President Obama Puts US All In For Mars

President Barack Obama, the 44th President of the United States. Image: Official White House Photo by Pete Souza Public Domain

In the waning days of his presidency, Barack Obama has made a bold statement in favor of the US getting to Mars. Obama didn’t mince any words in his opinion piece written for CNN. He said that America’s next goal in space is “…sending humans to Mars by the 2030s and returning them safely to Earth, with the ultimate ambition to one day remain there for an extended time.”

President Obama has long been a proponent of a strong presence in space for the US, and of the science and technology that supports those efforts. He has argued for healthy NASA budgets in his time, and under his administration, NASA has reached some major milestones.

“Last year alone, NASA discovered flowing water on Mars and evidence of ice on one of Jupiter’s moons, and we mapped Pluto — more than 3 billion miles away — in high-resolution,” Obama said. He also mentioned the ongoing successful hunt for exoplanets, and the efforts to understand asteroids.

Some of his work in support of space and science in general has been more symbolic. His annual White House Science Fairs in particular. He was the first president to hold these fairs, and he hosted 6 of them during his 8 years in office.

Presidents go different directions once they leave office. Some keep a low profile (Bush Jr.), some get targeted for assassination (Bush Sr.), and some become advocates for humanitarian efforts and global peace (Jimmy Carter.) But Obama made it clear that his efforts to promote America’s efforts in space won’t end when his presidency ends. “This week, we’ll convene some of America’s leading scientists, engineers, innovators and students in Pittsburgh to dream up ways to build on our progress and find the next frontiers,” Obama said.

In his piece, Obama gave a laundry list of the USA’s achievements in space. He also pointed out that “Just five years ago, US companies were shut out of the global commercial launch market.” Now they own a third of that market. And, according to Obama, they won’t stop there.

In 2010 he set a goal for American space efforts: to reach Mars by the 2030s. “The next step is to reach beyond the bounds of Earth’s orbit. I’m excited to announce that we are working with our commercial partners to build new habitats that can sustain and transport astronauts on long-duration missions in deep space.” He didn’t elaborate on this in his opinion piece, but it will be interesting to hear more.

Other presidents have come out strongly in favor of efforts in space. The first one was Eisenhower, and Obama mentioned him in his piece. Eisenhower is the one who created NASA in 1958, though it was called NACA (National Advisory Committee for Aeronautics) at the time. This put America’s space efforts in civilian control rather than military.

President Kennedy got the Apollo program off the ground in 1961. Image: White House Press Office (WHPO)
President Kennedy got the Apollo program off the ground in 1961. Image: White House Press Office (WHPO)

President Kennedy asked Congress in 1961 to commit to the Apollo program, an effort to get a man on the Moon before the 60s ended. Apollo achieved that, of course, but with only a few months to spare. Kennedy’s successor, President Lyndon Johnson, was a staunch supporter of NASA’s Apollo Program, especially in the wake of disaster.

In 1967 the entire Apollo 1 crew was killed in a fire while testing the craft on its launch pad. The press erupted after that, and Congress began to question the Apollo Program, but Johnson stood firmly in NASA’s corner.

Like some other Presidents before him, Obama has always been a good orator. That was in full view when he ended his piece with these words: “Someday, I hope to hoist my own grandchildren onto my shoulders. We’ll still look to the stars in wonder, as humans have since the beginning of time.”

The focus has really been on Mars lately, and with Obama’s continued support, maybe humans will make it to Mars in the next decade or two. Then, from the surface of that planet, we can do what we’ve always done: continue to look to the stars with a sense of wonder.

SpaceX’s Space Coast Launch Facilities Escape Hurricane Matthew’s Wrath, May Resume Launches this Year

SpaceX is renovating Launch Complex 39A at the Kennedy Space Center for launches of the Falcon Heavy and human rated Falcon 9. Credit: Ken Kremer/kenkremer.com
SpaceX is renovating Launch Complex 39A at the Kennedy Space Center for launches of the Falcon Heavy and human rated Falcon 9.  Credit: Ken Kremer/kenkremer.com
SpaceX is renovating Launch Complex 39A at the Kennedy Space Center for launches of the Falcon Heavy and human rated Falcon 9. Credit: Ken Kremer/kenkremer.com

SpaceX’s key launch facilities on the Florida Space Coast escaped the wrath of Hurricane Matthew’s 100 mph wind gusts late last week, suffering only some exterior damage to the satellite processing building, a company spokesman confirmed to Universe Today.

Furthermore, the aerospace firm still hopes to resume launches of their Falcon 9 rocket before the end of this year following September’s rocket explosion, according to remarks made by SpaceX President Gwynne Shotwell over the weekend.

“Hurricane Matthew caused some damage to the exterior of SpaceX’s payload processing facility [PPF] at Space Launch Complex-40 at Cape Canaveral Air Force Station,” SpaceX spokesman John Taylor told Universe Today.

The payload processing facility (PPF) is the facility where the satellites and payloads are processed to prepare them for flight and launches on the firm’s commercial Falcon 9 rockets.

Some exterior panels were apparently blown out by the storm.

The looming threat of a direct hit by the Category 4 storm Hurricane Matthew on Friday, Oct. 7, on Cape Canaveral and the Kennedy Space Center (KSC) forced the closure of both facilities before the storm hit. They remained closed over the weekend except to emergency personal.

The deadly storm also caused some minor damage to the Kennedy Space Center and USAF facilities on the base.

Meanwhile competitor ULA also told me their facilities suffered only minor damage.

However the base closure will likely result in a few days launch delay of the ULA Atlas V rocket carrying the NASA/NOAA GOES-R weather satellite to geostationary orbit, which had been slated for Nov. 4.

The PPF is located on Cape Canaveral Air Force Station, a few miles south of the Falcon 9 launch pad at Space Launch Complex-40 (SLC-40).

The PPF is inside the former USAF Solid Motor Assembly Building (SMAB) used for the now retired Titan IV rockets.

Fortunately, SpaceX has another back-up facility at pad 40 where technicians and engineers can work to prepare the rocket payload for flight.

“The company has a ready and fully capable back-up for processing payloads at its SLC-40 hangar annex building,” Taylor elaborated.

SpaceX Falcon 9 rocket venting prior to launch scrub for SES-9 communications satellite on Feb. 26, 2016 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket on pad 40 with backup processing hanger visible, prior to launch of SES-9 communications satellite in March 2016 at Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

And except for the minor damage to the PPF facility where payloads are processed, SpaceX says there was no other damage to infrastructure at pad 40 or to Launch Complex 39A at the Kennedy Space Center.

“There was no damage the company’s facilities at Pad 39A at Kennedy Space Center,” Taylor told me.

SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL,  on Sept. 1, 2016.  A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport
SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL, on Sept. 1, 2016. A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport

However SLC-40 is not operational at this time, since it was heavily damaged during the Sept. 1 launch pad disaster when a Falcon 9 topped with the Israeli Amos-9 comsat exploded on the launch pad during a routine prelaunch fueling operation and a planned first stage static fire engine test.

Mangled SpaceX Falcon 9 strongback with dangling cables (at right) as seen on Sept. 7 after prelaunch explosion destroyed the rocket and AMOS-6 payload at Space Launch Complex-40 at Cape Canaveral Air Force Station, FL on Sept. 1, 2016 . Credit: Ken Kremer/kenkremer.com
Mangled SpaceX Falcon 9 strongback with dangling cables (at right) as seen on Sept. 7 after prelaunch explosion destroyed the rocket and AMOS-6 payload at Space Launch Complex-40 at Cape Canaveral Air Force Station, FL on Sept. 1, 2016. Credit: Ken Kremer/kenkremer.com

As SpaceX was launching Falcon 9 rockets from pad 40, they have been simultaneously renovating and refurbishing NASA’s former shuttle launch pad at Launch Complex 39A at the Kennedy Space Center (KSC) which they leased from NASA.

SpaceX plans to start launching their new Falcon Heavy booster from pad 39A in 2017 as well as human rated launches of the Falcon 9 with the Crew Dragon to the ISS.

However, following the pad 40 disaster, SpaceX announced plans to press pad 39A into service for commercial Falcon 9 satellite launches as well.

SpaceX President Gwynne Shotwell recently said that the company hoped to resume launches in November while they search for a root cause to the pad 40 catastrophe – as I reported here.

Speaking at the annual meeting of the National Academy of Engineering in Washington, D.C. on Oct. 9 Shotwell indicated that investigators are making progress to determine the cause of the mishap.

“We’re homing in on what happened,” she said, according to a story by Space News. “I think it’s going to point not to a vehicle issue or an engineering design issue but more of a business process issue.”

Space News said that she did not elaborate further.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

X-Rays Are Coming From The Dark Side of Venus

On June 5th, 2012, the NASA/JAXA Hinode mission captured these stunning views of the transit of Venus. Credit: JAXA/NASA/Lockheed Martin

Venus and Mercury have been observed transiting the Sun many times over the past few centuries. When these planets are seen passing between the Sun and the Earth, opportunities exist for some great viewing, not to mention serious research. And whereas Mercury makes transits with greater frequency (three times since 2000), a transit of Venus is something of a rare treat.

In June of 2012, Venus made its most recent transit – an event which will not happen again until 2117. Luckily, during this latest event, scientists made some very interesting observations which revealed X-ray and ultraviolet emissions coming from the dark side of Venus. This finding could tell us much about Venus’ magnetic environment, and also help in the study of exoplanets as well.

For the sake of their study (titled “X-raying the Dark Side of Venus“) the team of scientists – led by Masoud Afshari of the University of Palermo and the National Institute of Astrophysics (INAF) – examined data obtained by the x-ray telescope aboard the Hinode (Solar-B) mission, which had been used to observe the Sun and Venus during the 2012 transit.

Artist's impression of the Hinode (Solar-B) spacecraft in orbit. Credit: NASA/GSFC/C. Meaney
Artist’s impression of the Hinode (Solar-B) spacecraft in orbit. Credit: NASA/GSFC/C. Meaney

In a previous study, scientists from the University of Palermo used this data to get truly accurate estimates of Venus’ diameter in the X-ray band. What they observed was that in the visible, UV, and soft X-ray bands, Venus’ optical radius (taking into account its atmosphere) was 80 km larger than its solid body radius. But when observing it in the extreme ultraviolet (EUV) and soft X-ray band, the radius increased by another 70 km.

To determine the cause of this, Afshari and his team combined updated information from Hinode’s x-ray telescope with data obtained by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory (SDO). From this, they concluded that the EUV and X-ray emissions were not the result of a fault within the telescope, and were in fact coming from the dark side of Venus itself.

They also compared the data to observations made by the Chandra X-ray Observatory of Venus in 2001 and again in 2006-7m which showed similar emissions coming from the sunlit side of Venus. In all cases, it seemed clear that Venus had unexplained source of non-visible light coming from its atmosphere, a phenomena which could not be chalked up to scattering caused by the instruments themselves.

Comparing all these observations, the team came up with an interesting conclusion. As they state in their study:

“The effect we are observing could be due to scattering or re-emission occurring in the shadow or wake of Venus. One possibility is due to the very long magnetotail of Venus, ablated by the solar wind and known to reach Earth’s orbit… The emission we observe would be the reemitted radiation integrated along the magnetotail.”

On June 5-6 2012, NASA's Solar Dynamics Observatory, or SDO, collected images of one of the rarest predictable solar events: the transit of Venus across the face of the sun. This event happens in pairs eight years apart that are separated from each other by 105 or 121 years. The last transit was in 2004 and the next will not happen until 2117. Credit: NASA/SDO, AIA
Collected images of Venus 2012 transit of the Sun, taken in June of 2012 by NASA’s Solar Dynamics Observatory (SDO). Credit: NASA/SDO, AIA

In other words, they postulate that the radiation observed emanating from Venus could be due to solar radiation interacting with Venus’ magnetic field and being scattered along its tail. This would explain why from various studies, the radiation appeared to be coming from Venus’ itself, thus extending and adding optical thickness to its atmosphere.

If true, this finding would not only help us to learn more about Venus’ magnetic environment and assist our exploration of the planet, it would also improve our understanding of exoplanets. For example, many Jupiter-sized planets have been observed orbiting close to their suns (i.e. “Hot Jupiters“). By studying their tails, astronomers may come to learn much about these planets’ magnetic fields (and whether or not they have one).

Afshari and his colleagues hope to conduct future studies to learn more about this phenomenon. And as more exoplanet-hunting missions (like TESS and the James Webb Telescope) get underway, these newfound observations of Venus will likely be put to good use – determining the magnetic environment of distant planets.

Further Reading: The Astronomical Journal

How Do Supernovae Fail?

Artistic impression of a star going supernova, casting its chemically enriched contents into the universe. Credit: NASA/Swift/Skyworks Digital/Dana Berry

We’ve written quite a few articles on what happens when massive stars fail as supernovae. Here’s a quick recap.

A star with more than 8 times the mass of the Sun runs out of usable fuel in its core and collapses in on itself. The enormous amount of matter falling inward creates a dense remnant, like a neutron star or a black hole. Oh, and an insanely powerful explosion, visible billions of light-years away.

There are a few other classes of supernovae, but that’s the main way they go out.

But it turns out some supernovae just don’t bring their A-game. Instead hitting the ball out of the park, they choke up at the last minute.

They’re failures. They’ll never amount to anything. They’re a complete and utter disappointment to me and your mother. Oh wait, we were talking about stars, right.

So, how does a supernova fail?

New research shows that some old stars known as white dwarfs might be held up by their rapid spins, and when they slow down, they explode as Type Ia supernovae. Thousands of these "time bombs" could be scattered throughout our Galaxy. In this artist's conception, a supernova explosion is about to obliterate an orbiting Saturn-like planet.   Credit: David A. Aguilar (CfA)
In this artist’s conception, a supernova explosion is about to obliterate an orbiting Saturn-like planet. Credit: David A. Aguilar (CfA)

In a regular core collapse supernova, the infalling material pushes the star denser and denser until it reaches the density of 5 billion tons per teaspoon of matter. The black hole forms, and a shockwave ripples outward creating the supernova.

It turns out that the density and energy of the shockwave on its own isn’t enough to actually generate the supernova, and overcome the gravitational force pulling it inward. Instead, it’s believed that neutrinos created at the core pile up behind the shockwave, and give it the push it needs to blast outward into space.

In some cases, though, it’s believed that this additional energy doesn’t show up. Instead of rebounding from the core of the star, the black hole just gobbles it all up. In a fraction of a second, the star is just… gone.

According to astronomers, it might be the case that 1/3rd of all core collapse supernovae die this way, which means that a third of the supergiant stars are just disappearing from the sky. They’re there, and then a moment later, they’re not there.

Artist's rendering of a black hole. Image Credit: NASA
And this is all that remains. Image Credit: NASA

Seriously, imagine the forces and energy it must take to swallow an entire red supergiant star whole. Black holes are scary.

Astronomers have gone looking for these things, and they’ve actually been pretty tricky to find. It’s like one of those puzzles where you try to figure out what’s missing from a picture. They studied images of galaxies taken by the Hubble Space Telescope, looking for bright supergiant stars which disappeared. In one survey, studying a large group of galaxies, they only turned up a single candidate.

But they only surveyed a handful of galaxies. To really get serious about searching for them, they’ll need better tools, like the Large Synoptic Survey Telescope due for first light in just a few years. This amazing instrument will survey the entire sky every few nights, searching for anything that changes. It’ll find asteroids, comets, variable stars, supernovae, and now, supergiant stars that just disappeared.

We’ve talked about failed supernovae. Now let’s take a few moments and talk about the complete opposite: super successful supernovae.

When a star with more than 8 times the mass of the Sun explodes as a supernova, it leaves behind a remnant. For the lower mass star explosions, they leave behind a neutron star. If it’s a higher mass star, they leave behind a black hole.

But for the largest explosions, where the star had more than 130 times the mass of the Sun, the supernova is so powerful, so complete, there’s no remnant behind. There’s an enormous explosion, and the star is just gone.

No black hole ever forms.

Artist's impression of a Type II supernova explosion which involves the destruction of a massive supergiant star. Credit: ESO
Artist’s impression of a supernova explosion which involves the destruction of a massive supergiant star. Credit: ESO

Astronomers call them pair instability supernovae. In a regular core collapse supernova, the layers of the star collapse inward, producing the highly dense remnant. But in these monster stars, the core is pumping out such energetic gamma radiation that it generates antimatter in the core. The star explodes so quickly, with so much energy, it totally overpowers the gravity pulling it inward.

In a moment, the star is completely and utterly gone, just expanding waves of energy and particles.

Only a few of these supernovae have ever been observed, and they might explain some hypernovae and gamma ray bursts, the most powerful explosions in the Universe.

Beyond 250 times the mass of the Sun, however, gravity takes over again, and you get enormous black holes.

As always, the Universe behaves more strangely than we ever thought possible. Some supernova fail, completely imploding as a black hole. And others detonate entirely, leaving no remnant behind. Trust the Universe to keep mixing it up on us.

What was Sputnik One?

Sputnik 1
Photograph of a Russian technician putting the finishing touches on Sputnik 1, humanity's first artificial satellite. Credit: NASA/Asif A. Siddiqi

Today, people take it for granted that they live in a world that isn’t threatened with imminent nuclear annihilation. A little more than half a century ago, that was the kind of world people lived in, where the United States and Soviet Union were locked in a constant game of one-upmanship that revolved around the development of nuclear weapons.

At the same time, this competition extended to include sports, politics, and the race to reach space. And on October 4th, 1957, the Russians were the first to accomplish this goal with the launch of Sputnik-1, an unmanned research and communications satellite whose appearance ignited the “Space Race” and forever altered the course of history.

Background:

During the early 1950s, the Russians had conducted extensive orbital research using rockets. However, these efforts were limited by the fact that conventional rockets could only achieve orbit for a maximum of a few minutes before falling back to Earth. The next step seemed obvious: placing a research satellite into space that could maintain its orbit and therefore conduct scientific research for an extended period of time.

A "Semyorka" rocket, part of the Soviet R7 rocket family. Credit: Wikipedia Commons/Sergei Arssenev
Sputnik 1 was launched aboard a “Semyorka” rocket, part of the Soviet R7 rocket family. Credit: Wikipedia Commons/Sergei Arssenev

Beginning in March of 1954, Russia’s three top scientists – Mstislav Keldysh, Sergei Korolev and Mikhail Tikhonravov – began discussing the idea of creating an artificial satellite that could be placed into orbit. According to Tikhonravov, such a move would be the next necessary step in the development of rocket technology.

Their efforts received a boost when, on July 29th, 1955, U.S. President Dwight D. Eisinhower announced the US’ intent to launch an artificial satellite during the International Geophysical Year (IGY) – an international scientific project that lasted from July 1st, 1957, to December 31st, 1958.

Because of this, the Soviet Politburo approved of the plans for an artificial satellites and aimed for a launch date that would take place before the beginning of the IGY. The project was approve and the task of creating it was divided between various ministries and the USSR Academy of Sciences.

Keldysh was given control of a commission to oversee develop the “automatic laboratory” aboard the satellite, Tikhonravov and his team of engineers would be responsible for designing the satellite, and Korolev – as head of the Ministry of Defense Industry’s primary design bureau (OKB-1) – would be responsible for building it.

The Sputnik spacecraft stunned the world when it was launched into orbit on Oct. 4th, 1954. Credit: NASA
The Sputnik spacecraft stunned the world when it was launched into orbit on Oct. 4th, 1954. Credit: NASA

Design and Construction:

Initially, the Soviet plan for an satellite (known as Object D) was planned to be completed in 1957–58, and called for the creation of a spacecraft that would have a mass of 1,000 – 1,400 kg (2,200 – 3,100 lb) and would carry 200 – 300 kg (440 – 660 lb) of scientific instruments.

In terms of tasks, the mission would seek to measure the density of the atmosphere and its ion composition, solar wind, the Earth’s magnetic field, and cosmic rays (largely for the sake of future missions). A system of ground stations was also called for in order to collect data transmitted from the satellite, as well as observe its orbit and transmit commands.

By the end of 1956, it had become clear that the specifications called for were too ambitious to be accomplished within the established time frame. Fearing the US would launch a satellite before the USSR, Korolev and the OKB-1 suggested that a simpler, lighter satellite could be launched in April-May 1957, before the IGY began.

This satellite would weight about 100 kg (220 lbs) and would forgo heavy scientific instruments in favor of a simple radio transmitter. On February 15th, 1957, the Council of Ministers of the USSR approved this simple satellite, designated “Prosteyshiy Sputnik” – Russian for “Simplest Satellite” – (aka. Object PS), and made arrangements to launch two versions (PS-1 and PS-2) using R-7 rockets.

Exploded view of the Sputnik 1 satellite. Credit: NASA
Exploded view of the Sputnik 1 satellite. Credit: NASA

 

Launch and Mission:

On October 4th, at 19:28:34 hours Greenwich Mean Time, Sputnik-1 was launched into space from the Baikonur Cosmodrome. The satellite orbited the Earth for three months and emitting radio signals which were monitored by amateur radio operators throughout the world. The signals continued for 22 days until the transmitter batteries ran out on October 26th, 1957.

Before finally burning up during reentry on January 4th, 1958, the satellite traveled a total of about 60 million km (37.28 million mi) and completed 1,440 orbits around the Earth. Sputnik-1 also helped to identify the density of the atmosphere’s upper layer, provided data on radio-signal distribution in the ionosphere, and allowed for the first opportunity for meteoroid detection.

Impact:

Apart from its value as a technological first, Sputnik also had the effect of expediting both Soviet and American efforts to explore space. News of the launch triggered a great deal of fear in the United States, as many worried that Sputnik could represent a threat to national security, not to mention America’s technological leadership.

As a result, Congress urged then-President Dwight D. Eisenhower to take immediate action, which resulted in the signing of the National Aeronautics and Space Act on July 29th, 1958, officially establishing NASA. Immediately, NASA became dedicated to researching hypersonic flight and taking the necessary steps towards creating crewed spacecraft.

Yury Gagarin before a space flight aboard the Vostok spacecraft. April 12, 1961 Credit: RIA Novosti
Yury Gagarin before a space flight aboard the Vostok spacecraft. April 12, 1961 Credit: RIA Novosti

The Soviets did the same, taking drastic steps towards the creation of rockets and crew capsules as part of the Vostok Program. This would culminate in the first man being launched into orbit space – cosmonaut Yuri Gagarin – on April 12th, 1961. The pace of this competition would continue until July 20th, 1969, when the US made the historic first of landing astronauts on the Moon.

Decades later, Sputnik-1 is still viewed as a groundbreaking achievement. Despite its diminutive size and simplicity, its launch was a major breakthrough for the Soviets, and caused no shortage of fear and consternation in the west. In many ways, we are lucky to be living in an age where cooperation has taken the place of competition. Today, such breakthroughs are the result of a world coming together, and not enmity between nations.

We have written many articles about the satellites and Space Age here at Universe Today. Here’s Who was the First Dog to go into Space?, Who was the First Monkey to go into Space?, Who was the first Man to go into Space?, Who was the First Woman to go into Space? and Who Are The Most Famous Astronauts?

If you’d like more information on the Sputnik mission, here’s a link to NASA’s Solar System Exploration Guide on Sputnik, and here’s the homepage for NASA History: Sputnik.

We’ve recorded an episode of Astronomy Cast all about the History of Astronomy. Listen here, Episode 187: History of Astronomy, Part 5: The 20th Century.

Sources:

Launch of GOES-R Transformational Weather Satellite Likely Delayed by Hurricane Matthew

The NASA/NOAA GOES-R (Geostationary Operational Environmental Satellite - R Series) being processed at Astrotech Space Operations, in Titusville, FL, in advance of launch on a ULA Atlas V on Nov. 19, 2016. GOES-R will be America’s most advanced weather satellite. Credit: Ken Kremer/kenkremer.com
The NASA/NOAA GOES-R (Geostationary Operational Environmental Satellite - R Series) being processed at Astrotech Space Operations, in Titusville, FL, in advance of the planned launch on a ULS Atlas V on Nov 4, 2016.  GOES-R will be America’s most advanced weather satellite. Credit: Ken Kremer/kenkremer.com
The NASA/NOAA GOES-R (Geostationary Operational Environmental Satellite – R Series) being processed at Astrotech Space Operations, in Titusville, FL, in advance of the planned launch on a ULA Atlas V likely delayed from Nov 4, 2016 by Hurricane Matthew. GOES-R will be America’s most advanced weather satellite. Credit: Ken Kremer/kenkremer.com

Next month’s launch of GOES-R – a new and advanced transformational weather satellite that will vastly enhance the quality, speed and accuracy of weather forecasting – will likely be delayed a few days due to lingering storm related effects of deadly Hurricane Matthew on launch preparations at Cape Canaveral Air Force Station and the Kennedy Space Center (KSC), Universe Today confirmed with launch provider United Launch Alliance (ULA).

“The GOES-R launch will likely be delayed due to Hurricane Matthew,” ULA spokeswoman Lyn Chassagne told Universe Today.

Liftoff of the NASA/NOAA GOES-R (Geostationary Operational Environmental Satellite – R Series) weather satellite atop a United Launch Alliance (ULA) Atlas V rocket had been scheduled for Nov. 4 at 5:40 p.m. from Space Launch Complex 41 (SLC-41) on Cape Canaveral Air Force Station.

GOES-R is the first in a new series of American’s most powerful and most advanced next generation weather observation satellites.

It’s ironic that awful weather is impacting the launch of this critical weather satellite.

It’s not known how long any postponement would be – perhaps only a few days since preliminary indications are that the base suffered only minor damage and there are no reports of major damage.

“Our teams are still doing a damage assessment. So we don’t have a status about all of our infrastructure yet,” Chassagne told me.

“A preliminary assessment shows that we have some minor damage to a few of our facilities. We had no rockets on the pads. So there is no damage to hardware.”

Damage assessment teams are evaluating the launch pad and launch facilities in detail right now.

“Since we still have emergency response teams in assessing, we don’t know how long the delay will be until we get those assessments.”

The NASA/NOAA GOES-R (Geostationary Operational Environmental Satellite - R Series) being processed at Astrotech Space Operations, in Titusville, FL, in advance of the planned launch on a ULA Atlas V likely delayed from Nov 4, 2016 by Hurricane Matthew.  GOES-R will be America’s most advanced weather satellite. Credit: Ken Kremer/kenkremer.com
The NASA/NOAA GOES-R (Geostationary Operational Environmental Satellite – R Series) being processed at Astrotech Space Operations, in Titusville, FL, in advance of the planned launch on a ULA Atlas V likely delayed from Nov 4, 2016 by Hurricane Matthew. GOES-R will be America’s most advanced weather satellite. Credit: Ken Kremer/kenkremer.com

The looming threat of a direct hit on Cape Canaveral and KSC from the Category 4 storm Hurricane Matthew on Friday, Oct. 7, forced the closure of both facilities before the storm hit. They remained closed this weekend except to emergency personal.

“Got in today to assess. Light to moderate damage to our facilities. No damage to any flight assets,” tweeted ULA CEO Tory Bruno.

The base closures therefore also forced a halt to launch preparations at the Cape and pad 41.

The storm grazed by the Kennedy Space Center (KSC), Cape Canaveral Air Force Station (CCAFS) and the major population centers along the Florida Space Coast with wind gusts up to 107 mph – rather than making a direct impact as feared.

“Hurricane Matthew passed Cape Canaveral and Kennedy Space Center …. with sustained winds of 90 mph with gusts to 107 mph,” on Friday, NASA officials reported.

The storm passed “the space center about 26 miles off the tip of Cape Canaveral.”

Cat 4 Hurricane Matthew track during the late evening of 6 Oct 2016.  Credit: NASA/NOAA
Cat 4 Hurricane Matthew track during the late evening of 6 Oct 2016. Credit: NASA/NOAA

The launch ULA facilities are now being thoroughly inspected before any launch preparation can proceed.

The satellite is in the final stages of preparation at the Astrotech Space Operations Facility in Titusville, FL as I recently observed during an up close visit in the High Bay cleanroom.

Check out this amazing rooftop video showing the high winds pummeling Titusville during Hurricane Matthew just a few miles away from Astrotech and the GOES-R satellite – from my space colleague Jeff Seibert.

Video caption: Before we bailed out on Thursday afternoon, I clamped one of my launch pad remote cameras to the power service post on our roof. Wind is blocked a lot by trees but none fell on the house. The highest recorded wind speed was 51mph at 7:30AM on Oct. 7, 2016. The minimum barometric pressure was 28.79″ from 8:20 – 9 AM. We got 5.9″ of rain. The ridge line faces due east. We never lost power. Credit: Jeff Seibert

Lockheed Martin is the prime contractor for GOES-R.

United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study.  Liftoff was at 7:05 p.m. EDT on September 8, 2016 in this remote camera view taken from inside the launch pad perimeter.  Note the newly install crew access arm and white room for astronaut flights atop Atlas starting in early 2018.   Credit: Ken Kremer/kenkremer.com
United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid on September 8, 2016. GOES-R launch on an Atlas V planned for Nov. 4 is likely delayed due to Hurricane Matthew. Credit: Ken Kremer/kenkremer.com

Whenever it does launch, GOES-R will blast off on a ULA Atlas V in the very powerful 541 configuration, augmented by four solid rocket booster on the first stage.

It will be launched to a Geostationary orbit some 22,300 miles above Earth.

But ULA has not yet begun assembling the Atlas V booster inside the Vertical Integration Facility (VIF) at SLC-41 due to the storm.

Because of Hurricane Matthew, the first stage arrival had to be postponed. The second stage is already in port at the Delta operations center and being integrated.

“The first stage booster is not yet at the Cape,” Chassagne confirmed.

However, conditions at the Cape have improved sufficiently for the US Air Force to clear its shipment into port, as of this evening.

“We just cleared CCAFS to be able to accept a booster for the GOES-R launch–how appropriate that GOES is a weather satellite!” wrote Brig. Gen. Wayne Monteith, commander of the Air Force’s 45th Space Wing at Patrick Air Force Base, in a Facebook update late today, Oct. 9.

“We are returning to full mission capability and our status as the World’s Premier Gateway to Space.”

Artists concept for  NASA/NOAA GOES-R (Geostationary Operational Environmental Satellite - R Series) advanced weather satellite in Earth orbit. Credit: NASA/NOAA
Artists concept for NASA/NOAA GOES-R (Geostationary Operational Environmental Satellite – R Series) advanced weather satellite in Earth orbit. Credit: NASA/NOAA

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

GOES-R logo.  Credit: NASA/NOAA
GOES-R logo. Credit: NASA/NOAA

Hurricane Matthew Grazes Kennedy Space Center and Cape Canaveral

Aerial view of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center (KSC) on Oct. 8, 2016 by damage assessment and recovery team surveying the damage at KSC the day after Hurricane Matthew passed by Cape Canaveral on Oct. 7, 2016 packing sustained winds of 90 mph with gusts to 107 mph. Credit: NASA/Cory Huston
Aerial view of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center (KSC) on Oct. 8, 2016 by damage assessment and recovery team surveying the damage at KSC the day after Hurricane Matthew passed by Cape Canaveral on Oct. 7, 2016 packing sustained winds of 90 mph with gusts to 107 mph.  Credit: NASA/Cory Huston
Aerial view of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center (KSC) on Oct. 8, 2016 by damage assessment and recovery team surveying the damage at KSC the day after Hurricane Matthew passed by Cape Canaveral on Oct. 7, 2016 packing sustained winds of 90 mph with gusts to 107 mph. Credit: NASA/Cory Huston

The Kennedy Space Center (KSC), Cape Canaveral Air Force Station (CCAFS) and the major population centers along the Florida Space Coast were spared from major damage to infrastructure, homes and business after the deadly Cat 4 Hurricane Matthew grazed the region with 107 mph winds rather than making a direct impact as feared.

Although some of the base and Space Coast coastal and residential areas did suffer significant destruction most were very lucky to have escaped the hurricanes onslaught in relatively good shape, when it stayed at sea rather than making the forecast direct hit.

KSC’s iconic 525 foot tall Vehicle Assembly Building (VAB), the Complex 39 launch pads and the active launch pads at CCAFS are all standing and intact – as damage evaluations are currently underway by damage assessment and recovery teams from NASA and the US Air Force.

As Hurricane Matthew approached from the south Friday morning Oct. 7 along Florida’s Atlantic coastline, it wobbled east and west, until it finally veered ever so slightly some 5 miles to the East – thus saving much of the Space Coast launch facilities and hundreds of thousands of home and businesses from catastrophic damage from the expected winds and storm surges.

“Hurricane Matthew passed Cape Canaveral and Kennedy Space Center …. with sustained winds of 90 mph with gusts to 107 mph,” on Friday, NASA officials reported.

The storm passed “the space center about 26 miles off the tip of Cape Canaveral.”

Cat 4 Hurricane Matthew track during the late evening of 6 Oct 2016.  Credit: NASA/NOAA
Cat 4 Hurricane Matthew track during the late evening of 6 Oct 2016. Credit: NASA/NOAA

KSC and CCAFS did suffer some damage to buildings, downed power lines and some flooding and remains closed.

The Damage Assessment and Recovery Teams have entered the facilities today, Oct. 8, and are surveying the areas right now to learn the extent of the damage and report on when they can reopen for normal operations.

“After the initial inspection flight Saturday morning, it was determined that the center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion,” NASA reported late today.

Hurricane force wind from Hurricane Matthew throw a concession stand up against the Spaceflight Now building at the LC 39 Press Site at the Kennedy Space Center in Florida on Oct. 7, 2016.  Credit: NASA/Cory Huston
Hurricane force wind from Hurricane Matthew throw a concession stand up against the Spaceflight Now building at the LC 39 Press Site at the Kennedy Space Center in Florida on Oct. 7, 2016. Credit: NASA/Cory Huston

Inspection teams are methodically going from building to building this weekend to assess Matthew’s impact.

“Since safety is our utmost concern, teams of inspectors are going from building-to-building assessing damage.”

It will take time to determine when the center can resume operations.

“Due to the complexity of this effort, teams need time to thoroughly inspect all buildings and roads prior to opening the Kennedy Space Center for regular business operations.”

Not until after a full inspection of the center will a list of damaged buildings and equipment be available. The next update will be available no earlier than Sunday afternoon.

A “ride-out team” of 116 remained at KSC and at work inside the emergency operations center in the Launch Control Center located adjacent to the VAB during the entire Hurricane period.

View of the Vehicle Assembly Building (VAB), Launch Control Center and Mobile Launcher from the KSC Launch Complex 39 Press Site.   NASA is upgrading the VAB with new platforms to assemble and launch  NASA’s Space Launch System rocket at the Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
View of the Vehicle Assembly Building (VAB), Launch Control Center and Mobile Launcher from the KSC Launch Complex 39 Press Site. NASA is upgrading the VAB with new platforms to assemble and launch NASA’s Space Launch System rocket at the Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

It took until Friday afternoon for winds to drop below 40 knots start preliminary damage assessments.

“KSC is now in a “Weather Safe” condition as of 2 p.m. Friday. While there is damage to numerous facilities at KSC, it consists largely roof damage, window damage, water intrusion, damage to modular buildings and to building siding.”

Teams are also assessing the CCAFS launch pads, buildings and infrastructure. Some buildings suffered severe damage.

“We have survived a catastrophic event that could have easily been cataclysmic. It is only by grace and a slight turn in Matthew’s path that our base and our barrier island homes were not destroyed or covered in seven feet of water,” wrote Brig. Gen. Wayne Monteith, commander of the Air Force’s 45th Space Wing at Patrick Air Force Base, in a Facebook update.

“There is a lot of debris throughout the base.”

“We are still experiencing deficiencies in critical infrastructure, consistent power, emergency services, communications and hazardous material inspections that make portions of our base uninhabitable or potentially dangerous.”

Severely damaged building on Cape Canaveral Air Force Station.  Credit: 45th Space Wing
Severely damaged building on Cape Canaveral Air Force Station. Credit: 45th Space Wing

Of particular importance is Space Launch Complex 41 (SLC-41) where the next scheduled liftoff is slated for Nov. 4.

The launch involves America’s newest and most advanced weather satellite on Nov 4. It’s named GOES-R and was slated for blastoff from Cape Canaveral Air Force Station pad 41 atop a United Launch Alliance (ULA) Atlas V rocket.

The launch facilities will have to be thoroughly inspected before the launch can proceed.

The satellite is in the final stages of preparation at the Astrotech Space Operations Facility in Titusville, FL as I recently observed during an up close visit in the High Bay cleanroom.

The NASA/NOAA GOES-R (Geostationary Operational Environmental Satellite - R Series) being processed at Astrotech Space Operations, in Titusville, FL, in advance of the planned launch on a ULS Atlas V on Nov 4, 2016.  GOES-R will be America’s most advanced weather satellite. Credit: Ken Kremer/kenkremer.com
The NASA/NOAA GOES-R (Geostationary Operational Environmental Satellite – R Series) being processed at Astrotech Space Operations, in Titusville, FL, in advance of the planned launch on a ULA Atlas V on Nov 4, 2016. GOES-R will be America’s most advanced weather satellite. Credit: Ken Kremer/kenkremer.com

The major Space Coast cities in Brevard county suffered much less damage then feared, although some 500,000 residents lost power.

Local government officials allowed most causeway bridges to the barrier islands to be reopened by Friday evening, several local colleagues told me.

Here’s some images of damage to the coastal piers, town and a destroyed house from the Melbourne Beach and Satellite Beach areas from my space colleague Julian Leek.

Home destroyed by fire in Satellite Beach. Credit: Julian Leek
Home destroyed by fire in Satellite Beach. Credit: Julian Leek
Home destroyed by fire in Satellite Beach. Credit: Julian Leek
Home destroyed by fire in Satellite Beach. Credit: Julian Leek
Local damage in South Melbourne Beach. Credit: Julian Leek
Local damage in South Melbourne Beach. Credit: Julian Leek

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Navaho missile on display at the CCAFS south gate suffered severe damage from Hurricane Matthew and crumpled to the ground.  Credit: 45th Space Wing
Navaho missile on display at the CCAFS south gate suffered severe damage from Hurricane Matthew and crumpled to the ground. Credit: 45th Space Wing
Local damage in South Melbourne Beach. Credit: Julian Leek
Local damage in South Melbourne Beach. Credit: Julian Leek
Local damage in South Melbourne Beach. Credit: Julian Leek
Local damage in South Melbourne Beach. Credit: Julian Leek

Is Proxima Centauri b Basically Kevin Costner’s Waterworld?

Artist's depiction of a waterworld. A new study suggests that Earth is in a minority when it comes to planets, and that most habitable planets may be greater than 90% ocean. Credit: David A. Aguilar (CfA)
Artist's depiction of a waterworld. A new study suggests that Earth is in a minority when it comes to planets, and that most habitable planets may be greater than 90% ocean. Credit: David A. Aguilar (CfA)

The discovery of an exoplanet candidate orbiting around nearby Proxima Centauri has certainly been exciting news. In addition to being the closest exoplanet to our Solar System yet discovered, all indications point to it being terrestrial and located within the stars’ circumstellar habitable zone. However, this announcement contained its share of bad news as well.

For one, the team behind the discovery indicated that given the nature of its orbit around Proxima Centauri, the planet likely in terms of how much water it actually had on its surface. But a recent research study by scientists from the University of Marseilles and the Carl Sagan Institute may contradict this assessment. According to their study, the exoplanet’s mass may consist of up to 50% water – making it an “ocean planet”.

According to the findings of the Pale Red Dot team, Proxima Centauri b orbits its star at an estimated distance of 7 million kilometers (4.35 million mi) – only 5% of the Earth’s distance from the Sun. It also orbits Proxima Centauri with an orbital period of 11 days, and either has a synchronous rotation, or a 3:2 orbital resonance (i.e. three rotations for every two orbits).

Artist’s impression of the planet Proxima b orbiting the red dwarf star Proxima Centauri, the closest star to the Solar System. Credit: ESO/M. Kornmesser
Artist’s impression of the planet Proxima b orbiting the red dwarf star Proxima Centauri, the closest star to the Solar System. Credit: ESO/M. Kornmesser

Because of this, liquid water is likely to be confined to either the sun-facing side of the planet (in the case of a synchronous rotation), or in its tropical zone (in the case of a 3:2 resonance). In addition, the radiation Proxima b receives from its red dwarf star would be significantly higher than what we are used to here on Earth.

However, according to a study led by Bastien Brugger of the Astrophysics Laboratory at the University of Marseilles, Proxima b may be wetter than we previously thought. For the sake of their study, titled “Possible Internal Structures and Compositions of Proxima Centauri b” (which was accepted for publication in The Astrophysical Journal Letters), the research team used internal structure models to compute the radius and mass of Proxima b.

Their models were based on the assumptions that Proxima b is both a terrestrial planet (i.e. composed of rocky material and minerals) and did not have a massive atmosphere. Based on these assumptions, and mass estimates produced by the Pale Red Dot survey (~1.3 Earth masses), they concluded that Proxima b has a radius that is between 0.94 and 1.4 times that of Earth, and a mass that is roughly 1.1 to 1.46 times that of Earth.

As Brugger told Universe Today via email:

“We listed all compositions that Proxima b could have, and ran the model for each of them (that makes about 5000 simulations), giving us each time the corresponding planet radius. We finally excluded all the results that were not compatible with a planetary body, basing on the formation conditions of our solar system (since we do not know these conditions for the Proxima Centauri system). And thus, we obtained a range of possible planet radii for Proxima b, going from 0.94 to 1.40 times the radius of the Earth.”

Goldilocks Zone
Tidally-locked planets like Gliese 581 g (artist’s impression) are likely to be “eyeball” worlds, with a warm-water ocean on the sun-facing side surrounded by ice. Credit: Lynette Cook/NSF

This range in size allows for some very different planetary compositions. At the lower end, being slightly smaller but a bit more massive than Earth, Proxima b would likely be a Mercury-like planet with a 65% core mass fraction. However, at the higher end of the radii and mass estimates, Proxima b would likely be half water by mass.

“If the radius is 0.94 Earth radii, then Proxima b is fully rocky with a huge metallic core (like Mercury in the solar system),” said Brugger. “On the opposite, Proxima b can reach a radius of 1.40 only if it harbors a massive amount of water (50% of the total planet mass), and in this case it would be an ocean planet, with a 200 km deep liquid ocean! Below that, the pressure is so high that the water would turn into ice, forming a ~3000 km thick ice layer (Under which there would be a core made of rocks).”

In other words, Proxima b could be an “eyeball planet”, where the sun-facing side has a liquid ocean surface, while the dark side is covered in frozen ice. Recent studies have suggested that this may be the case with planet’s that orbit within the habitable zones of red dwarf stars, where tidal-locking ensures that only one side gets the heat necessary to maintain liquid water on the surface.

On the other hand, if it has an orbital resonance of 3:2, its likely to have a double-eyeball pattern – with liquid oceans in both the eastern and western hemispheres – while remaining frozen at the terminators and poles. However, if the lower estimates should be true, then Proxima b is likely to be a rocky, dense planet where liquid water is rare on one side, and frozen on the other.

Artist’s impression of the surface of the planet Proxima b orbiting the red dwarf star Proxima Centauri. The double star Alpha Centauri AB is visible to the upper right of Proxima itself. Credit: ESO
Artist’s impression of the surface of the planet Proxima b orbiting the red dwarf star Proxima Centauri. New research suggest the planet may be more watery than previously thought. Credit: ESO

But perhaps the most interesting aspect of the the research is that it offers a glimpse into the likelihood of Proxima b being habitable. Ever since its discovery, the question of whether or not the planet can support life has remained contentious. But as Brugger explained:

“The interesting part is that all the cases we considered are compatible with a habitable planet. So if the planet radius is finally measured (in some months or years), two cases are possible: either (i) the measurement lies within the 0.94-1.40 range and we will be able to give the exact composition of the planet (and not only a range of possibilities), or (ii) the measured radius is out of this range, and we will know that the planet is not habitable. The case where Proxima b is an ocean planet is particularly interesting, because this kind of planet does not need an atmosphere of oxygen and nitrogen (like on the Earth) to harbor life, since it can develop in its huge ocean.”

But of course, these scenarios are based on the assumption that Proxima b has a lot in common with the planets of our own Solar System. It’s also based on the assumption that the planet is indeed about 1.3 Earth masses. Until the planet can be observed making a transit of Proxima Centauri, astronomers won’t know for sure how massive it is.

Ultimately, we’re still a long ways away from determining Proxima b’s exact size, composition, and surface features – to say nothing about whether or not it can actually support life. Nevertheless, research like this is beneficial in that it helps us to come up with constrains on what kind of planetary conditions could exist there.

And who knows? Someday, we may be able to send probes or crewed missions to the planet, and perhaps they will beam back images of sentient beings navigating vast oceans, looking for some fabled parcel of land they heard about? God I hope not! Once was more than enough!

Further Reading: arXiv

Weekly Space Hangout – October 7, 2016: James Webb: Standing on the Shoulders of Hubble

Host: Fraser Cain (@fcain)

Special Guest:
Paul Geithner, Deputy Project Manager – Technical for the James Webb Space Telescope (JWST) at NASA’s Goddard Space Flight Center.

Guests:

Kimberly Cartier ( KimberlyCartier.org / @AstroKimCartier )
Paul M. Sutter (pmsutter.com / @PaulMattSutter)
Alessondra Springmann (sondy.com / @sondy)

Their stories this week:

MAVEN’s One Year Anniversary

Giant plasma balls ejected from star

Hurricane Matthew at the space coast

Ultra-strange ultra-cool brown dwarfs

Successful test of New Shepard crew escape system

Saturday, Oct. 8 is International Observe the Moon Night!

We are now using a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!

If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!

If you would like to sign up for the AstronomyCast Solar Eclipse Escape, where you can meet Fraser and Pamela, plus WSH Crew and other fans, visit our site linked above and sign up!

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Universe Today, or the Universe Today YouTube page.

Astronomy Cast Ep. 423: Cyclones


As Hurricane Matthew reminded us, cyclonic storms are a force to be reckoned with. What causes these storms, and how can they form across the Solar System.

Visit the Astronomy Cast Page to subscribe to the audio podcast!

We usually record Astronomy Cast as a live Google+ Hangout on Air every Friday at 1:30 pm Pacific / 4:30 pm Eastern. You can watch here on Universe Today or from the Astronomy Cast Google+ page.