Special Guest:
Dan Dixon is the creator and director of Universe Sandbox ², an accessible space simulator application that merges real-time gravity, climate, collision, and physical interactions to reveal the beauty of our universe and the fragility of our planet.
Dan began work on the original Universe Sandbox in 2006, and continues to work on the latest version, Universe Sandbox ², with the help of a growing team of talented developers, artists, and scientists.
We use a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!
If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!
If you would like to sign up for the AstronomyCast Solar Eclipse Escape, where you can meet Fraser and Pamela, plus WSH Crew and other fans, visit our site linked above and sign up!
We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Universe Today, or the Universe Today YouTube page
It’s always a welcome thing to learn that ideas that are commonplace in science fiction have a basis in science fact. Cryogenic freezers, laser guns, robots, silicate implants… and let’s not forget the warp drive! Believe it or not, this concept – alternately known as FTL (Faster-Than-Light) travel, Hyperspace, Lightspeed, etc. – actually has one foot in the world of real science.
In physics, it is what is known as the Alcubierre Warp Drive. On paper, it is a highly speculative, but possibly valid, solution of the Einstein field equations, specifically how space, time and energy interact. In this particular mathematical model of spacetime, there are features that are apparently reminiscent of the fictional “warp drive” or “hyperspace” from notable science fiction franchises, hence the association.
Background:
Since Einstein first proposed the Special Theory of Relativity in 1905, scientists have been operating under the restrictions imposed by a relativistic universe. One of these restrictions is the belief that the speed of light is unbreakable and hence, that there will never be such a thing as FTL space travel or exploration.
Even though subsequent generations of scientists and engineers managed to break the sound barrier and defeat the pull of the Earth’s gravity, the speed of light appeared to be one barrier that was destined to hold. But then, in 1994, a Mexican physicist by the name of Miguel Alcubierre came along with proposed method for stretching the fabric of space-time in way which would, in theory, allow FTL travel to take pace.
Concept:
To put it simply, this method of space travel involves stretching the fabric of space-time in a wave which would (in theory) cause the space ahead of an object to contract while the space behind it would expand. An object inside this wave (i.e. a spaceship) would then be able to ride this region, known as a “warp bubble” of flat space.
This is what is known as the “Alcubierre Metric”. Interpreted in the context of General Relativity, the metric allows a warp bubble to appear in a previously flat region of spacetime and move away, effectively at speeds that exceed the speed of light. The interior of the bubble is the inertial reference frame for any object inhabiting it.
Since the ship is not moving within this bubble, but is being carried along as the region itself moves, conventional relativistic effects such as time dilation would not apply. Hence, the rules of space-time and the laws of relativity would not be violated in the conventional sense.
One of the reasons for this is because this method would not rely on moving faster than light in the local sense, since a light beam within this bubble would still always move faster than the ship. It is only “faster than light” in the sense that the ship could reach its destination faster than a beam of light that was traveling outside the warp bubble.
Difficulties:
However, there is are few problems with this theory. For one, there are no known methods to create such a warp bubble in a region of space that would not already contain one. Second, assuming there was a way to create such a bubble, there is not yet any known way of leaving once inside it. As a result, the Alcubierre drive (or metric) remains in the category of theory at this time.
Mathematically, it can be represented by the following equation: ds2= – (a2 – BiBi) dt2 + 2Bi dxi dt + gijdxi dxj, where a is the lapse function that gives the interval of proper time between nearby hypersurfaces, Biis the shift vector that relates the spatial coordinate systems on different hypersurfaces and gij is a positive definite metric on each of the hypersurfaces.
Attempts at Development:
In 1996, NASA founded a research project known as the Breakthrough Propulsion Physics Project (BPP) to study various spacecraft proposals and technologies. In 2002, the project’s funding was discontinued, which prompted the founder – Marc G. Millis – and several members to create the Tau Zero Foundation. Named after the famous novel of the same name by Poul Anderson, this organization is dedicated to researching interstellar travel.
In 2012, NASA’s Advanced Propulsion Physics Laboratory (aka. Eagleworks) announced that they had began conducting experiments to see if a “warp drive” was in fact possible. This included developing an interferometer to detect the spatial distortions produced by the expanding and contracting space-time of the Alcubierre metric.
The team lead – Dr. Harold Sonny White – described their work in a NASA paper titled Warp Field Mechanics 101. He also explained their work in NASA’s 2012 Roundup publication:
“We’ve initiated an interferometer test bed in this lab, where we’re going to go through and try and generate a microscopic instance of a little warp bubble. And although this is just a microscopic instance of the phenomena, we’re perturbing space time, one part in 10 million, a very tiny amount… The math would allow you to go to Alpha Centauri in two weeks as measured by clocks here on Earth. So somebody’s clock onboard the spacecraft has the same rate of time as somebody in mission control here in Houston might have. There are no tidal forces, no undue issues, and the proper acceleration is zero. When you turn the field on, everybody doesn’t go slamming against the bulkhead, (which) would be a very short and sad trip.”
In 2013, Dr. White and members of Eagleworks published the results of their 19.6-second warp field test under vacuum conditions. These results, which were deemed to be inconclusive, were presented at the 2013 Icarus Interstellar Starship Congress held in Dallas, Texas.
When it comes to the future of space exploration, some very tough questions seem unavoidable. And questions like “how long will it take us to get the nearest star?” seem rather troubling when we don’t make allowances for some kind of hypervelocity or faster-than-light transit method. How can we expect to become an interstellar species when all available methods with either take centuries (or longer), or will involve sending a nanocraft instead?
At present, such a thing just doesn’t seem to be entirely within the realm of possibility. And attempts to prove otherwise remain unsuccessful or inconclusive. But as history has taught us, what is considered to be impossible changes over time. Someday, who knows what we might be able to accomplish? But until then, we’ll just have to be patient and wait on future research.
SpaceX was able to celebrate a successful return to flight this week with a picture-perfect launch of the Falcon 9 rocket on January 14, 2017 that successfully delivered a fleet of ten advanced Iridium NEXT mobile voice and data relay satellites to orbit. But the icing on the cake was the dead-center landing and recovery of the Falcon 9 booster on their drone barge (named “Just Read The Instructions”) in the Pacific Ocean, off the west coast of California.
SpaceX released some images from the landing that are absolutely stunning, like this one, below:
The Falcon 9 launched from Space Launch Complex 4E on Vandenberg Air Force Base in California, and the main goal of the mission was to deploy the payload of the first ten Iridium Next communication satellites to low Earth orbit. Iridium plans to eventually have a fleet of 81 such satellites.
It was the first launch for the commercial company since the September 1, 2016 explosion on the launchpad at Cape Canaveral Air Force Station in Florida during a routine launchpad test. The explosion destroyed the Falcon 9 rocket and the payload of the Amos-6 communications satellite, which had an estimated value of $200 million. The explosion was traced back to a failure of a high-pressure helium vessel inside the Falcon 9’s second-stage liquid-oxygen tank.
Enjoy more images and video from the landing below:
Here’s the full webcast of both the launch and landing:
The reality of Climate Change has become painfully apparent in recent years, thanks to extended droughts in places like California, diminishing water tables around the world, rising tides, and coastal storms of increasing intensity and frequency. But perhaps the most measurable trend is the way that average global temperatures have kept rising year after year.
And this has certainly been the case for the year of 2016. According to independent analyses provided by NASA’s Goddard Institute for Space Studies (GISS) and the National Oceanic and Atmospheric Agency (NOAA), 2016 was the warmest year since modern record keeping began in 1880. This represents a continuation of a most alarming trend, where 16 of the 17 warmest years on record have occurred since 2001.
Based in New York, GISS conducts space and Earth sciences research, in support of the Goddard Space Flight Center’s (GSFC) Sciences and Exploration Directorate. Since its establishment in 1961, the Institute has conducted valuable research on Earth’s structure and atmosphere, the Earth-Sun relationship, and the structure and atmospheres of other planets in the Solar System.
Their early studies of Earth and other solar planets using data collected by satellites, space probes, and landers eventually led to GISS becoming a leading authority on atmospheric modeling. Similarly, the NOAA efforts to monitor atmospheric conditions and weather in the US since 1970s has led to them becoming a major scientific authority on Climate Change.
Together, the two organizations looked over global temperature data for the year of 2016 and came to the same conclusion. Based on their assessments, GISS determined that globally-averaged surface temperatures in 2016 were 0.99 °C (1.78 °F) warmer than the mid-20th century mean. As GISS Director Gavin Schmidt put it, these findings should silence any doubts about the ongoing nature of Global Warming:
“2016 is remarkably the third record year in a row in this series. We don’t expect record years every year, but the ongoing long-term warming trend is clear.”
The NOAA’s findings were similar, with an average temperature of 14.83 °C (58.69 °F) being reported for 2016. This surpassed last year’s record by about 0.004 °C (0.07 °F), and represents a change of around 0.94 °C (1.69 F) above the 20th century average. The year began with a boost, thanks to El Nino; and for the eight consecutive months that followed (January to August) the world experienced record temperatures.
This represents a consistent change since 2001, where average global temperatures have increased, leading to of the 16 warmest years on record since 1880 in a row. In addition, on five separate occasions during this period, the annual global temperature was record-breaking – in 2005, 2010, 2014, 2015, and 2016, respectively.
With regards to the long-term trend, average global temperatures have increased by about 1.1° Celsius (2° Fahrenheit) since 1880. This too represents a change, since the rate of increase was placed at 0.8° Celsius (1.4° Fahrenheit) back in 2014. Two-thirds of this warming has occurred since 1975, which coincides with a period of rapid population growth, industrialization, and increased consumption of fossil fuels.
And while there is always a degree of uncertainty when it comes to atmospheric and temperature modelling, owing to the fact that the location of measuring stations and practices change over time, NASA indicated that they were over 95% certain of these results. As such, there is little reason to doubt them, especially since they are consistent with what is at this point a very well-documented trend.
To see an animated graph of average global temperature increases since 1880, click here. To see the full data set and learn about the methods employed by GISS, click here.
And be sure to check out this NASA video that shows these changes on a global map:
Every telescope has a story to tell, and our discovery of Copyscope sent us on an interesting detective tale. We returned back to the U S of A recently, and one of our first tasks upon re-establishing our lives back in Florida was to dig through the archaeological strata that is our storage unit. Headlamp on and Leatherman in hand, we worked our way hacking through layers put in place over years of storage unit drop-off runs.
On one hand, it’s like Xmas all over again, as you rediscover all your stuff anew. But on the other, you realize when you travel long term just how much you can really do without.
Of course, I was eager to dig my telescopes out. I make do with our trusty pair of image-stabilized Canon 15×45’s on the road, but I was ready to get the REAL telescopes back in action. It was then I discovered an interesting piece of telescope making history that I’d inherited for 20$ a few years back.
Now, Amateur Telescope Makers (ATMs) build some pretty amazing things. Before the 1950s and the advent of mass market commercial telescopes, if you wanted an astronomical telescope, you had to build yourself. But a majority of amateur built telescopes are reflectors, as large mirrors are much easier to grind than lenses. ATM-made refractors are almost unheard of.
I scarcely knew such a beast existed. A friend of mine pulled a short tube refractor out of the back of his pickup truck and asked if I knew anyone that would give this strange homemade telescope a home.
Now, I didn’t build Copyscope, though I wish I had. I did once build a 5 ½” Newtonian telescope out of surplus parts and a stovepipe for about 20$. As the name suggests, Copyscope is built out of plumbing fixtures, brackets and scrap bench stock around an old photocopier lens. Old timers will remember the temperamental type of pre-laser printer copier we’re talking about, one that might as easily smeared ink all over your resume copies, or spit them out like confetti.
Its pedigree a mystery, Copyscope sent me digging into ye ole web, looking for others of its ilk. In addition to several older websites citing similar creations, the search led me back to a 1986 May edition of Astronomy magazine and an article by Ken Bird detailing the construction of just such an instrument, using a surplus photocopier lens and plumbing fixtures. Another resource often cited is an October 1990 article in Sky and Telescope magazine entitled The Tuneable Finderscope. Much like the first caveman who was hungry enough to try eating rotten grapes, you can imagine way back when the first enterprising ATM with a plumbing background decided to re-purpose a used photocopier lens for astronomy.
The first thing that struck us is just how heavy Copyscope is. Weighing in at 10 pounds, it seems better suited to hurling cannonballs than portable astronomy. The handle is handy in this regard, though it means that a right angle eyepiece holder is mandatory. Hefty Copyscope is definitely on the heavy end of what a typical camera tripod can tolerate.
Now, a refined high end $10,000 refractor it isn’t: images of bright objects such as the Moon have a decidedly bluish cast through Copyscope, and the baffling occasionally produces internal reflections. Still, the generous wide field of view makes it great for sweeping wide swaths of the sky for fuzzy nebulae or comets. In fact, the viewing experience using a standard 24mm eyepiece is more reminiscent of a binocular view than a telescope, at about two degrees across. Copyscope isn’t great for planetary observing, barely resolving Jupiter and Venus as tiny disks. Still, on the plus side, the field of view is so wide that a finderscope isn’t really needed.
Copyscope has a fast focal length of about 300 millimeters (f/3) and – get this – the designer build a variable f/stop diaphragm into the scope body:
The word (initials?) ‘JAX’ on the back end of the scope remain a mystery. Perhaps the original builder was in the habit of naming telescopes. Still, Copyscope shows what weird and wonderful creations spring from the minds of amateur telescope builders, and is a great conversation piece. Any other unique constructions out there? Let us know!
Update: A discussion of Copyscope on Twitter led us to the conclusion that the back part of CopyScope is built around a large PVC reducer (thanks @Wrecksdart!)
CAPE CANAVERAL AIR FORCE STATION, FL – A U.S. Air Force satellite that will provide vital early warnings on incoming enemy missiles that are critical to the defense of our homeland is set for a spectacular nighttime blastoff on Thursday Jan. 19 from the Florida Space Coast. Update: Launch reset to Jan 20 at 7:42 pm EST
The Atlas V rocket carrying the $1.2 Billion SBIRS GEO Flight 3 infrared imaging satellite counts as the first launch of 2017 by rocket builder United Launch Alliance (ULA) as well as the years first liftoff from Cape Canaveral.
The ULA Atlas V rocket is set for liftoff on Thursday, Jan. 19 from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida.
The Space Based Infrared System (SBIRS) satellite will be launched to geosynchronous transfer orbit.
It is the third satellite in this series of infrared surveillance satellites that will provide rapid and accurate warning of attacking enemy strategic missiles via infrared signatures – as well as critical targeting data to US missile defense systems to enable swiftly responding launches that will hopefully destroy the attackers in the battle space arena before impacting US cities, infrastructure and military installations.
The 20 story tall rocket and payload were rolled out vertically this morning some 1800 feet (600 m) from the Vertical Integration Facility (VIF) processing hangar to pad 41.
With the unpredictable North Korean dictator Kim John Un threatening to launch an upgraded long range intercontinental ballistic missile this year that could potentially strike the United States west coast, SBIRS GEO 3 is more important than ever for our national defense.
The launch window opens at 7:46 p.m. EST (0046 GMT).
The launch window extends for 40 minutes from 7:46-8:26 p.m. EST.
Spectators are flocking into Space Coast area hotels for the super convenient dinnertime blastoff. And they will have a blast ! – if all goes well.
You can watch the Atlas launch live via a ULA webcast. The live launch broadcast will begin about 20 minutes before the planned liftoff at 7:26 p.m. EST here:
The current launch weather forecast for Thursday, Jan. 18, calls for an 80 percent chance of acceptable weather conditions at launch time. The primary concern is for cumulus clouds.
The backup launch opportunity is on Friday.
In case of a scrub for any reason, technical or weather, the chances for a favorable launch drop slightly to 70% GO.
“SBIRS, considered one of the nation’s highest priority space programs, is designed to provide global, persistent, infrared surveillance capabilities to meet 21st century demands in four national security mission areas including: missile warning, missile defense, technical intelligence and battlespace awareness.”
The first SBIRS satellite was launched in 2011.
SBIRS GEO 3 will launch southeast at an inclination of 23.29 degrees. It separate from the 2nd stage 43 minutes after liftoff.
ULA has enjoyed a 100% success rate for this 69th Atlas V launch stretching back to the company’s founding back in 2006.
ULA is a joint venture of Boeing and Lockheed Martin with 116 successful launches under its belt.
The 194-foot-tall commercial Atlas V booster launched in the 401 rocket configuration with approximately 860,000 pounds of sea level first stage thrust powered by the dual nozzle Russian-built RD AMROSS RD-180 engine. There are no thrust augmenting solids attached to the first stage.
The satellite is housed inside a 4-meter diameter large payload fairing (LPF). The Centaur upper stage is powered by the Aerojet Rocketdyne RL10C engine.
Watch this video showing the detailed mission profile:
Video Caption: An Atlas V 401 configuration rocket will deliver the Air Force’s third Space-Based Infrared System (SBIRS) satellite to orbit. SBIRS, considered one of the nation’s highest priority space programs, is designed to provide global, persistent, infrared surveillance capabilities to meet 21st century demands. Credit: ULA
This mission marks the 34th Atlas V mission in the 401 configuration.
The two prior SBIRS GEO missions also launched on the ULA Atlas V 401 rocket.
The SBIRS team is led by the Remote Sensing Systems Directorate at the U.S. Air Force Space and Missile Systems Center. Lockheed Martin is the prime contractor, with Northrop Grumman as the payload integrator. Air Force Space Command operates the SBIRS system, according to a ULA description.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Learn more about ULA SBIRS GEO 3 launch, EchoStar launch GOES-R launch, Heroes and Legends at KSCVC, OSIRIS-REx, InSight Mars lander, ULA, SpaceX and Orbital ATK missions, Juno at Jupiter, SpaceX AMOS-6 & CRS-9 rocket launch, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:
Jan. 18/20/21: “ULA Atlas SBIRS GEO 3 launch, EchoStar 19 comsat launch, GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings
Author Andy Weir, who wrote the bestselling novel “The Martian” on which the successful 2015 movie of the same name was based, announced CBS is picking up his idea for a new pilot for a television show called “Mission Control.”
“For the past several months, I’ve been working on a TV show pilot, and I’m happy to announce that CBS is going to make it!” Weir posted on Facebook. “Of course, I’m all about scientific accuracy and this show will be no exception.”
Weir added (in what I assume was his best Tom Hanks), “Should be a hell of a show.”
The show will be a drama, with the main characters working as flight controllers at the Mission Control Center in Houston, and how they “juggle their personal and professional lives during a critical mission with no margin for error,” reported Deadline Hollywood.
Weir said casting for the actors is about to begin, but there is already “an impressive group of behind-the-camera people already involved,” he said. “Notably: [producer] Aditya Sood, whom I worked with before on “The Martian”.
Additionally, Simon Kinberg, another producer for the “The Martian,” will be the executive producer of the new series.
Andy Weir on Universe Today’s “Weekly Space Hangout” in January 2015:
Weir was first hired as a programmer for a national laboratory at age fifteen then worked as a software engineer. But as a lifelong space nerd and a devoted hobbyist of subjects like relativistic physics, orbital mechanics, and the history of manned spaceflight, he wrote “The Martian” in his spare time. Weir originally self-published the novel in 2011, but it was so successful, the rights to it were purchased by Crown Publishing and it was re-released it in 2014. A film adaptation directed by Ridley Scott and starring Matt Damon, was released in October 2015.
“The Martian” is the story of astronaut Mark Watney, who becomes stranded alone on Mars in the year 2035, and does everything he can to survive.
Weir didn’t provide a timeline of when the show would air, but Keith Cowing at NASAWatch reported that NASA Public Affairs “has been approached by the show’s producers and they are waiting on a script for final consideration. At this point NASA has not committed to assist the producers, allow use of its logo, facilities, staff etc.”
Isn’t modern society great? With all this technology surrounding us in all directions. It’s like a cocoon of sweet, fluffy silicon. There are chips in my fitness tracker, my bluetooth headset, mobile phone, car keys and that’s just on my body.
At all times in the Cain household, there dozens of internet devices connected to my wifi router. I’m not sure how we got to the point, but there’s one thing I know for sure, more is better. If I could use two smartphones at the same time, I totally would.
And I’m sure you agree, that without all this technology, life would be a pale shadow of its current glory. Without these devices, we’d have to actually interact with each other. Maybe enjoy the beauty of nature, or something boring like that.
It turns out, that terrible burning orb in the sky, the Sun, is fully willing and capable of bricking our precious technology. It’s done so in the past, and it’s likely to take a swipe at us in the future.
I’m talking about solar storms, of course, tremendous blasts of particles and radiation from the Sun which can interact with the Earth’s magnetosphere and overwhelm anything with a wire.
In fact, we got a sneak preview of this back in 1859, when a massive solar storm engulfed the Earth and ruined our old timey technology. It was known as the Carrington Event.
Follow your imagination back to Thursday, September 1st, 1859. This was squarely in the middle of the Victorian age.
And not the awesome, fictional Steampunk Victorian age where spectacled gentleman and ladies of adventure plied the skies in their steam-powered brass dirigibles.
No, it was the regular crappy Victorian age of cholera and child labor. Technology was making huge leaps and bounds, however, and the first telegraph lines and electrical grids were getting laid down.
Imagine a really primitive version of today’s electrical grid and internet.
On that fateful morning, the British astronomer Richard Carrington turned his solar telescope to the Sun, and was amazed at the huge sunspot complex staring back at him. So impressed that he drew this picture of it.
While he was observing the sunspot, Carrington noticed it flash brightly, right in his telescope, becoming a large kidney-shaped bright white flare.
Carrington realized he was seeing unprecedented activity on the surface of the Sun. Within a minute, the activity died down and faded away.
And then about 5 minutes later. Aurora activity erupted across the entire planet. We’re not talking about those rare Northern Lights enjoyed by the Alaskans, Canadians and Northern Europeans in the audience. We’re talking about everyone, everywhere on Earth. Even in the tropics.
In fact, the brilliant auroras were so bright you could read a book to them.
The beautiful night time auroras was just one effect from the monster solar flare. The other impact was that telegraph lines and electrical grids were overwhelmed by the electricity pushed through their wires. Operators got electrical shocks from their telegraph machines, and the telegraph paper lit on fire.
What happened? The most powerful solar flare ever observed is what happened.
A solar flare occurs because the Sun’s magnetic field lines can get tangled up in the solar atmosphere. In a moment, the magnetic fields reorganize themselves, and a huge wave of particles and radiation is released.
Flares happen in three stages. First, you get the precursor stage, with a blast of soft X-ray radiation. This is followed by the impulsive stage, where protons and electrons are accelerated off the surface of the Sun. And finally, the decay stage, with another burp of X-rays as the flare dies down.
These stages can happen in just a few seconds or drag out over an hour.
Remember those particles hurled off into space? They take several hours or a few days to reach Earth and interact with our planet’s protective magnetosphere, and then we get to see beautiful auroras in the sky.
This geomagnetic storm causes the Earth’s magnetosphere to jiggle around, which drives charges through wires back and forth, burning out circuits, killing satellites, overloading electrical grids.
Back in 1859, this wasn’t a huge deal, when our quaint technology hadn’t progressed beyond the occasional telegraph tower.
Today, our entire civilization depends on wires. There are wires in the hundreds of satellites flying overhead that we depend on for communications and navigation. Our homes and businesses are connected by an enormous electrical grid. Airplanes, cars, smartphones, this camera I’m using.
Everything is electronic, or controlled by electronics.
Think it can’t happen? We got a sneak preview back in March, 1989 when a much smaller geomagnetic storm crashed into the Earth. People as far south as Florida and Cuba could see auroras in the sky, while North America’s entire interconnected electrical grid groaned under the strain.
The Canadian province of Quebec’s electrical grid wasn’t able to handle the load and went entirely offline. For 12 hours, in the freezing Quebec winter, almost the entire province was without power. I’m telling you, that place gets cold, so this was really bad timing.
Satellites went offline, including NASA’s TDRS-1 communication satellite, which suffered 250 separate glitches during the storm.
And on July 23, 2012, a Carrington-class solar superstorm blasted off the Sun, and off into space. Fortunately, it missed the Earth, and we were spared the mayhem.
If a solar storm of that magnitude did strike the Earth, the cleanup might cost $2 trillion, according to a study by the National Academy of Sciences.
It’s been 160 years since the Carrington Event, and according to ice core samples, this was the most powerful solar flare over the last 500 years or so. Solar astronomers estimate solar storms like this happen twice a millennium, which means we’re not likely to experience another one in our lifetimes.
But if we do, it’ll cause worldwide destruction of technology and anyone reliant on it. You might want to have a contingency plan with some topic starters when you can’t access the internet for a few days. Locate nearby interesting nature spots to explore and enjoy while you wait for our technological civilization to be rebuilt.
Have you ever seen an aurora in your lifetime? Give me the details of your experience in the comments.
Imagine if you will that your name would forever be associated with a groundbreaking scientific theory. Imagine also that your name would even be attached to a series of units, designed to performs measurements for complex equations. Now imagine that you were German who lived through two World Wars, won the Nobel Prize for physics, and outlived many of your children.
If you can do all that, then you might know what it was like to be Max Planck, the German physicist and founder of quantum theory. Much like Galileo, Newton, and Einstein, Max Planck is regarded as one of the most influential and groundbreaking scientists of his time, a man whose discoveries helped to revolutionized the field of physics. Ironic, considering that when he first embarked on his career, he was told there was nothing new to be discovered!
Early Life and Education:
Born in 1858 in Kiel, Germany, Planck was a child of intellectuals, his grandfather and great-grandfather both theology professors and his father a professor of law, and his uncle a judge. In 1867, his family moved to Munich, where Planck enrolled in the Maximilians gymnasium school. From an early age, Planck demonstrated an aptitude for mathematics, astronomy, mechanics, and music.
He graduated early, at the age of 17, and went on to study theoretical physics at the University of Munich. In 1877, he went on to Friedrich Wilhelms University in Berlin to study with physicists Hermann von Helmholtz. Helmholtz had a profound influence on Planck, who he became close friends with, and eventually Planck decided to adopt thermodynamics as his field of research.
In October 1878, he passed his qualifying exams and defended his dissertation in February of 1879 – titled “On the second law of thermodynamics”. In this work, he made the following statement, from which the modern Second Law of Thermodynamics is believed to be derived: “It is impossible to construct an engine which will work in a complete cycle, and produce no effect except the raising of a weight and cooling of a heat reservoir.”
For a time, Planck toiled away in relative anonymity because of his work with entropy (which was considered a dead field). However, he made several important discoveries in this time that would allow him to grow his reputation and gain a following. For instance, his Treatise on Thermodynamics, which was published in 1897, contained the seeds of ideas that would go on to become highly influential – i.e. black body radiation and special states of equilibrium.
With the completion of his thesis, Planck became an unpaid private lecturer at the Freidrich Wilhelms University in Munich and joined the local Physical Society. Although the academic community did not pay much attention to him, he continued his work on heat theory and came to independently discover the same theory of thermodynamics and entropy as Josiah Willard Gibbs – the American physicist who is credited with the discovery.
In 1885, the University of Kiel appointed Planck as an associate professor of theoretical physics, where he continued his studies in physical chemistry and heat systems. By 1889, he returned to Freidrich Wilhelms University in Berlin, becoming a full professor by 1892. He would remain in Berlin until his retired in January 1926, when he was succeeded by Erwin Schrodinger.
Black Body Radiation:
It was in 1894, when he was under a commission from the electric companies to develop better light bulbs, that Planck began working on the problem of black-body radiation. Physicists were already struggling to explain how the intensity of the electromagnetic radiation emitted by a perfect absorber (i.e. a black body) depended on the bodies temperature and the frequency of the radiation (i.e., the color of the light).
In time, he resolved this problem by suggesting that electromagnetic energy did not flow in a constant form but rather in discreet packets, i.e. quanta. This came to be known as the Planck postulate, which can be stated mathematically as E = hv – where E is energy, v is the frequency, and h is the Planck constant. This theory, which was not consistent with classical Newtonian mechanics, helped to trigger a revolution in science.
A deeply conservative scientists who was suspicious of the implications his theory raised, Planck indicated that he only came by his discovery reluctantly and hoped they would be proven wrong. However, the discovery of Planck’s constant would prove to have a revolutionary impact, causing scientists to break with classical physics, and leading to the creation of Planck units (length, time, mass, etc.).
Quantum Mechanics:
By the turn of the century another influential scientist by the name of Albert Einstein made several discoveries that would prove Planck’s quantum theory to be correct. The first was his theory of photons (as part of his Special Theory of Relativity) which contradicted classical physics and the theory of electrodynamics that held that light was a wave that needed a medium to propagate.
The second was Einstein’s study of the anomalous behavior of specific bodies when heated at low temperatures, another example of a phenomenon which defied classical physics. Though Planck was one of the first to recognize the significance of Einstein’s special relativity, he initially rejected the idea that light could made up of discreet quanta of matter (in this case, photons).
However, in 1911, Planck and Walther Nernst (a colleague of Planck’s) organized a conference in Brussels known as the First Solvav Conference, the subject of which was the theory of radiation and quanta. Einstein attended, and was able to convince Planck of his theories regarding specific bodies during the course of the proceedings. The two became friends and colleagues; and in 1914, Planck created a professorship for Einstein at the University of Berlin.
During the 1920s, a new theory of quantum mechanics had emerged, which was known as the “Copenhagen interpretation“. This theory, which was largely devised by German physicists Neils Bohr and Werner Heisenberg, stated that quantum mechanics can only predict probabilities; and that in general, physical systems do not have definite properties prior to being measured.
This was rejected by Planck, however, who felt that wave mechanics would soon render quantum theory unnecessary. He was joined by his colleagues Erwin Schrodinger, Max von Laue, and Einstein – all of whom wanted to save classical mechanics from the “chaos” of quantum theory. However, time would prove that both interpretations were correct (and mathematically equivalent), giving rise to theories of particle-wave duality.
World War I and World War II:
In 1914, Planck joined in the nationalistic fervor that was sweeping Germany. While not an extreme nationalist, he was a signatory of the now-infamous “Manifesto of the Ninety-Three“, a manifesto which endorsed the war and justified Germany’s participation. However, by 1915, Planck revoked parts of the Manifesto, and by 1916, he became an outspoken opponent of Germany’s annexation of other territories.
After the war, Planck was considered to be the German authority on physics, being the dean of Berlin Universit, a member of the Prussian Academy of Sciences and the German Physical Society, and president of the Kaiser Wilhelm Society (KWS, now the Max Planck Society). During the turbulent years of the 1920s, Planck used his position to raise funds for scientific research, which was often in short supply.
The Nazi seizure of power in 1933 resulted in tremendous hardship, some of which Planck personally bore witness to. This included many of his Jewish friends and colleagues being expelled from their positions and humiliated, and a large exodus of Germans scientists and academics.
Planck attempted to persevere in these years and remain out of politics, but was forced to step in to defend colleagues when threatened. In 1936, he resigned his positions as head of the KWS due to his continued support of Jewish colleagues in the Society. In 1938, he resigned as president of the Prussian Academy of Sciences due to the Nazi Party assuming control of it.
Despite these evens and the hardships brought by the war and the Allied bombing campaign, Planck and his family remained in Germany. In 1945, Planck’s son Erwin was arrested due to the attempted assassination of Hitler in the July 20th plot, for which he was executed by the Gestapo. This event caused Planck to descend into a depression from which he did not recover before his death.
Death and Legacy:
Planck died on October 4th, 1947 in Gottingen, Germany at the age of 89. He was survived by his second wife, Marga von Hoesslin, and his youngest son Hermann. Though he had been forced to resign his key positions in his later years, and spent the last few years of his life haunted by the death of his eldest son, Planck left a remarkable legacy in his wake.
In recognition for his fundamental contribution to a new branch of physics he was awarded the Nobel Prize in Physics in 1918. He was also elected to the Foreign Membership of the Royal Society in 1926, being awarded the Society’s Copley Medal in 1928. In 1909, he was invited to become the Ernest Kempton Adams Lecturer in Theoretical Physics at Columbia University in New York City.
He was also greatly respected by his colleagues and contemporaries and distinguished himself by being an integral part of the three scientific organizations that dominated the German sciences- the Prussian Academy of Sciences, the Kaiser Wilhelm Society, and the German Physical Society. The German Physical Society also created the Max Planck Medal, the first of which was awarded into 1929 to both Planck and Einstein.
The Max Planck Society was also created in the city of Gottingen in 1948 to honor his life and his achievements. This society grew in the ensuing decades, eventually absorbing the Kaiser Wilhelm Society and all its institutions. Today, the Society is recognized as being a leader in science and technology research and the foremost research organization in Europe, with 33 Nobel Prizes awarded to its scientists.
In 2009, the European Space Agency (ESA) deployed the Planck spacecraft, a space observatory which mapped the Cosmic Microwave Background (CMB) at microwave and infra-red frequencies. Between 2009 and 2013, it provided the most accurate measurements to date on the average density of ordinary matter and dark matter in the Universe, and helped resolve several questions about the early Universe and cosmic evolution.
Planck shall forever be remembered as one of the most influential scientists of the 20th century. Alongside men like Einstein, Schrodinger, Bohr, and Heisenberg (most of whom were his friends and colleagues), he helped to redefine our notions of physics and the nature of the Universe.
For some time, scientists have suspected that life may have existed on Mars in the deep past. Owing to the presence of a thicker atmosphere and liquid water on its surface, it is entirely possible that the simplest of organisms might have begun to evolve there. And for those looking to make Mars a home for humanity someday, it is hoped that these conditions (i.e favorable to life) could be recreated again someday.
But as it turns out, there are some terrestrial organisms that could survive on Mars as it is today. According to a recent study by a team of researchers from the Arkansas Center for Space and Planetary Sciences (ACSPS) at the University of Arkansas, four species of methanogenic microorganisms have shown that they could withstand one of the most severe conditions on Mars, which is its low-pressure atmosphere.
To put it simply, Methanogens are ancient group of organisms that are classified as archaea, a species of microorganism that do not require oxygen and can therefore survive in what we consider to be “extreme environments”. On Earth, methanogens are common in wetlands, ocean environments, and even in the digestive tracts of animals, where they consume hydrogen and carbon dioxide to produce methane as a metabolic byproduct.
And as several NASA missions have shown, methane has also been found in the atmosphere of Mars. While the source of this methane has not yet been determined, it has been argued that it could be produced by methanogens living beneath the surface. As Rebecca Mickol, an astrobiologist at the ACSPS and the lead author of the study, explained:
“One of the exciting moments for me was the detection of methane in the Martian atmosphere. On Earth, most methane is produced biologically by past or present organisms. The same could possibly be true for Mars. Of course, there are a lot of possible alternatives to the methane on Mars and it is still considered controversial. But that just adds to the excitement.”
As part of the ongoing effort to understand the Martian environment, scientists have spent the past 20 years studying if four specific strains of methanogen – Methanothermobacter wolfeii, Methanosarcina barkeri, Methanobacterium formicicum, Methanococcus maripaludis – can survive on Mars. While it is clear that they could endure the low-oxygen and radiation (if underground), there is still the matter of the extremely low air-pressure.
With help from the NASA Exobiology & Evolutionary Biology Program (part of NASA’s Astrobiology Program), which issued them a three-year grant back in 2012, Mickol and her team took a new approach to testing these methanogens. This included placing them in a series of test tubes and adding dirt and fluids to simulate underground aquifers. They then fed the samples hydrogen as a fuel source and deprived them of oxygen.
The next step was subjecting the microorganisms to pressure conditions analogues to Mars to see how they might hold up. For this, they relied on the Pegasus Chamber, an instrument operated by the ACSPS in their W.M. Keck Laboratory for Planetary Simulations. What they found was that the methanogens all survived exposure to pressures of 6 to 143 millibars for periods of between 3 and 21 days.
This study shows that certain species of microorganisms are not dependent on a the presence of a dense atmosphere for their survival. It also shows that these particular species of methanogens could withstand periodic contact with the Martian atmosphere. This all bodes well for the theories that Martian methane is being produced organically – possibly in subsurface, wet environments.
This is especially good news in light of evidence provided by NASA’s HiRISE instrument concerning Mars’ recurring slope lineae, which pointed towards a possible connection between liquid water columns on the surface and deeper levels in the subsurface. If this should prove to be the case, then organisms being transported in the water column would be able to withstand the changing pressures during transport.
The next step, according to Mickol is to see how these organisms can stand up to temperature. “Mars is very, very cold,” she said, “often getting down to -100ºC (-212ºF) at night, and sometimes, on the warmest day of the year, at noon, the temperature can rise above freezing. We’d run our experiments just above freezing, but the cold temperature would limit evaporation of the liquid media and it would create a more Mars-like environment.”
Scientists have suspected for some time that life may still be found on Mars, hiding in recesses and holes that we have yet to peek into. Research that confirms that it can indeed exist under Mars’ present (and severe) conditions is most helpful, in that it allows us to narrow down that search considerably.
In the coming years, and with the deployment of additional Mars missions – like NASA’s Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) lander, which is scheduled for launch in May of next year – we will be able to probe deeper into the Red Planet. And with sample return missions on the horizon – like the Mars 2020 rover – we may at last find some direct evidence of life on Mars!