Hydraulic Pump Glitch Aborts NASA’s Hurricane MicroSat Fleet Launch to Dec. 15 – Live Coverage

An Orbital ATK L-1011 “Stargazer” aircraft carrying a Pegasus XL rocket with NASA’s CYGNSS spacecraft takes off from the Skid Strip at Cape Canaveral Air Force Station, Florida on Dec. 12, 2016. Credit: Ken Kremer/kenkremer.com
An Orbital ATK L-1011 “Stargazer” aircraft carrying a Pegasus XL rocket with NASA’s CYGNSS spacecraft takes off from the Skid Strip at Cape Canaveral Air Force Station, Florida on Dec. 12. Credit: Ken Kremer/kenkremer.com
An Orbital ATK L-1011 “Stargazer” aircraft carrying a Pegasus XL rocket with NASA’s CYGNSS spacecraft takes off from the Skid Strip at Cape Canaveral Air Force Station, Florida on Dec. 12, 2016. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – Monday’s (Dec. 12) planned launch of NASA’s innovative Cyclone Global Navigation Satellite System (CYGNSS) hurricane microsatellite fleet was aborted when a pump in the hydraulic system that releases the Pegasus air-launch booster from its L-1011 carrier aircraft failed in flight. UPDATE: launch delayed to Dec 15, story revised

NASA and Orbital ATK confirmed this afternoon that the launch of the Orbital ATK commercial Pegasus-XL rocket carrying the CYGNSS small satellite constellation has been rescheduled again to Thursday, Dec. 15 at 8:26 a.m. EST from a drop point over the Atlantic Ocean.

Late last night the launch was postponed another day from Dec. 14 to Dec. 15 to solve a flight parameter issue on the CYGNSS spacecraft. New software was uploaded to the spacecraft that corrected the issue, NASA officials said.

“NASA’s launch of CYGNSS spacecraft is targeted for Thursday, Dec. 15,” NASA announced.

“We are go for launch of our #Pegasus rocket carrying #CYGNSS tomorrow, December 15 from Cape Canaveral Air Force Station,” Orbital ATK announced.

An Orbital ATK L-1011 “Stargazer” aircraft carrying a Pegasus XL rocket with NASA’s CYGNSS spacecraft takes off from the Skid Strip at Cape Canaveral Air Force Station, Florida on Dec. 12. Credit: Ken Kremer/kenkremer.com
An Orbital ATK L-1011 “Stargazer” aircraft carrying a Pegasus XL rocket with NASA’s CYGNSS spacecraft takes off from the Skid Strip at Cape Canaveral Air Force Station, Florida on Dec. 12. Credit: Ken Kremer/kenkremer.com

“The CYGNSS constellation consists of eight microsatellite observatories that will measure surface winds in and near a hurricane’s inner core, including regions beneath the eyewall and intense inner rainbands that previously could not be measured from space,” according to a NASA factsheet.

Despite valiant efforts by the flight crew to restore the hydraulic pump release system to operation as the L-1011 flew aloft near the Pegasus drop zone, they were unsuccessful before the launch window ended and the mission had to be scrubbed for the day by NASA Launch Director Tim Dunn.

The Pegasus/CYGNSS vehicle is attached to the bottom of the Orbital ATK L-1011 Stargazer carrier aircraft.

Orbital ATK L-1011 “Stargazer” aircraft carrying a Pegasus XL rocket with NASA’s CYGNSS spacecraft takes off from the Skid Strip at Cape Canaveral Air Force Station, Florida on Dec. 12, 2016. Credit: Ken Kremer/kenkremer.com
Orbital ATK L-1011 “Stargazer” aircraft carrying a Pegasus XL rocket with NASA’s CYGNSS spacecraft takes off from the Skid Strip at Cape Canaveral Air Force Station, Florida on Dec. 12, 2016. Credit: Ken Kremer/kenkremer.com

The hydraulic release system passed its pre-flight checks before takeoff of the Stargazer.

“Launch of the Pegasus rocket was aborted due to an issue with the launch vehicle release on the L-1011 Stargazer. The hydraulic release system operates the mechanism that releases the Pegasus rocket from the carrier aircraft. The hydraulic system functioned properly during the pre-flight checks of the airplane,” said NASA.

A replacement hydraulic pump system component was flown in from Mojave, California, and successfully installed and checked out. Required crew rest requirements were also met.

Technician works on Orbital ATK Pegasus XL rocket with NASA's CYGNSS payload on board on Dec. 10, 2016 in this rear side view showing the first stage engine. They are mated to the bottom of the Orbital ATK L-1011 Stargazer aircraft at the Skid Strip at Cape Canaveral Air Force Station in Florida.  Launch is slated for Dec. 12, 2016.  Credit: Ken Kremer/kenkremer.com
Technician works on Orbital ATK Pegasus XL rocket with NASA’s CYGNSS payload on board on Dec. 10, 2016 in this rear side view showing the first stage engine. They are mated to the bottom of the Orbital ATK L-1011 Stargazer aircraft at the Skid Strip at Cape Canaveral Air Force Station in Florida. Launch is slated for Dec. 12, 2016. Credit: Ken Kremer/kenkremer.com

The one-hour launch window opens at 8:20 a.m and the actual deployment of the rocket from the L-1011 Tristar is timed to occur 5 minutes into the window at 8:26 a.m.

NASA’s Pegasus/CYGNUS launch coverage and commentary will be carried live on NASA TV – beginning at 7 a.m. EDT

You can watch the launch live on NASA TV at – http://www.nasa.gov/nasatv

Live countdown coverage on NASA’s Launch Blog begins at 6:30 a.m. Dec. 15.

Coverage will include live updates as countdown milestones occur, as well as video clips highlighting launch preparations and the flight.

A prelaunch program by NASA EDGE will begin at 6 a.m.

NASA’s Kennedy Space Center is also providing live coverage on social media at:

http://www.twitter.com/NASAKennedy

https://www.facebook.com/NASAKennedy

Orbital ATK is also providing launch and mission update at:
twitter.com/OrbitalATK

The weather forecast from the Air Force’s 45th Weather Squadron at Cape Canaveral has significantly increased to predicting a 90% chance of favorable conditions on Thursday, Dec. 15.

The primary weather concerns are for flight cumulus clouds.

The Pegasus rocket cannot fly through rain or clouds due to a negative impact and possible damage on the rocket’s thermal protection system (TPS).

In the event of a delay, the range is also reserved for Friday, Dec. 16 where the daily outlook remains at a 90% chance of favorable weather conditions.

Rear view into the first stage engine of Orbital ATK Pegasus XL rocket that will launch NASA's CYGNSS experimental hurricane observation payload on Dec. 14, 2016. They are mated to the bottom of the Orbital ATK L-1011 Stargazer aircraft at the Skid Strip at Cape Canaveral Air Force Station in Florida.  Credit: Ken Kremer/kenkremer.com
Rear view into the first stage engine of Orbital ATK Pegasus XL rocket that will launch NASA’s CYGNSS experimental hurricane observation payload on Dec. 14, 2016. They are mated to the bottom of the Orbital ATK L-1011 Stargazer aircraft at the Skid Strip at Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

After Stargazer takes off from the Skid Strip early Thursday around 6:30 a.m. EST, it will fly north to a designated drop point box about 126 miles east of Daytona Beach, Florida over the Atlantic Ocean. The crew can search for a favorable launch point if needed, just as they did Monday morning.

The drop box point measures about 40-miles by 10-miles (64-kilometers by 16-kilometers). The flight crew flew through the drop box twice on Monday, about a half an hour apart, as they tried to repair the hydraulic system by repeatedly cycling it on and off and sending commands.

“It was not meeting the prescribed launch release pressures, indicating a problem with the hydraulic pump,” said NASA CYGNSS launch director Tim Dunn.

“Fortunately, we had a little bit of launch window to work with, so we did a lot of valiant troubleshooting in the air. As you can imagine, everyone wanted to preserve every opportunity to have another launch attempt today, so we did circle around the race once, resetting breakers on-board the aircraft, doing what we could in flight to try to get that system back into function again.”

The rocket will be dropped for a short freefall of about 5 seconds to initiate the launch sewuence. It launches horizontally in midair with ignition of the first stage engine burn, and then tilts up to space to begin the trek to LEO.

Here’s a schematic of key launch events:

Schematic of Orbital ATK L-1011 aircraft and Pegasus XL rocket air drop launch of NASA’s CYGNSS microsatellite fleet.  Credit: Orbital ATK
Schematic of Orbital ATK L-1011 aircraft and Pegasus XL rocket air drop launch of NASA’s CYGNSS microsatellite fleet. Credit: Orbital ATK

The $157 million fleet of eight identical spacecraft comprising the Cyclone Global Navigation Satellite System (CYGNSS) system will be delivered to low Earth orbit by the Orbital ATK Pegasus XL rocket.

The nominal mission lifetime for CYGNSS is two years but the team says they could potentially last as long as five years or more if the spacecraft continue functioning.

Artist's concept of the deployment of the eight Cyclone Global Navigation Satellite System (CYGNSS) microsatellite observatories in space.  Credits: NASA
Artist’s concept of the deployment of the eight Cyclone Global Navigation Satellite System (CYGNSS) microsatellite observatories in space. Credits: NASA

Pegasus launches from the Florida Space Coast are infrequent. The last once took place over 13 years ago in April 2003 for the GALEX mission.

Typically they take place from Vandenberg Air Force Base in California or the Reagan Test Range on the Kwajalein Atoll.

CYGNSS counts as the 20th Pegasus mission for NASA.

The CYGNSS spacecraft were built by Southwest Research Institute in San Antonio, Texas. Each one weighs approx 29 kg. The deployed solar panels measure 1.65 meters in length.

The solar panels measure 5 feet in length and will be deployed within about 15 minutes of launch.

The Orbital ATK L-1011 Stargazer aircraft at the Skid Strip at Cape Canaveral Air Force Station in Florida. Attached beneath the Stargazer is the Orbital ATK Pegasus XL with NASA's CYGNSS payload on board, being processed for launch on Dec. 12, 2016.  Credit: Ken Kremer/kenkremer.com
The Orbital ATK L-1011 Stargazer aircraft at the Skid Strip at Cape Canaveral Air Force Station in Florida. Attached beneath the Stargazer is the Orbital ATK Pegasus XL with NASA’s CYGNSS payload on board, being processed for launch on Dec. 12, 2016. Credit: Ken Kremer/kenkremer.com

The Space Physics Research Laboratory at the University of Michigan College of Engineering in Ann Arbor leads overall mission execution in partnership with the Southwest Research Institute in San Antonio, Texas.

The Climate and Space Sciences and Engineering Department at the University of Michigan leads the science investigation, and the Earth Science Division of NASA’s Science Mission Directorate oversees the mission.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Martian Mineral Points Toward Past Habitability

Curiosity picture showing color variations on Mount Sharp, Mars. Credit: NASA/JPL

For over a year, the Curiosity rover has been making its way up the slopes of Mount Sharp, the central peak within the Gale Crater. As the rover moves higher along this formation, it has been taking drill samples so that it might look into Mars’ ancient past. Combined with existing evidence that water existed within the crater, this would have provided favorable conditions for microbial life.

And according to the most recent findings announced by the Curiosity science team, the upper levels of the mountain are rich in minerals that are not found at the lower levels. These findings reveal much about how the Martian environment has changed over the past few billion years, and are further evidence that Mars may have once been habitable.

The findings were presented at the Fall meeting of the American Geophysical Union (AGU), which began on Monday, Dec. 12th, in San Fransisco. During the meeting, John Grotzinger – the Fletcher Jones Professor of Geology at Caltech and the former Project Scientist for the Curiosity mission – and other members of Curiosity’s science team shared what the rover discovered while digging into mineral veins located in the higher, younger layers of Mount Sharp.

This pair of drawings depicts the same location at Gale Crater on at two points in time: now and billions of years ago. Water moving beneath the ground, as well as water above the surface in ancient rivers and lakes, provided favorable conditions for microbial life, if Mars has ever hosted life. Credit: NASA/JPL-Caltech
Artist’s illustration showing the Gale Crater as it appears today, with the Curiosity rover climbing Mount Sharp. Credit: NASA/JPL-Caltech

To put it simply, mineral veins are a great way to study the movements of water in an area. This is due to the fact that veins are the result of cracks in layered rock being filled with chemicals that are dissolved in water – a process which alters the chemistry and composition of rock formations. What the rover found was that at higher layers hematite, clay minerals and boron are more abundant than what has been observed at lower, older layers.

These latest findings paint a complex picture of the region, where groundwater interactions led to clay-bearing sediments and diverse minerals being deposited over time. As Grotzinger explained, this kind of situation is favorable as far as habitability is concerned:

“There is so much variability in the composition at different elevations, we’ve hit a jackpot. A sedimentary basin such as this is a chemical reactor. Elements get rearranged. New minerals form and old ones dissolve. Electrons get redistributed. On Earth, these reactions support life.”

At present, no evidence has been found that microbial life actually existed on Mars in the past. However, since it first landed back in 2012, the Curiosity mission has uncovered ample evidence that conditions favorable to life existed billions of years ago. This is possible thanks to the fact that Mount Sharp consists of layered sedimentary deposits, where each one is younger than the one beneath it.

The Gale Crater, billions of years ago, showing how the circulation of groundwater led to chemical changes and deposits. Credit: NASA/JPL-Caltech
The Gale Crater, billions of years ago, showing how the circulation of groundwater led to chemical changes and deposits. Credit: NASA/JPL-Caltech

These sedimentary layers act as a sort of geological and environmental record for Mars; and by digging into them, scientists are able to get an idea of what Mars’ early history looked like. In the past, Curiosity spent many years digging around in the lower layers, where it found evidence of liquid water and all the key chemical ingredients and energy needed for life.

Since that time, Curiosity has climbed higher along Mount Sharp and examined younger layers, the purpose of which has been to reconstruct how the Martian environment changed over time. As noted, the samples Curiosity recently obtained showed greater amounts of hematite, clay minerals and boron. All of these provide very interesting clues as to what kinds of changes took place.

For instance, compared to previous samples, hematite was the most dominant iron oxide mineral detected, compared to magnetite (which is a less-oxidized form of iron oxide). The presence of hematite, which increases with distance up the slope of Mount Sharp, suggests both warmer conditions and more interaction with the atmosphere at higher levels.

The increasing concentration of this minerals – relative to magnetite at lower levels – also indicates that environmental changes have occurred where the oxidation of iron increased over time. This process, in which more electrons are lost via chemical exchanges, can provide the energy necessary for life.

Credit: NASA/JPL
Hi-resolution pictures showing the Curiosity rover’s various drilling sites, up until Nov. 2016. Credit: NASA/JPL

In addition, Curiosity’s Chemistry and Camera (ChemCam) instrument has also noted increased (but still minute)) levels of borons within veins composed primarily of calcium sufate. On Earth, boron is associated with arid sites where water has evaporated, and its presence on Mars was certainly unexpected. No previous missions have ever detected it, and the environmental implications of it being present in such tiny amounts are unclear.

On the one hand, it is possible that evaporation within the lake bed created a boron-deposit deeper inside Mount Sharp. The movement of groundwater within could have then dissolved some of this, redepositing trace amounts at shallower levels where Curiosity was able to reach it. On the other hand, it could be that changes in the chemistry of clay-bearing deposits affected how boron was absorbed by groundwater and then redeposited.

Either way, the differences in terms of the composition of upper and lower levels in the Gale Crater creates a very interesting picture of how the local environment changed over time:

“Variations in these minerals and elements indicate a dynamic system. They interact with groundwater as well as surface water. The water influences the chemistry of the clays, but the composition of the water also changes. We are seeing chemical complexity indicating a long, interactive history with the water. The more complicated the chemistry is, the better it is for habitability. The boron, hematite and clay minerals underline the mobility of elements and electrons, and that is good for life.”

It seems that with every discovery, the long history of “Earth’s Twin” is becoming more accessible, yet more mysterious. The more we learn about it past and how it came to be the cold, desiccated place we know today, the more we want to know!

Further Reading: NASA

Hubble Watches Spinning Black Hole Swallow a Star

Close-up of star near a supermassive black hole (artist’s impression). Credit: ESA/Hubble, ESO, M. Kornmesser

In 2015, the All-Sky Automated Survey for Supernovae (aka. ASAS-SN, or Assassin) detected something rather brilliant in a distant galaxy. At the time, it was thought that the event (named ASASSN-15lh) was a superluminous supernova – an extremely bright explosion caused by a massive star reaching the end of its lifepsan. This event was thought to be brightest supernova ever witnessed, being twice as bright as the previous record-holder.

But new observations provided by an international team of astronomers have provided an alternative explanation that is even more exciting. Relying on data from several observatories – including the NASA/ESA Hubble Space Telescope – they have proposed that the source was a star being ripped apart by a rapidly spinning black hole, an event which is even more rare than a superluminous supernova.

According to the ASAS-SN’s findings – which were published in January of 2016 in Science – the superluminous light source appeared in a galaxy roughly 4 billion light-years from Earth. The luminous source was twice as bright as the brightest superluminous supernova observed to date, and its peak luminosity was 20 times brighter than the total light output of the entire Milky Way.

Credit: ESA/Hubble, ESO, M. Kornmesser
This artist’s impression depicts a rapidly spinning supermassive black hole surrounded by an accretion disc. Credit: ESA/Hubble, ESO, M. Kornmesse

What seemed odd about it was the fact that the superluminous event appeared within a massive, red (i.e. “quiescent”) galaxy, where star formation has largely ceased. This was in contrast to most super-luminous supernovae that have been observed in the past, which are typically located in blue, star-forming dwarf galaxies. In addition, the star (which is Sun-like in size) is not nearly massive enough to become an extreme supernova.

As such, the international team of astronomers – led by Giorgos Leloudas of the Weizmann Institute of Science in Israel and the Dark Cosmology Center in Denmark – conducted follow-up observations using space-based and Earth-based observatories. These included the Hubble Space Telescope, the Very Large Telescope (VLT) at the ESO’s Paranal Observatory and the New Technology Telescope (NTT) at the La Silla Observatory.

With information from these facilities, they arrived at a much different conclusion. As Dr. Leloudas explained in a Hubble press release:

“We observed the source for 10 months following the event and have concluded that the explanation is unlikely to lie with an extraordinary bright supernova. Our results indicate that the event was probably caused by a rapidly spinning supermassive black hole as it destroyed a low-mass star.”

The process is colloquially known as “spaghettification”, where an object is ripped apart by the extreme tidal forces of a black hole. In this case, the team postulated that the star drifted too close to the supermassive black hole (SMBH) at the center of the distant galaxy. The resulting heat and the shocks created by colliding debris led to a massive burst of light – which was mistakenly believed to be a very bright supernova.

Multiple lines of evidence support this theory. As they explain in their paper, this included the fact that over the ten-months that they observed it, the star went through three distinct spectroscopic phases. This included a period of substanial re-brightening, where the star emitted a burst of UV light that accorded with a sudden increase in its temperature.

Combined with the unlikely location and the mass of the star, this all pointed towards tidal disruption rather than a massive supernova event. But as Dr. Leloudas admits, they cannot be certain of this just yet. “Even with all the collected data we cannot say with 100% certainty that the ASASSN-15lh event was a tidal disruption event.” he said. “But it is by far the most likely explanation.”

As always, additional observations are necessary before anyone can say for sure what caused this record-breaking luminous event. But in the meantime, the mere fact that something so rare was witnessed should be enough to cause some serious excitement! Speaking of which, be sure to check out the simulation videos (above and below) to see what such an event would look like:

Further Reading: Hubble Space Telescope

All I Want for Christmas is a Green Laser: How to Choose and Use One

Credit: Bob King
When it comes to helping others find something in the night sky, a green laser makes it a piece of cake. Credit: Bob King
When it comes to helping others find something in the night sky, a green laser makes it a piece of cake. Credit: Bob King

Devious humans have given green lasers a bad name. Aiming a laser at an aircraft or the flight path of an aircraft is illegal according to a 2012 U.S. federal law. Jail time awaits offenders. Don’t point at a police officer either. To get a taste of the dark side of green lasers, check out these rap sheets.

asdf
A standard 5 milliwatt (mW) laser can cause temporary flashblindness or at the very least distract a pilot up to around 11,000 feet (3,350 meters). Beyond that, it’s indistinguishable from other ground lighting. Credit: Wikipedia

But if you mind your manners, a green laser is one of the best tools available to amateur astronomers eager to share the wonders of the night sky with the public. There’s simply nothing better to point out constellations, comets, individual stars and satellites in the night sky. Amateurs love ’em! So does the public. Go to a star party and pop out the laser, and you’ll get everyone’s attention. There’s magic in being able to point out our favorite points of light with a beam of light.

Not only are lasers helpful when pointing out stars, many amateurs use them to point to and find deep sky objects with their telescopes. Credit: Bob King
Not only are lasers helpful when pointing out stars, many amateurs use them to point zero in on deep sky objects with their telescopes. Credit: Bob King

First, let’s look at laser etiquette to ensure the safety of our fellow stargazers:

* Always gather the group around you first, raise the laser above the crowd and ask everyone to look up. Then turn on the beam and aim. That way no one will accidentally face into the light. This is crucial when aiming low above the horizon, where the beam, nearly horizontal, has a better chance of striking someone in the eye. Take extra precaution to make sure the group is close. The closer the gathering, the brighter and easier the beam will be to see. Viewers too far off to one side or another will see a weaker, less intense light.

* Green lasers often use AAA batteries and draw a good amount of power especially on chilly nights. You’ll only get a few minutes of operation if you leave it out in the cold. Store your laser in an inside pocket to keep it warm until you need it. Tuck it back in between pointing sessions. Have a fresh pair of batteries around and keep those in your pocket, too!

* If you see an airplane headed in your direction, avoid using the laser light for a couple minutes just to be on the safe side.

* Never give your laser to someone in the dark to “try out.” Especially a child! They won’t be familiar with its safe use.

* Store your laser in a safe place when not in use, so kids can’t accidentally find it.

Red, green and violet lasers with a high enough output to trace a line in the night sky are all available now for reasonable prices. These three beams come from 50 mW lasers. Credit: Bob King
Red, green and violet lasers with a high enough output to trace a line in the night sky are all available these days for reasonable prices. These three beams come from 50 mW lasers. Multiple rays result from the subject not being able to hold the lasers steady during the time exposure! Credit: Bob King

The most common green laser available is rated at 5 milliwatts (mW), just adequate for night sky pointing. That said, be aware that brightness from one manufacturer to another can vary. Some 5mW pointers produce nearly as much light as a 30 mW model, practically a light saber! Others, like my first green laser, did the job on moonless nights, but proved too weak by first quarter phase. 30mW and 50mW are much better and significantly amp up the wow factor when you’re out with the crowd. They’re also much easier to see for larger groups and remain visible even in bright moonlight.

Back in olden days, 5 mW red and green lasers were as bright as they came, and the green ones were pricey. But nowadays, you can get powerful pointers in green, red, blue and violet. All will trace a visible beam across the night sky with green the brightest by far because our eyes are most sensitive to green light.

Green, violet and red lasers. Lasers emit very specific colors of light. Green appears brightest and sharpest; red and blue beams look fuzzier to our eyes. Credit: Pang Ka kit / CC BY-SA 3.
Green, violet and red lasers. Lasers emit very specific colors of light. Green appears brightest and sharpest; red and blue beams look fuzzier to our eyes. Credit: Netweb01 / CC BY-SA 3 / Wikimedia

I should add that yellow lasers have also recently become available. Like green, they’re superb for long-distance applications, but prices — oh, my — will burn a hole in your wallet. How about 300 bucks! You can get a 5 mW green laser for $5-10 that’s similarly bright. No matter what kind of laser pen you buy, they all operate on the same principle: a laser diode, related to an LED (light-emitting diode), powered by AA batteries emits a narrow, coherent beam of light when switched on.

Coherent light is light of a single wavelength where all the crests and troughs (remember, light is a wave) are in lockstep with one another. Each crest precisely overlaps the next; each trough snugly fits within the other. Regular light contains a garden salad mix of every wavelength each vibrating out of stop, to its own drummer as it were. Because laser light is coherent, it stays focused over great distances, forming a narrow beam ideal for pointing.

Lasers form visible beams because they scatter off air molecules, water vapor and dust in the air. In this photo, I spun the beam around the planet Jupiter on a humid, slightly foggy night. Credit: Bob King
Laser light literally illuminates the air and anything in it. The intense beam scatters off air molecules, water vapor and dust in the air. In this photo, I spun the beam around the planet Jupiter on a humid, slightly foggy night. Dust and water vapor illuminated by the beam creates a mesmerizing sparkle effect you have to see to believe. Credit: Bob King

Lasers are not only rated by power (milliwatts) but also the specific wavelength they emit. Green lasers beam light at 532 nanometers (nm), blue at 445 nm, violet at 405 nm, red at 650 nm and yellow at 589 nm. Green laser pointers generate their light from an infrared laser beam within the pen’s housing. Normally, any infrared light should be filtered from the final beam but in the majority of inexpensive laser pointers, it beams out right along with the green. We can’t see it, but concentrated infrared laser light poses an additional hazard when directed into the eyes.  When you hear of lasers being used to pop balloons or light a match, it’s the leaky infrared that’s doing the popping. Yet another reason to use your laser with care!

Lasers can be artistic tools, too. Every year, a friend holds a star party near a towering grain silo. Late at night, we take a break, open the camera shutter and paint the silo with laser light. In this case - a rocket. Credit: Bob King
Lasers can be artistic tools, too. Every year, a friend holds a star party near a towering grain silo. Late at night, we take a break, open the camera shutter and paint the silo with laser light. In this case — a rocket. Credit: Bob King

Lower-powered laser pointers use AAA batteries. For instance, both  my 5 mW and 55 mW green lasers use AAA batteries. Higher-powered pointers in the 5-watt range use a single #18650 (or 16340) 3.7 volt lithium ion rechargeable battery. You can either purchase these online (Orbitronics makes an excellent one for $12.99) or at your local Batteries Plus store. You’ll need a charger, too, which runs anywhere from about $8 for a single battery model to around $30 for a multiple battery version with different charging speeds. Be sure you get one with an LED light that will alert you when the batteries are done charging.

Whether sold in the U.S. or elsewhere, nearly every laser comes from China. We’ll talk about that in a minute, but if you purchase a laser that uses rechargeable batteries, beware of no-name chargers and off-brand batteries that lack safeguards. Some of these inexpensive batteries have been known to explode!

What to buy? I can’t speak to every firm that offers laser pointers, and there are many, but some of the more popular ones include:

* Wicked Lasers
*  Z-Bolt
* Optotronics
* LED Shoppe

I’ve bought from Optotronics, based in Colorado and the LED Shoppe, out of Hong Kong. I took a chance on the LED Shoppe’s lasers and have been pleasantly surprised at the low cost, free shipping and good customer service. While power ratings can vary from what the label reads, I’ve been especially pleased with both the 55 mW from Optotronics and the 5-watt (yes, FIVE WATTS) green and red pointers from the LED Shoppe. Their 50 mW green version does a great job, too. Just a disclaimer — I don’t work for and am not associated with either company.

Bottom line: If you’re looking for a effective pointer for public star parties, I recommend a 50 mW or higher green pointer. Anything in that range will provide a lovely bright beam you can use to literally dazzle your audience when sharing the beauty of the night. Before you make your decision, check your country or state’s laser use laws where for the U.S. or worldwide. If buying in the U.S., speak to the business owner if you have any questions.

Have a Merry Green, Red, Blue and Violet Christmas!

What is an Orrery?

Mechanical orrery by Gilkerson, in Armagh Observatory. Credit: star.arm.ac.uk

For thousands of years, humans have been studying the heavens, seeking to find patterns and predictability in their movements. This tradition goes all the way back to prehistory, where hunter-gatherer societies assigned characteristics to asterisms and celestial bodies. And from the 2nd millennium onward, magi and astronomers began recording the movements of the constellations and the planets through the zodiac.

By classical antiquity, attempts began to create astrolabes and other devices that would allow astronomers to know where the stars and planets were at any given time. These would eventually culminate in the creation of the orrery, a mechanical device that attempts to recreate the Solar System and the movements of its planets and moons around our Sun.

Definition:

Traditionally, an orrery is a mechanical model of the Solar System, or at least the major planets. This device is driven by a clockwork mechanism that simulates the motion of the planets (and, in some cases, major moons) around the Sun. This last feature is key, since most known orreries were produced during the early modern period and after, when the Heliocentric model of the Solar System came to be the accepted one.

Orreries are typically driven by a clockwork mechanism with a globe representing the Sun at the center, and with a planet at the end of each of the arms. They are usually not to scale, partly because of the difficulty of mechanically modeling the distances involved, the eccentricity of various planets’ orbits, and the planets’ massive differences in terms of size.

Though many working planetaria were created during Classical Antiquity, the first orrery of the modern era was produced in 1704 by clock makers George Graham and Thomas Tompion. The name is derived from Charles Boyle, the 4th Earl of Orrery, England, who commissioned famed instrument maker John Rowley to build one in 1713 based on the design of Graham and Tompion.

Early Examples:

The Antikythera mechanism, which is dated to ca. 150 – 100 BCE, may be considered the first orrery that is still in existence. Discovered in the wreck of a ship in 1900 off the Greek island of Antikythera (hence the name), this device consisted of hand-driven mechanisms that represented the diurnal motions of the Sun, the Moon, and the then-known five known planets (Mercury, Venus, Earth, Mars, Jupiter).

The Antikythera Mechanism may be the world's oldest computer. Image: By Marsyas CC BY 2.5
The Antikythera Mechanism may be the world’s oldest computer. Credit: Wikipedia Commons/Marsyas

Reflecting the cosmological view of the Greeks, the device was geocentric in nature and was used as a mechanical calculator designed to determine astronomical positions. According to Roman philosopher Cicero (106 – 43 BCE), the Syrian-born Greek philosopher Posidonius of Rhodes (ca. 135 – 51 BCE ) built a planetary model as well. With the fall of the Roman Empire, the art would not be resurrected until the late Medieval Period.

In 1348, Italian doctor and clock maker Giovanni Dondi built the first known clock-driven mechanism which displayed the position of Moon, Sun, Mercury, Venus, Mars, Jupiter and Saturn along the ecliptic – according to the Ptolemaic (geocentric) model of the Solar system. At present, only a written account survives, but it is extremely detailed in its description of the mechanisms involved.

During the 16th century, two astronomical clocks were built for the court of William IV, Langrave of Hesse-Kassel (in modern day Bavaria, Germany). These showed the motions of the Sun, Moon, Mercury, Venus, Mars, Jupiter and Saturn based on the Ptolemaic system.  These clocks are now on display at the Museum of Physics and Astronomy and the Royal Cabinet of Mathematical and Physical Instruments (in Kassel and Dresden, respectively).

Modern Examples:

Thanks to Copernicus’s proposal of the Heliocentric model of the Universe, Isaac Newton’s Law of Universal Gravitation, and other discoveries that took place during the Scientific Revolution, orreries changed significantly by the early modern period. In essence, the Heliocentric model simplified the apparent orbits of the planets around the Sun, to the point that they could be represented as simple circles or ellipses.

A Philosopher Lecturing on the Orrery (ca. 1766) by Joseph Wright of Derby. Credit: Public Domain
A Philosopher Lecturing on the Orrery (ca. 1766) by Joseph Wright of Derby. Credit: Public Domain

As noted, the first modern orrery was created in 1704 in England by clock makers George Graham and Thomas Tompion. This design was given to instrument maker Jon Rowely, who then produced a copy for the Prince Eugene of Savoy and was commissioned by his patron – Charles Boyle – to build them for himself and his son John – who would go on to become the 5th Earl of Orrery (and the 5th Earl of Cork).

Between 1665 and 1681, while in Paris, Christiaan Huygens created a heliocentric planetary machine that represented a year and the cycles of the then-known planets. He would go on to publish papers describing its functions by 1703. The painting “A Philosopher giving a Lecture on the Orrery in which a lamp is put in place of the Sun”, which Jospeh Wright completed in 1766, features a brass orrery as its centerpiece.

Between 1774 and 1781, Eisinga’s Planetarium was built in Franeker, in the Netherlands by amateur Frisian astronomer Eise Eisinga. Central to the planetarium is an orrery which shows the orbits of the planets across the width of the room’s ceiling. The clockwork machine that powers it has been in almost continuous operation since it first opened.

In 1764, Benjamin Martin invented a new type of orrery that relied on three parts – the planetarium where the planets revolved around the Sun; the tellurion, which showed the inclined axis of the Earth and how it revolved around the Sun; and the lunarium which showed the eccentric rotations of the Moon around the Earth. This allowed for a more accurate representations of the Solar System, which included the planet’s inclinations, relative to the Sun.

Orreries Today:

Today, with immense amounts of low-cost computing power available, software has been developed to calculate the relative positions and motions of Solar System bodies. Examples of these “digital orreries” include a java applet used at the Department of Physics at the University of Texas at Austin, and Orrery, a Solar System Visualizer from The Geometry Center at the University of Minnesota (which relies on Unix).

There is also the Digital Orrery, a special-purpose computer designed to model the long term motions of the outer planets of the Solar System. Constructed in 1985, it was built to answer a long-standing question about the Solar System, which is whether or not it is stable (invariably, the answer was a big no). This device is now at the Smithsonian Institution in Washington, DC.

And in 2013, the first virtual orrery was created by the Cattle Point Foundation at the DARK SKY Urban Star Park, located in Oak Bay, British Columbia. The orrery is called “The Salish Sea Walk of the Planets“, and was built with Google Maps to avoid negatively impacting the park and the nearby Orca and wildlife sanctuaries. This orrery has now extended beyond the Star Park to become the world largest, covering a distance of over 8,500 km (5,300 mi).

Credit: attlepointstarpark.org
The Sun and Cairn, part of “The Salish Sea Walk of the Planets” in Oak Bay, BC. Credit: attlepointstarpark.org

The Sun is located in the Star Park in Oak Bay (shown above) while Pluto (the most distant “planet”) is located in Bamfield on the western side of Vancouver Island, BC. The Kuiper Belt Objects are situated north in the small towns of Ucluelet and Tofino while the farthest object within our Solar System – the Oort Cloud – is across the sea at the Canadian Embassy in Beijing, China.

Meanwhile, physical orreries still exist in many locations. For example, there’s The York Solar System Model Orrery, a special bike path constructed in 1999 and maintained by York University in the UK. Spread out along 10.3 km (6.4 miles) of the old East Coast main-line railway, this scale model of the Solar System contains all the planets of the Solar System, as well as models of the Cassini and Voyager spacecraft.

There is also the “Path of the Planets Uetliberg–Felsenegg“, which follows a hiking trail along the Albis (a chain of hills in Switzerland). The path was designed by Arnold von Rotz to be a 1:1 billion scale model of the Solar System (where 1 meter equals 1 billion km). The path runs from the towns of Uetliberg to Felsenegg (which is about 2 hours away on foot) and opened on April 26th, 1979.

Each planet is represented by a large orb that is mounted to a boulder or affixed inside one (depending on their size) and has a sign that includes the body’s place in the Solar System and their basic info (like equatorial diameter, rotational speed, etc.)

. Credit: uetliberg.ch
The bronze orb representing the Sun along the “Passauer Footpath of the Planets”, in Lower  Bavaria, Germany. Credit: uetliberg.ch

There’s also The Human Orrery, which is located at Armagh Observatory, in Northern Ireland. This orrery allows people to play the part of the planets of Mercury, Venus, Earth, Mars, Jupiter, and Saturn, as well as Ceres and two comets (1P/Halley and 2P/Encke). Due to their immense distance, and the fact the orrery is to scale, Uranus and Neptune are not included.

From our humble beginnings as hunter-gatherers who looked up at the stars and discerned patterns in their appearance, humanity has come a long way in terms of its understanding of the Universe. As we invented devices to look deeper into the night sky, and even explore space directly, our models have matured accordingly, growing in terms of accuracy and complexity.

That tradition continues, with more mission to study and explore the outer Solar System proceeding apace. Future orreries are likely to take advantage of all this, leveraging new technologies and new information to create even more detailed and interesting representations of our cosmic background!

We have written many interesting articles about the planets here at Universe Today. Here’s The Solar System Guide, What is the Geocentric Model of the Universe?, What is the Heliocentric Model of the Universe?, What is the Difference Between the Geocentric and Heliocentric model of the Solar System?, and How Many Planets are in the Solar System?

Source:

Why Space Exploration Represents the Best of Humanity

The Earth straddling the limb of the Moon, as seen from above Compton crater on the lunar farside, taken by the Lunar Reconnaissance Orbiter spacecraft. Credit: NASA/GSFC/Arizona State University.

The current divisiveness that seems to be permeating our culture has many wondering if we can ever overcome the divisions to find our common humanity, and be able to work together to solve our problems. I’ve said – only somewhat jokingly — that if there are any alien species out there, waiting to make first contact with the people of Earth in order to unify our planet, now would be a good time.

I saw a quote last week, where in remembering astronaut John Glenn, Bill Nye said “Space exploration brings out our best.”

I really believe that. Space exploration challenges us to not only to be and do our best, but reach beyond the ordinary, push the boundaries of our scientific and technical limits, and then to push even further. That “intangible desire to explore and challenge the boundaries of what we know and where we have been,” as NASA has phrased it, has provided benefits to our society for centuries. With space exploration, our desire to answer fundamental questions about our place in the Universe can not only help to expand technology, but it helps us look at things in new ways and it seems to help foster a sense of cooperation, and – if I may – peaceful and enduring connections with our fellow humans.

If we could only look for and encourage the best in each other, and simply spend time cooperating and working together, I think we’d be amazed at what we could accomplish.

The people involved in space exploration already do that.

The team from the Mars Science Laboratory celebrate the successful landing of the Curiosity rover on Mars in August of 2012. Credit: NASA/JPL.
The team from the Mars Science Laboratory celebrate the successful landing of the Curiosity rover on Mars in August of 2012. Credit: NASA/JPL.

I recently had the opportunity to meet with some of our best, brightest and boldest and witness the cooperation and respect that it takes for space missions to succeed. Over the past several months, I interviewed 37 NASA scientists and engineers from current robotic missions for a book I wrote, “Incredible Stories From Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos.” In all these stories these scientists and engineers shared with me, several things stood out.

Cooperation

Space exploration offers an incredible example of cooperation. Getting a mission off the ground and keeping it operational for as long as possible takes an amazing amount of cooperation. A delightful children’s book titled “Team Moon: How 400,000 People Landed Apollo 11 on the Moon” by Catherine Thimmesh shows how it took hundreds of thousands of people from not just the United States, but also from around the world to send the astronauts to the Moon. From rocket scientists to the seamstresses that sewed the spacesuits together, to the radio operators around the globe that monitored communications, each person, each step was an important link in the chain of what it took to make the Apollo 11 mission possible.

And while my book focuses on NASA missions (I really wish traveling abroad to include missions from other space agencies would have been in my budget!) almost all robotic missions these days are international ventures.

Helmut Jenkner, who is currently the Interim Head of the Hubble Space Telescope Mission, told me that the international nature of the Hubble mission has brought an inherent diversity to the project. The diverse approach to solving problems has helped Hubble be such a successful mission, and with Hubble in space for nearly 27 years, Jenkner said that diverse approach has helped the Hubble mission to endure.

JPL Waves at Saturn As NASA's Cassini spacecraft turned its imaging cameras to Earth, scientists, engineers and visitors at NASA's Jet Propulsion Laboratory, Pasadena, Calif., gathered to wave at our robotic photographer in the Saturn system on July 19, 2013. Credit: NASA/JPL-Caltech
JPL Waves at Saturn As NASA’s Cassini spacecraft turned its imaging cameras to Earth, scientists, engineers and visitors at NASA’s Jet Propulsion Laboratory, Pasadena, Calif., gathered to wave at our robotic photographer in the Saturn system on July 19, 2013. Credit: NASA/JPL-Caltech

In virtually all robotic missions, scientists from around the world work together and provide their expertise from building instruments to analyzing the data. Working across borders and languages can be difficult, but for the mission to succeed, cooperation is essential. Because of the common goal of mission success, differences from major to petty can be put aside.

On a robotic spacecraft, the many different components and instruments on board are built by different companies, sometimes in several different countries, but yet all the pieces have to fit together perfectly in order for a mission to succeed. Just putting together a mission concept takes an incredible amount of cooperation from both scientists and engineers, as they need to figure out the great compromise of what is possible versus what would be ideal.

I don’t mean to be completely Pollyanna here, as certainly, there are personality conflicts, and I know there are people involved in space missions who have to work side-by-side with someone they don’t really like or don’t agree with. There is also intense competition: the competition for missions to be chosen to get sent to space, the rivalry for who gets to lead and make important decisions, and disagreements on the best way to proceed in times of difficulty. But yet, these people work it out, doing what is necessary in order for the mission to succeed.

Inclusiveness

An artist's conception of Juno in orbit around Jupiter. image credit: NASA
An artist’s conception of Juno in orbit around Jupiter. image credit: NASA

Space exploration brings out a sense of inclusiveness. Many of the Apollo astronauts have said that when they traveled to other countries following the missions, people around the world would say how proud they were that “we went to the Moon.” It wasn’t just the US, but “we humans” did it.

When the Curiosity rover landed, when Juno went into orbit around Jupiter, when the Rosetta mission successfully went into orbit around a comet (and then when the mission ended), when New Horizons successfully flew by Pluto, my social media feeds were filled with people around the world rejoicing together.

Being inclusive and encouraging diversity are “mission critical” for going to space, said astrophysicist Jedidah Isler at the recent White House Frontiers Conference. “We have both the opportunity and the obligation to engage our entire population in this epic journey [into space],” she said.

Also at White House Frontiers, President Obama said that “Problem solving through science, together we can tackle some of the biggest challenges we face.”

Dedication and Commitment

New Horizons flight controllers celebrate after they received confirmation of the spacecraft's successful flyby of Pluto on July 14, 2015. Credit: NASA/Bill Ingalls.
New Horizons flight controllers celebrate after they received confirmation of the spacecraft’s successful flyby of Pluto on July 14, 2015. Credit: NASA/Bill Ingalls.

Another human aspect that stood out during my interviews is the dedication and commitment of the people who work on these missions to explore the cosmos. Interview after interview, I was amazed by the enthusiasm and excitement embodied by these scientists and engineers, their passion for what they do. I truly hope that in the book, I was able to capture and convey their incredible spirit of exploration and discovery.

Space exploration takes people working long hours, figuring out how to do things that have never been done before, and never giving up to succeed. Alan Stern, Principal investigator for the New Horizons mission to Pluto explained how it took “dedication from 2,500 people around the country who worked all day plus nights and weekends for over 15 years” for the mission to makes its successful flyby of Pluto in July 2015. The dedication continues as the New Horizons team has their sights on another ancient body in the Kuiper Belt that the spacecraft will explore in January 2019.

Taking the larger view.

 

The first image ever taken of Earth from the surface of a planet beyond the Moon. The image was taken by the Mars Exploration Rover Spirit's panoramic camera on March 8, 2004, one hour before sunrise on the 63rd Martian day, or sol, of its mission. Credit: NASA/JPL.
The first image ever taken of Earth from the surface of a planet beyond the Moon. The image was taken by the Mars Exploration Rover Spirit’s panoramic camera on March 8, 2004, one hour before sunrise on the 63rd Martian day, or sol, of its mission. Credit: NASA/JPL.

Space exploration helps us look beyond ourselves.

“A lot of space exploration is taking you out of the trees so you get a glimpse of the forest,” Rich Zurek told me when I visited him at JPL this year. Zurek is the head of NASA’s Mars exploration program, as well as the Project Scientist for the Mars Reconnaissance Orbiter. “A classic example is the Apollo 8 view of the Earth over the Moon’s horizon. You can imagine what the planet looks like but when you actually see it, it is very different and can evoke many different things.”

The first views of Earth from space and seeing the fragileness of our planet from a distance help launch the environmental movement in the 1970’s, which continues today. That planetary perspective is crucial to the future of humanity and our ability solve world-wide problems.

“Working on a project like this gives meaning in general because you are doing something that is outside of yourself, outside of our personal problems and struggles, and you really think about the human condition,” said Natalie Batalha, who is the mission scientist for the Kepler missions’ hunt for planets around distant stars. “Kepler really makes us think about the bigger picture of why we’re here and what we’re evolving towards and what else might be out there.”

Space explorations expands our horizons, feeds our curiosity, and helps us finding all sorts of unexpected things while helping to answer profound questions like how did the Universe begin? How did life begin? Are we alone?

Does that sound too utopian? Like in Star Trek, space exploration offers an optimistic view of the future, and humanity. Star Trek’s “Infinite Diversity from Infinite Combinations” says the only way we grow is through new ideas and experiences, and as soon as we stop exploring, we stop growing.

“We are all confined to Earth but yet we reach out and undertake these grand adventures to space,” said Marc Rayman, who is the director and chief engineer for the Dawn mission to the asteroid belt. He is one of the most passionate people – passionate about space exploration and life itself — I’ve ever talked to. “We do this in order to comprehend the majesty of the cosmos and to express and act upon this passion we feel for exploration. Who hasn’t looked at the night sky in wonder? Who hasn’t wanted to go over the next horizon and see what is beyond? Who doesn’t long to know the universe?”

“Anyone who has ever felt any of those feelings is a part of our mission,” Rayman continued. “We are doing this together. And that’s what I think is the most exciting, gratifying, rewarding and profound aspect of exploring the cosmos.”

book-cover-image-final-incredible-001
“Incredible Stories From Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos”is available for pre-order on Amazon and Barnes & Noble, with delivery by Dec. 20.

The Perfect Gift for Every Space Enthusiast: the Year in Space Calendar 2017

I love it when December rolls around every year because I know it’s time to order the Year In Space Calendars! This is our most-recommended holiday gift every year and for 2017, these calendars – whether it’s the gigantic wall calendar or the spiral-bound desk calendar — are full of amazing color images, daily space facts, and historical references. These calendars even show you where you can look in the sky for all the best astronomical sights.

These calendars are the perfect gift every space enthusiast will enjoy all year.

A close look at a page from the 2017 Year in Space Wall Calendar. Courtesy Steve Cariddi.
A close look at a page from the 2017 Year in Space Wall Calendar. Courtesy Steve Cariddi.

The gorgeous wall calendar has over 120 crisp color images and is larger, more lavishly illustrated, and packed with more information than any other space-themed wall calendar. It’s a huge 16? x 22? when hanging up.

The Year In Space calendars take you on a year-long guided tour of the Universe, providing in-depth info on human space flight, planetary exploration, and deep sky wonders. You’ll even see Universe Today featured in these calendars!

The Year in Space calendars normally sell for $19.95, but Universe Today readers can buy the calendar for only $14.95 or less (using the “Internet” discount), with additional discounts that appear during checkout if you buy more than 1 copy at a time. Check out all the details here.

A close look at the 2017 Year in Space Wall Calendar. Courtesy Steve Cariddi.
A close look at the 2017 Year in Space Wall Calendar. Courtesy Steve Cariddi.

Other features of the Year In Space calendar:
– Background info and fun facts
– A sky summary of where to find naked-eye planets
– Space history dates
– Major holidays (U.S. and Canada)
– Daily Moon phases
– A mini-biography of famous astronomer, scientist, or astronaut each month

The 2017 Year in Space desk calendar. Image courtesy Steve Cariddi/Year in Space.
The 2017 Year in Space desk calendar. Image courtesy Steve Cariddi/Year in Space.

The 136-Page Desk Calendar is available at a similar discounts. The desk calendar also includes a Monthly Sky Summary, which is a handy month-by-month list of what’s visible in the night sky, such as conjunctions, meteor showers, eclipses, planet visibility, and more. Plus there’s information on planetary exploration, including a comprehensive look at what to expect from the many planetary missions taking place in the year ahead.

You can preview and place your orders at the Year in Space Calendar website. Because all shipping is handled through Amazon this year, currently calendars can only ship to US addresses.

This Week: Occultations of Aldebaran, Regulus vs. the Supermoon

Aldebaran Occultation
The Moon about to occult Aldebaran on December 23rd, 2015. Image credit and copyright: Paul Campbell.

It’s a busy week for the Moon. While our large solitary natural satellite reaches Full and interferes with the 2016 Geminids, it’s also beginning a series of complex bright star occultations of Aldebaran and Regulus, giving us a taste of things to come in 2017.

First up, here’s the lowdown on this week’s occultation of Aldebaran by the Moon, coming right up tonight:

Aldebaran Occultation
The footprint for tonight’s occultation of Aldebaran by the Moon. You can find specific ingress and egress times for major cities near you on the IOTA event page. Credit: Occult 4.2.

The 99% illuminated waxing gibbous Moon occults the +0.9 magnitude star Aldebaran on Monday, December 12th. The Moon is just 19 hours and 30 minutes before reaching Full during the event. Both are located 167 degrees east of the Sun at the time of the event. The central time of conjunction is 4:37 Universal Time (UT). The event occurs during the daylight hours over Hawaii at dusk during Moonrise, and under darkness for Mexico, most of Canada and the contiguous United States. The event also includes the United Kingdom and southwestern Europe at Moonset near early dawn. This is the final occultation of Aldebaran by the Moon for 2016; The Moon will next occult Aldebaran on January 9th, 2017. This is occultation 26 in the current series of 49, running from January 29th, 2015 to September 3rd, 2018.

Moon Gibraltar
The view from Gibraltar just prior to this week’s occultation of Aldebaran by the Moon. Credit: Stellarium.

Four 1st magnitude stars are along the Moon’s path in the current epoch: Regulus, Aldebaran, Antares and Spica. In the current century, (2001-2100 AD) the Moon occults Aldebaran 247 times, topped only by Antares (386 times) and barely beating out Spica (220 times). The Moon also occults Regulus 220 times this century, and occultations of Spica and Antares resume on May 2024 and July 2023, respectively.

And yes, this Supermoon 3 of 3 for 2016, though actual perigee occurs at 23:28 UT tonight, 39 minutes past our own ’24 hour from Full’ rule. The Moon reaches Full on Wednesday, December 14th at just past midnight at 00:07 UT. This is also the closest Full Moon to the December 21st winter solstice next week, and the Full Moon will ride high in the sky this week for northern hemisphere observers on long winter nights.

Keep an eye out for Geminid meteors tonight as well… sure, 2016 may be an off year for this usually spectacular shower, but a few brighter fireballs may still punch through the lunar light pollution.

Clouded out? Be sure to catch the Supermoon action tomorrow night live online starting at 16:00 UT, courtesy of Gianluca Masi and the Virtual Telescope Project.

And there’s more. This coming weekend marks the start of an upcoming new cycle of occultations of Regulus by the Moon. These run right through 2018, as the Moon visits the bright star Regulus five days after crossing the Hyades and occulting Aldebaran for every lunation pass in 2017.

Here’s the specifics for Sunday’s event:

Moon Regulus
The footprint for Sunday’s occultation of Regulus by the Moon. You can find specific ingress and egress times for major cities near you on the IOTA event page. Credit: Occult 4.2.

The 73% illuminated waning gibbous Moon occults the +1.4 magnitude star Regulus on Sunday, December 18th. The Moon is just four days past Full during the event. Both are located 117 degrees west of the Sun at the time of the event. The central time of conjunction is 18:38 Universal Time (UT). The event occurs during the daylight hours over Tasmania, and under darkness for the southwestern tip of Australia, including Perth. The Moon will next occult Regulus on January 15th, 2017. This is the first occultation in a new series of nineteen, running from this weekend to April 24th, 2018.

moon regulus
The view of Sunday’s event from Perth, Australia. Credit: Stellarium.

It’s worth noting that the graze line for Sunday’s occultation of Regulus by the Moon runs just north of the Australian city of Perth and the Perth Observatory… let us know if anyone ‘Down Under’ witnesses the first occultation of Regulus in the new cycle.

Can you spy Regulus’ white dwarf companion? Located 77 light years distant, the Regulus system has at least four components: a B/C pair shining at a combined magnitude of +8, with an apparent separation of 3”, (5,000 AU physical distance in a ~600 year orbit) and an unseen white dwarf companion in a tight 40 day orbit. We know that said white dwarf companion exists from spectroscopic analysis… and it would shine at an easy magnitude +13, were it not near dazzling Regulus shining over 10,000 times brighter. Could this elusive companion turn up just moments before the reappearance of Regulus from behind the Moon? Remember, the dark limb of the Moon leads the way during waxing phases, then trails as the Moon wanes. These and other amazing facts are included in our forthcoming free guide to 101 Astronomical Events to watch out for in 2017.

Regulus occultations
Every occultation of Regulus for the upcoming cycle. Credit: Occult 4.2.

Follow that Moon, and don’t miss these fine astro-events coming to sky above you this week!

CYGNSS Constellation of Hurricane Monitoring MicroSats Set for Dec. 12 Launch – Watch Live

Artist's concept of the deployment of the eight Cyclone Global Navigation Satellite System (CYGNSS) microsatellite observatories in space. Credits: NASA
Artist's concept of the deployment of the eight Cyclone Global Navigation Satellite System (CYGNSS) microsatellite observatories in space.  Credits: NASA
Artist’s concept of the deployment of the eight Cyclone Global Navigation Satellite System (CYGNSS) microsatellite observatories in space. Credits: NASA

KENNEDY SPACE CENTER, FL – An exciting new chapter in hurricane monitoring and forecasting intensity prediction is due to open Monday morning at NASA’s Kennedy Space Center when a new constellation of microsatellites dubbed CYGNSS are slated to be deployed from an air-launched Orbital ATK Pegasus XL rocket.

The fleet of eight identical spacecraft comprising the Cyclone Global Navigation Satellite System (CYGNSS) system will be delivered to Earth orbit by an Orbital ATK Pegasus XL rocket.

The Pegasus/CYGNSS vehicle is attached to the bottom of the Orbital ATK L-1011 Stargazer carrier aircraft.

“The CYGNSS constellation consists of eight microsatellite observatories that will measure surface winds in and near a hurricane’s inner core, including regions beneath the eyewall and intense inner rainbands that previously could not be measured from space,” according to a NASA factsheet.

The data obtained by studying the inner core of tropical cyclones “will help scientists and meteorologists better understand and predict the path of a hurricane.”

Improved hurricane forecasts can help protect lives and mitigate property damage in coastal areas under threat from hurricanes and cyclones.

The Orbital ATK L-1011 Stargazer aircraft at the Skid Strip at Cape Canaveral Air Force Station in Florida. Attached beneath the Stargazer is the Orbital ATK Pegasus XL with NASA's CYGNSS payload on board, being processed for launch on Dec. 12, 2016.  Credit: Ken Kremer/kenkremer.com
The Orbital ATK L-1011 Stargazer aircraft at the Skid Strip at Cape Canaveral Air Force Station in Florida. Attached beneath the Stargazer is the Orbital ATK Pegasus XL with NASA’s CYGNSS payload on board, being processed for launch on Dec. 12, 2016. Credit: Ken Kremer/kenkremer.com

CYGNSS is an experimental mission to demonstrate proof-of-concept that could eventually turn operational in a future follow-up mission if the resulting data returns turn out as well as the researchers hope.

The Pegasus XL rocket with the eight observatories are tucked inside the nose cone will be air-launched by dropping them from the belly of Orbital’s modified L-1011 carrier aircraft, nicknamed Stargazer, after taking off from the “Skid Strip” runway at Cape Canaveral Air Force Station in Florida.

If all goes well, the rocket will be dropped from Stargazer’s belly for the launch currently planned for Monday, Dec. 12 at 8:24 a.m. EST.

Five seconds after the rocket is deployed at 39,000 feet, the solid fueled Pegasus XL first stage engine with ignite for the trip to low earth orbit.

They will be deployed from a dispenser at an altitude of about 510 km and an inclination of 35 degrees above the equator.

Technician works on Orbital ATK Pegasus XL rocket with NASA's CYGNSS payload on board on Dec. 10, 2016 in this rear side view showing the first stage engine. They are mated to the bottom of the Orbital ATK L-1011 Stargazer aircraft at the Skid Strip at Cape Canaveral Air Force Station in Florida.  Launch is slated for Dec. 12, 2016.  Credit: Ken Kremer/kenkremer.com
Technician works on Orbital ATK Pegasus XL rocket with NASA’s CYGNSS payload on board on Dec. 10, 2016 in this rear side view showing the first stage engine. They are mated to the bottom of the Orbital ATK L-1011 Stargazer aircraft at the Skid Strip at Cape Canaveral Air Force Station in Florida. Launch is slated for Dec. 12, 2016. Credit: Ken Kremer/kenkremer.com

The launch window lasts 1 hour with the actual deployment timed to occur 5 minutes into the window.

NASA’s Pegasus/CYGNUS launch coverage and commentary will be carried live on NASA TV – beginning at 6:45 a.m. EDT

You can watch the launch live on NASA TV at – http://www.nasa.gov/nasatv

Live countdown coverage on NASA’s Launch Blog begins at 6:30 a.m. Dec. 12.

The weather forecast from the Air Force’s 45th Weather Squadron at Cape Canaveral is currently predicting a 40% chance of favorable conditions on Monday Dec 12.

The primary weather concerns are for flight through precipitation and cumulus clouds.

The Pegasus rocket cannot fly through rain or clouds due to a negative impact on the thermal protection system.

In the event of a delay, the range is also reserved for Tuesday, Dec. 13 where the daily outlook increases significantly to an 80% chance of favorable weather conditions.

After Stargazer takes off from the Skid Strip early Monday morning around 6:30 a.m. EST, it will fly north to a designated point about 126 miles east of Daytona Beach, Florida over the Atlantic Ocean. The crew can search for a favorable launch point if needed.

The rocket will be dropped for a short freefall of about 5 seconds. It launches horizontally in midair with ignition of the first stage engine burn, and then tilts up to space to begin the trek to LEO.

The $157 million CYGNSS constellation works in coordination with the Global Positioning System (GPS) satellite constellation.

The eight satellite CYGNSS fleet “will team up with the Global Positioning System (GPS) constellation to measure wind speeds over Earth’s oceans and air-sea interactions, information expected to help scientists better understand tropical cyclones, ultimately leading to improved hurricane intensity forecasts.”

They will receive direct and reflected signals from GPS satellites.

“The direct signals pinpoint CYGNSS observatory positions, while the reflected signals respond to ocean surface roughness, from which wind speed is retrieved.”

“Forecasting capabilities are going to be greatly increased,” NASA Launch Manager Tim Dunn said at the prelaunch media briefing at the Kennedy Space Center on Dec. 10. “As a Floridian, I will really appreciate that, certainly based on what we had to do this fall with Hurricane Matthew.”

Indeed the CYGNSS launch was delayed by Hurricane Matthew, just like the NASA/NOAA GOES-R launch was also delayed from early to mid-November by the deadly Cat 4 storm.

The nominal mission lifetime for CYGNSS is two years but the team says they could potentially last as long as five years or more if the spacecraft continue functioning.

Pegasus launches from the Florida Space Coast are infrequent. The last once took place over 13 years ago.

Typically they take place from Vandenberg Air Force Base in California or the Reagan Test Range on the Kwajalein Atoll.

CYGNSS counts as the 20th Pegasus mission for NASA.

Flight deck of the Orbital ATK L-1011 Stargazer aircraft that will launch the Orbital ATK Pegasus XL rocket carrying NASA's CYGNSS payload to low Earth orbit.  Credit: Julian Leek
Flight deck of the Orbital ATK L-1011 Stargazer aircraft that will launch the Orbital ATK Pegasus XL rocket carrying NASA’s CYGNSS payload to low Earth orbit. Credit: Julian Leek

The CYGNSS spacecraft were built by Southwest Research Institute in San Antonio, Texas. Each one weighs approx 29 kg. The deployed solar panels measure 1.65 meters in length.

The Space Physics Research Laboratory at the University of Michigan College of Engineering in Ann Arbor leads overall mission execution in partnership with the Southwest Research Institute in San Antonio, Texas.

The Climate and Space Sciences and Engineering Department at the University of Michigan leads the science investigation, and the Earth Science Division of NASA’s Science Mission Directorate oversees the mission.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

An Orbital ATK technician checks the installation of two of the eight the CYGNSS microsatellites on their deployment module at Vandenberg Air Force Base in California.  Credits: Photo credit: USAF
An Orbital ATK technician checks the installation of two of the eight the CYGNSS microsatellites on their deployment module at Vandenberg Air Force Base in California. Credits: Photo credit: USAF
Flight crew for the Orbital ATK L-1011 Stargazer aircraft at the Skid Strip at Cape Canaveral Air Force Station in Florida who will drop and deploy Orbital ATK Pegasus XL rocket delivering NASA’s CYGUS micro satellites to LEO. Credit: Ken Kremer/kenkremer.com
Flight crew for the Orbital ATK L-1011 Stargazer aircraft at the Skid Strip at Cape Canaveral Air Force Station in Florida who will drop and deploy Orbital ATK Pegasus XL rocket delivering NASA’s CYGUS micro satellites to LEO. Credit: Ken Kremer/kenkremer.com

Powerful USAF Satcom Propelled to Orbit by Delta Provides Dinnertime Launch Delight; Photo/Video Launch Gallery

Ignition and liftoff of the United Launch Alliance (ULA) Delta IV rocket carrying the WGS-8 highest capacity satcom to orbit for the U.S. Air Force at 6:53 p.m EDT on Dec. 7, 2016 from Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com
Ignition and liftoff of the United Launch Alliance (ULA) Delta IV rocket carrying the WGS-8 highest capacity satcom to orbit for the U.S. Air Force at 6:53 p.m EDT on Dec. 16, 2016 from Cape Canaveral Air Force Station, Fl.  Credit: Ken Kremer/kenkremer.com
Ignition and liftoff of the United Launch Alliance (ULA) Delta IV rocket carrying the WGS-8 highest capacity satcom to orbit for the U.S. Air Force at 6:53 p.m EDT on Dec. 7, 2016 from Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL – The most powerful US Air Force military communications satellite ever built was propelled to orbit by a ULA Delta IV rocket that provided a dinnertime launch delight Wednesday evening for the crowds of spectators gathered around America’s premier gateway to space.

Check out this expanding gallery of launch photos and videos from several space journalist colleagues and friends and myself- spread throughout the Florida Space Coast region – giving a comprehensive look as the Wideband Global SATCOM (WGS-8) mission streaked to orbit atop a United Launch Alliance Delta IV rocket from Space Launch Complex 37 (SLC-37) on Cape Canaveral Air Force Station at 6:53 p.m. EST on Dec. 7, 2016.

ULA Delta IV rocket and WGS-8 USAF sitcom streak to orbit at 6:53 p.m EDT on Dec. 16, 2016 from Cape Canaveral Air Force Station, Fl, as seen from Melbourne, FL.   Credit: Julian Leek
ULA Delta IV rocket and WGS-8 USAF sitcom streak to orbit at 6:53 p.m EDT on Dec. 7, 2016 from Cape Canaveral Air Force Station, Fl, as seen from Melbourne, FL. Credit: Julian Leek

The United Launch Alliance Delta IV Medium+ rocket successfully streaked to the heavens through nearly crystal clear skies to deliver WGS-8 to a supersynchronous transfer orbit.

Spectators were rewarded with a picture perfect view of the rocket as it ascended quickly and arced over to the African continent.

A United Launch Alliance (ULA) Delta IV rocket carrying the WGS-8 mission lifts off from Space Launch Complex-37 at 6:53 p.m EDT on Dec. 16, 2016 from Cape Canaveral Air Force Station, Fla.  Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Delta IV rocket carrying the Wideband Global SATCOM (WGS-8) mission lifts off from Space Launch Complex-37 at 6:53 p.m EDT on Dec. 7, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com

WGS-8 is the first in a newly upgraded series of a trio of WGS satellites built by Boeing that will nearly double the communications bandwidth of prior WGS models.

United Launch Alliance (ULA) Delta IV rocket streaks to orbit after blastoff at 6:53 p.m EDT on Dec. 16, 2016 from Cape Canaveral Air Force Station, Fl, carrying USAF WGS-8 tactical sitcom.   Credit: Ken Kremer/kenkremer.com
United Launch Alliance (ULA) Delta IV rocket streaks to orbit after blastoff at 6:53 p.m EDT on Dec. 7, 2016 from Cape Canaveral Air Force Station, Fl, carrying USAF WGS-8 tactical sitcom. Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Delta IV rocket carrying the WGS-8 mission lifts off from Space Launch Complex-37 at 6:53 p.m EDT on Dec. 16, 2016 from Cape Canaveral Air Force Station, Fla.  Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Delta IV rocket carrying the WGS-8 mission lifts off from Space Launch Complex-37 at 6:53 p.m EDT on Dec. 7, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com
Liftoff of ULA Delta IV rocket carrying WGS-8 satcom to orbit for USAF at 6:53 p.m EDT on Dec. 16, 2016 from Cape Canaveral Air Force Station, Fl.  Credit:  Julian Leek
Liftoff of ULA Delta IV rocket carrying WGS-8 satcom to orbit for USAF at 6:53 p.m EDT on Dec. 7, 2016 from Cape Canaveral Air Force Station, Fl. Credit: Julian Leek

Watch this video compilation showing the launch from several different vantage points.

Video Caption: A collage of up-close video cameras ringed around Space launch Complex 37 capture Delta 4 launch of the WGS-8 satellite on 12/7/2016 from Pad 37 of the CCAFS, FL. Credit: Jeff Seibert

ULA Delta IV rocket lifts off carrying WGS-8 satcom to orbit for USAF at 6:53 p.m EDT on Dec. 7, 2016 from Cape Canaveral Air Force Station, Fl., as seen from LC-39 gantry. Credit:  Chuck Higgins
ULA Delta IV rocket lifts off carrying WGS-8 satcom to orbit for USAF at 6:53 p.m EDT on Dec. 7, 2016 from Cape Canaveral Air Force Station, Fl., as seen from LC-39 gantry. Credit: Chuck Higgins
ULA Delta IV rocket lifts off carrying WGS-8 satcom to orbit for USAF at 6:53 p.m EDT on Dec. 7, 2016 from Cape Canaveral Air Force Station, Fl., as seen from LC-39 gantry.  Credit:  Chuck Higgins
ULA Delta IV rocket lifts off carrying WGS-8 satcom to orbit for USAF at 6:53 p.m EDT on Dec. 7, 2016 from Cape Canaveral Air Force Station, Fl., as seen from LC-39 gantry. Credit: Chuck Higgins

WGS-8 is the first of three launches from the Cape this December. A Pegasus XL rocket will launch on Dec. 12 carrying NASA’s CGYNSS hurricane monitoring satellites. And an Atlas V will launch on Dec. 18 with the EchoStar 19 comsat.

ULA Delta IV poised for blastoff with the WGS-8 mission for the U.S. Air Force from Cape Canaveral Air Force Station, Fl, on Dec. 7, 2016.  Credit: Lane Hermann
ULA Delta IV poised for blastoff with the WGS-8 mission for the U.S. Air Force from Cape Canaveral Air Force Station, Fl, on Dec. 7, 2016. Credit: Lane Hermann

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Blastoff of ULA Delta IV rocket with USAF WGS-8 satcom at 6:53 p.m EDT on Dec. 7, 2016 from Cape Canaveral Air Force Station, Fl., as seen from Titusville. Credit:  Ashley Crouch
Blastoff of ULA Delta IV rocket with USAF WGS-8 satcom at 6:53 p.m EDT on Dec. 7, 2016 from Cape Canaveral Air Force Station, Fl., as seen from Titusville. Credit: Ashley Crouch
Blastoff of ULA Delta IV rocket with USAF WGS-8 satcom at 6:53 p.m EDT on Dec. 7, 2016 from Cape Canaveral Air Force Station, Fl., as seen from Titusville. Credit:  Ashley Crouch
Blastoff of ULA Delta IV rocket with USAF WGS-8 satcom at 6:53 p.m EDT on Dec. 7, 2016 from Cape Canaveral Air Force Station, Fl., as seen from Titusville. Credit: Ashley Crouch
ULA Delta IV rocket poised for blastoff with the WGS-8 mission for the U.S. Air Force from pad 37 on Cape Canaveral Air Force Station, Fl, on Dec. 7, 2016.  Credit: Ken Kremer/kenkremer.com
ULA Delta IV rocket poised for blastoff with the WGS-8 mission for the U.S. Air Force from pad 37 on Cape Canaveral Air Force Station, Fl, on Dec. 7, 2016. Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Delta IV rocket carrying the WGS-8 mission lifts off from Space Launch Complex-37 at 6:53 p.m EDT on Dec. 16, 2016 from Cape Canaveral Air Force Station, Fla.  Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Delta IV rocket carrying the WGS-8 mission lifts off from Space Launch Complex-37 at 6:53 p.m EDT on Dec. 16, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com
United Launch Alliance (ULA) Delta IV rocket carrying the WGS-8 mission for the U.S. Air Force launches at 6:53 p.m EDT on Dec. 16, 2016 from Cape Canaveral Air Force Station, Fl.  Credit: Ken Kremer/kenkremer.com
United Launch Alliance (ULA) Delta IV rocket carrying the WGS-8 mission for the U.S. Air Force launches at 6:53 p.m EDT on Dec. 16, 2016 from Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com