocket.

The first test flight will carry a crew of two. Soon thereafter the crew size will grow to four when regular crew rotation flights to the ISS starting as soon as 2019.

“To me, it’s a very tangible sign that we are really moving forward and we are a lot closer than we’ve been,” Ferguson said. “The next time we pull all this together, it might be when astronauts are climbing into the actual spacecraft.”

Boeing is currently manufacturing the Starliner spacecraft at the company’s Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida.

Hull of the Boeing CST-100 Starliner Structural Test Article (STA)- the first Starliner to be built in the company’s modernized Commercial Crew and Cargo Processing Facility high bay at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

A crane lifts the Crew Access Arm and White Room for Boeing’s CST-100 Starliner spacecraft for mating to the Crew Access Tower at Cape Canaveral Air Force Station’s Space Launch Complex 41 on Aug. 15, 2016. Astronauts will walk through the arm to board the Starliner spacecraft stacked atop a United Launch Alliance Atlas V rocket. Credit: Ken Kremer/kenkremer.com

What’s That Bright Star in the Sky?

What’s That Bright Star in the Sky?
What’s That Bright Star in the Sky?

Every few months a bright star appears in the sky. Sometimes it’s off to the East, bright in the morning before the Sun rises. Other times, you can see it in the West right after the Sun sets.

Experienced stargazers know this isn’t a star at all, of course, it’s Venus. That horrible twin planet, surrounded by a toxic choking atmosphere of superheated carbon dioxide. For a while it becomes the fourth brightest object in the sky: after the Sun, Moon and the International Space Station, if you can believe it.

In dark skies, Venus gets so bright you can even read a book to it.

Inexperienced stargazers, however, suddenly notice this super bright star in the sky. How come they never noticed it before? Was it always right next to the Moon like that? And that’s when the UFO calls to 911 start up.

Credit: nosha (CC BY-SA 2.0)

I know none of them are going to be watching this video. But for everyone else, even mildly interested in the science here, let’s dig into the orbit of Venus, how we finally figured out what that thing is, how you can observe the planet, and some cool tricks Venus can do.

We’ve written several articles on what planet Venus actually is, and why it sucks so much. You know, a runaway greenhouse effect giving the planet 90 times the Earth’s atmospheric pressure at the surface. It’s a 462-degree furnace, anywhere you go, with a rain of sulfuric acid.

A radar view of Venus taken by the Magellan spacecraft, with some gaps filled in by the Pioneer Venus orbiter. Credit: NASA/JPL

Nope, we’re not going to talk about visiting that place. Instead, we’re just going to talk about looking at it from afar, and how it changed our whole understanding about our place in the Solar System.

Venus is, of course, the second planet from the Sun. But for the vast majority of human history, nobody really understood what it was. It’s easy to see in the sky, even if you live in one of the most light polluted cities on Earth.

Ancient civilizations tried to grapple with what they were looking at, and of course, they assumed there was something supernatural going on. Probably dark and vengeful gods wandering through the heavens, staring down at us with their beady eyes. Judging, always judging. Some civilizations figured out that it’s a single object, while others believed they were looking at two separate entities.

The Ancient Greeks, for example, called the morning edition of Venus Phosphoros, the “Bringer of Light”, and they called the evening star Hesperos, the, uh, “Star of the Evening”. Then they realized it was a single object, and upgraded it to Aphrodite, the goddess of love. The Romans turned that into Venus, and the name stuck.

Heliocentric Model
Andreas Cellarius’s illustration of the Copernican system, from the Harmonia Macrocosmica (1708). Credit: Public Domain

The ancient astronomers assumed the Earth was the center of the Universe, and all the planets and even the Sun and stars revolved around us. but Nicholas Copernicus worked out the true nature of the Solar System in the early 16th century. The Sun was at the center of the Solar System, and all planets, including Earth, orbited around it.

It was a cool story, and nicely fit the motions of the planets, however, the best evidence came almost a century later when Galileo turned his first crude telescope to Venus and realized that the planet goes through phases, just like the Moon. In fact, with a small telescope, you can confirm this all for yourself.

Each of the planets orbit the Sun. Mercury and Venus orbit closer to the Sun, then Earth, then the rest of the planets. When we observe Venus, we look inwards, down towards the Sun. When we see the rest of the planets, we’re looking outward, away from the Sun.

The best analogy is a car race. If you’re in the stands watching those cars go around and around, you’re turning your head back and forth as the cars pointlessly circle in front of you. But to see cars in the ring road around the racetrack, you’ll need to look all the way round you. Make sense?

 

The orbits of Earth and Venus around the Sun. Credit: Universe Sandbox ²

Here’s a simplified version of the Solar System, with just the Earth, Venus, and the Sun. Earth, as you probably know, takes just over 365 days to go around the Sun, while Venus only takes 225 days to complete an orbit.

Which means that Venus completes more than 3 orbits every time Earth completes 2. Which means that we’re always seeing Venus from different angles compared to the Sun.

Sometimes it’s on the same side of the Sun as us. Other times it’s on the opposite. And sometimes Venus is on one side of the Sun, or the other. For about 9 and a half months, Venus is the evening star, brightening to its maximum, and then it spends another 9 and a half months as the morning star.

When all three are lined up, astronomers call that a conjunction. It’s a superior conjunction if Venus is on the opposite side of the Sun, and an inferior conjunction if it’s between us and the Sun.

When Venus is on either side, we measure its elongation, eastern or western. Because Venus orbits close to the Sun, the absolute maximum it can get is 47-degrees elongation. Make a triangle, where you point one line at the Sun, and another line at Venus, the angle of this triangle can’t get any bigger than 47-degrees.

And this is why we always see Venus relatively close to the Sun in the sky. There are 360 total degrees you can look, but Venus never leaves 90 of them.

The phases of Venus. Credit: Statis Kalyvas – VT-2004 programme

Now, onto the phases. Just like the Moon, when Venus is in between us and the Sun, then all the light is falling on the far side of Venus. The side facing towards the Sun, but facing away from us. Of course, Venus is also hidden by the glare of the Sun, which means we really can’t even see it. The opposite happens when it’s on the other side of the Sun. It would be fully illuminated from our perspective. Too bad we can’t see it in all that glare.

But when Venus is on either side, this is when we can finally see it. As our perspective changes, we’re seeing more and more of the planet illuminated, and less in shadow. We see phases. We can see a crescent Venus, or a quarter Venus, or a gibbous Venus.

When Venus is almost fully illuminated, it’s actually at its dimmest because it’s so far away. Then as it moves higher and higher in the sky, we see less of it illuminated, but more overall surface area, so it gets brighter. The point of maximum brightness, when it’s blazing brighter than almost any other object in the sky is when the greatest amount of surface area of Venus is visible to us. Astronomers call this the greatest illuminated extent.

Venus is beautiful in the evening right now as I’m recording this video. We won’t see it this bright in the evening sky until August 2017, and then March, 2020. So, get out and enjoy it while you can.

When Venus passes directly in front of the Sun, that’s a planetary transit. The last time it happened was back in 2012, and before that, 2004. Unfortunately, the next transit of Venus won’t happen until 2117. I’m sure I’ll be still around, living it up in my robot body.

You’d might wonder why they don’t line up every time Venus passes between the Earth and the Sun. That’s because both Earth and Venus are slightly tilted in their orbits. Sometimes we see Venus above the Sun when it’s directly across from us, other times it’s below the Sun. It’s only after more than 100 years they directly line up again.

 

A planetary transit of Venus. Credit: NASA/Goddard Space Flight Center/SDO

It turns out that transits of Venus gave us some of the most valuable discoveries in human history.

Today we know that the Sun is approximately 150 million kilometers away. But for the longest time we had no idea how far away the planets are. We know how far away everything is in proportion to everything else, but not in absolute terms.

In 1663, the Scottish mathematician James Gregory calculated that by making very precise measurements of the transits of Venus or Mercury, you could use trigonometry to figure out the actual distance from the Earth to the Sun. The famed astronomer Edumund Halley did even more detailed calculations and suggesedt places on the Earth to make measurements from.

It wasn’t until the 1700s that astronomers got organized enough to make worldwide measurements during a transit of Venus.

Astronomers tried to observe the Venus transit of 1761, but the weather conditions were pretty bad. In the 1769 transit, however, astronomers were sent to various corners of the globe. In Canada, Norway and the South Pacific. Nations fighting each other allowed astronomers safe passage through on ships through the warzone.

All of the observers made 4 observations: when Venus was touching the edge of the Sun, when it was fully inside, when it had touched the other side, and when it was fully out.

By combining all these measurements across the Earth, astronomers calculated that the distance from the Earth to the Sun was 93,726,900 English miles. The most accurate number we have today is 92,955,000 miles, or about 150 million kilometers. They were only off by about 1%. Not bad.

Once we knew the distance from the Earth to the Sun, we could calculate the distance to the other planets, even to other stars.  All thanks to Venus.

Venus is one of the most dependable companions we have in the night sky. Sure, it’s a hellish death world, but from our perspective here on Earth, it’s really cool to look at. Don’t miss the next opportunity to see Venus with your own eyeballs. And if you can, get your hands on a telescope and see the planet going through its phases. You won’t regret it.

Did you get a chance to see the last transit of Venus, back in 2012? Give me the details of your experience in the comments.