Five New Neptunian Trojans Discovered

Artist's concept of Trojan asteroids, small bodies that dominate our solar system. Credit: NASA

The Solar System is filled with what are known as Trojan Asteroids – objects that share the orbit of a planet or larger moon. Whereas the best-known Trojans orbit with Jupiter (over 6000), there are also well-known Trojans orbiting within Saturn’s systems of moons, around Earth, Mars, Uranus, and even Neptune.

Until recently, Neptune was thought to have 12 Trojans. But thanks to a new study by an international team of astronomers – led by Hsing-Wen Lin of the National Central University in Taiwan – five new Neptune Trojans (NTs) have been identified. In addition, the new discoveries raise some interesting questions about where Neptune’s Trojans may come from.

For the sake of their study – titled “The Pan-STARRS 1 Discoveries of Five New Neptune Trojans“- the team relied on data obtained by the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS). This wide-field imaging facility – which was founded by the University of Hawaii’s Institute for Astronomy – has spent the last decade searching the Solar System for asteroids, comets, and Centaurs.

PS1 at dawn. The mountain in the distance is Mauna Kea, about 130 kilometers southeast. Credit: pan-starrs.ifa.hawaii.edu
The PS1 telescope at dawn, with the mountain of Mauna Kea visible in the distance. Credit: pan-starrs.ifa.hawaii.edu

The team used data obtained by the PS-1 survey, which ran from 2010 to 2014 and utilized the first Pan-STARR telescope on Mount Haleakala, Hawaii. From this, they observed seven Trojan asteroids around Neptune, five of which were previously undiscovered. Four of the TNs were observed orbiting within Neptune’s L4 point, and one within its L5 point.

The newly detected objects have sizes ranging from 100 to 200 kilometers in diameter, and in the case of the L4 Trojans, the team concluded from the stability of their orbits that they were likely primordial in origin. Meanwhile, the lone L5 Trojan was more unstable than the other four, which led them to hypothesize that it was a recent addition.

As Professor Lin explained to Universe Today via email:

“The 2 of the 4 currently known L5 Neptune Trojans, included the one L5 we found in this work, are dynamically unstable and should be temporary captured into Trojan cloud. On the other hand, the known L4 Neptune Trojans are all stable. Does that mean the L5 has higher faction of temporary captured Trojans? It could be, but we need more evidence.”

In addition, the results of their simulation survey showed that the newly-discovered NT’s had unexpected orbital inclinations. In previous surveys, NTs typically had high inclinations of over 20 degrees. However, in the PS1 survey, only one of the newly discovered NTs did, whereas the others had average inclinations of about 10 degrees.

Animation showing the path of six of Neptune's L4 trojans in a rotating frame with a period equal to Neptune's orbital period.. Credit: Tony Dunn/Wikipedia Commons
Animation showing the path of six of Neptune’s L4 trojans in a rotating frame with a period equal to Neptune’s orbital period.. Credit: Tony Dunn/Wikipedia Commons

From this, said Lin, they derived two possible explanations:

“The L4 “Trojan Cloud” is wide in orbital inclination space. If it is not as wide as we thought before,  the two observational results are statistically possible to generate from the same intrinsic inclination distribution. The previous study suggested >11 degrees width of inclination, and most likely is ~20 degrees. Our study suggested that it should be 7 to 27 degrees, and the most likely is ~ 10 degrees.”

“[Or], the previous surveys were used larger aperture telescopes and detected fainter NT than we found in PS1. If the fainter (smaller) NTs have wider inclination distribution than the larger ones, which means the smaller NTs are dynamically “hotter” than the larger NTs, the disagreement can be explained.”

According to Lin, this difference is significant because the inclination distribution of NTs is related to their formation mechanism and environment. Those that have low orbital inclinations could have formed at Neptune’s Lagrange Points and eventually grew large enough to become Trojans asteroids.

Illustration of the Sun-Earth Lagrange Points. Credit: NASA
Illustration of the Sun-Earth Lagrange Points. Credit: NASA

On the other hand, wide inclinations would serve as an indication that the Trojans were captured into the Lagrange Points, most likely during Neptune’s planetary migration when it was still young. And as for those that have wide inclinations, the degree to which they are inclined could indicate how and where they would have been captured.

“If the width is ~ 10 degrees,” he said, “the Trojans can be captured from a thin (dynamically cold) planetesimal disk. On the other hand, if the Trojan cloud is very wide (~ 20 degrees), they have to be captured from a  thick (dynamically hot) disk. Therefore, the inclination distribution give us an idea of how early Solar system looks like.”

In the meantime, Li and his research team hope to use the Pan-STARR facility to observe more NTs and hundreds of other Centaurs, Trans-Neptunian Objects (TNOs) and other distant Solar System objects. In time, they hope that further analysis of other Trojans will shed light on whether there truly are two families of Neptune Trojans.

This was all made possible thanks to the PS1 survey. Unlike most of the deep surveys, which are only ale to observe small areas of the sky, the PS1 is able to monitor the whole visible sky in the Northern Hemisphere, and with considerable depth. Because of this, it is expected to help astronomers spot objects that could teach us a great deal about the history of the early Solar System.

Further Reading: arXiv

Hubble Detects A Planet Around Binary Star System

This artist's illustration shows a planet circling a pair of distant red dwarf stars, representing the the system OGLE-2007-BLG-349 system, about 8,000 lightyears from Earth. Credit: NASA, ESA, and G. Bacon (STScI).

Binary stars are common throughout the galaxy, as it has been estimated about half the stars in our sky consist of two stars orbiting each other. Therefore, it’s also thought that about half of all exoplanet host stars are binaries as well. However, only about 10 of these so called circumbinary planets have been found so far in the 3,000-plus confirmed extrasolar planets that have been discovered.

But chalk up one more circumbinary planet, and this one bodes well for a technique that could help scientists find planets that orbit far away from their stars. Astronomers using the Hubble Space Telescope have confirmed a very interesting “three-body” system where two very close stars have a planet that orbits them both at a rather large distance.

The two red dwarf stars are just 7 million miles apart, or about 14 times the diameter of the Moon’s orbit around Earth. The planet orbits roughly 300 million miles from the stellar duo, about the distance of the asteroid belt from the Sun. The planet completes an orbit around both stars roughly every seven years.

Will China's new space telescope out-perform the Hubble? Image:
The Hubble Space Telescope. Image: NASA

Hubble used the a technique called gravitational microlensing, where the gravity of a foreground star bends and amplifies the light of a background star that momentarily aligns with it. The light magnification can reveal clues to the nature of the foreground star and any associated planets.

The system, called OGLE-2007-BLG-349, was originally detected in 2007 by the Optical Gravitational Lensing Experiment (OGLE), a telescope at the Las Campanas Observatory in Chile that searches for and observes microlensing effects from small distortions of spacetime, caused by stars and exoplanets.

However, the original OGLE observations could not confirm the details of the OGLE-2007-BLG-349 system. OGLE and several other ground-based observations determined there was a star and a planet in this system, but they couldn’t positively identify what the observed third body was.

“The ground-based observations suggested two possible scenarios for the three-body system: a Saturn-mass planet orbiting a close binary star pair or a Saturn-mass and an Earth-mass planet orbiting a single star,” said David Bennett, from NASA’s Goddard Space Flight Center, who is the first author in a new paper about the system, to be published in the Astrophysical Journal.

With Hubble’s sharp eyesight, the research team was able to separate the background source star and the lensing star from their neighbors in the very crowded star field. The Hubble observations revealed that the starlight from the foreground lens system was too faint to be a single star, but it had the brightness expected for two closely orbiting red dwarf stars, which are fainter and less massive than our sun.

“So, the model with two stars and one planet is the only one consistent with the Hubble data,” Bennett said.
“OGLE has detected over 17,000 microlensing events, but this is the first time such an event has been caused by a circumbinary planetary system,” explains Andrzej Udalski from the University of Warsaw, Poland, co-author of the study and leader of the OGLE project.

The team said this first-ever confirmation of an exoplanet system using the gravitational microlensing technique suggests some intriguing possibilities. While data from the Kepler Space Telescope is more likely to reveal planets that orbit close to their stars, microlensing allows planets to be found at distances far from their host stars.

“This discovery, suggests we need to rethink our observing strategy when it comes to stellar binary lensing events,” said Yiannis Tsapras, another member of the team, from the Astronomisches Recheninstitut in Heidelberg, Germany. “This is an exciting new discovery for microlensing”.

The team said that since this observation has shown that microlensing can successfully detect circumbinary planets, Hubble could provide an essential new role in the continued search for exoplanets.

OGLE-2007-BLG-349 is located 8,000 light-years away, towards the center of our galaxy.

(And, you’re welcome… I didn’t mention Tatooine in this article, until now!)

Further reading: Hubblesite, ESA Hubble,

How To See the Doomed Tiangong-1 Chinese Space Station

Artist's illustration of China's 8-ton Tiangong-1 space station, which is expected to fall to Earth in late 2017. Credit: CMSE.

China’s first space station, Tiangong-1, is expected to fall to Earth sometime in late 2017. We’ve known for several months that the orbital demise of the 8-metric ton space station was only a matter of time. But Chinese space agency officials recently confirmed that they have lost telemetry with the space station and can no longer control its orbit. This means its re-entry through Earth’s atmosphere will be uncontrolled.

Despite sensational headlines this past week (and earlier this year) about Tiangong-1 exploding and raining down molten metal, the risk is quite low that people on Earth will be in danger. Any remaining debris that doesn’t burn up in the atmosphere has a high chance of falling into an ocean, since two-thirds of Earth’s surface is covered by water.

Artist's illustration of China's 8-ton Tiangong-1 space space station. Credit: CMSE.
Artist’s illustration of China’s 8-ton Tiangong-1 space space station. Credit: CMSE.

While NASA and other space agencies say it’s very hard to compute the overall risk to any individual, it’s been estimated that the odds that you, personally, will be hit by a specific piece of debris are about 1 in several trillion.
But numerically, the chance that one person anywhere in the world might be struck by a any piece of space debris comes out to a chance of 1-in-3,200, said Nick Johnson, chief scientist with NASA’s Orbital Debris during a media teleconference in 2011 when the 6-ton UARS satellite was about to make an uncontrolled reentry.

Johnson also reminded everyone that throughout the entire history of the space age, there have been no reports of anybody in the world being injured or struck by any re-entering debris. Something of this size re-enters the atmosphere every few years, and many are uncontrolled entries. For example, there were the UARS and ROSAT satellites in 2011, GOCE in 2013 and Kosmos 1315 in 2015. All of those re-entered without incident, with some returning so remotely there was no visual evidence of their fall.

Wu Ping, deputy director of China’s Manned Space Engineering (CMSE) office, said at a press conference before the launch of the Tiangong-2 space station last week (September 15, 2016) that based on their calculations and analysis, most parts of the space lab will burn up during its fall through the atmosphere. She added that China has always highly valued the management of space debris, and will continue to monitor Tiangong-1, and will release a forecast of its falling and report it internationally.

Tiangong-1 as seen in a a composite of three separate exposures taken on May 25, 2013. Credit and copyright: David Murr.
Tiangong-1 as seen in a a composite of three separate exposures taken on May 25, 2013. Credit and copyright: David Murr.

So, all that can be done now is to monitor its position over time to be able to predict when and where it might come down.

Without telemetry, how can we monitor its orbital position?

“Although Tiangong-1 is no longer functioning, keeping track of where it is not a problem,” said Chris Peat, who developed and maintains Heavens-Above.com, a site that provides orbital information to help people observe and track satellites orbiting the Earth.

“Like all other satellites, it is being tracked by the world-wide network of radar installations operated by the US Department of Defense,” Peat explained via email to Universe Today. “They make the orbital elements available to the public via the Space-Track web site and this is where we get the orbital data from in order to make our predictions.”

Peat says they check for new data every 4 hours, and Space-Track updates the orbits of most large objects about once per day.

Since Tiangong-1 is such a large object, Peat said there is no chance that it will be lost by Space-Track before re-entry. Additionally, amateur/hobby observers also make observations of the position of some satellites and calculate their own orbits for them. This is mostly done for classified satellites for which Space-Track does not publish data, and is not really necessary in the case of Tiangong-1, Peat said.

But with uncertainties of when and where this 8-ton (7.3 metric tons) vehicle will come back to Earth, you can bet that the amateur observing community will keep an eye on it.

First image of a solar transit of Tiangong-1, the first module of the Chinese space station, taken from Southern France on May 11th 2012. Credit: Thierry Legault. Used by permission.
First image of a solar transit of Tiangong-1, the first module of the Chinese space station, taken from Southern France on May 11th 2012. Credit: Thierry Legault. Used by permission.

“As it gets lower and enters the denser atmosphere, it will be subject to greater perturbations, but I do not expect Space-Track to lose it because it is so large,” Peat said. “It will actually become brighter and easier to see as it gets lower.”

If you want to watch for it yourself, Heavens-Above provides tracking information anywhere around the world. Just input your specific location and click on “Tiangong-1,” listed under “Satellites.” Heavens-Above (they also have an app) is great for being able to see satellites like the International Space Station and Hubble, as well as seeing astronomical objects like planets and asteroids. Heavens-Above also has an interactive sky chart.

Additionally, Marco Di Lorenzo on the Alive Universe website is monitoring Tiangong-1’s orbit, showing the orbital decay over time. He will be updating its status up through re-entry.

But despite being able to track Tiangong-1, as well as knowing its location and orbit is not the same as being able to say exactly when and where it will fall to Earth.

“This is a notoriously difficult task,” Peat said and even a day before re-entry, the estimated re-entry point will still be uncertain by many thousands of kilometers. The Russian Mir space station was brought down in a controlled manner using its propulsion system to re-enter over the South Pacific, but Tiangong-1 is no longer functioning so the re-entry point cannot be influenced by ground controllers.”

Graphic shows the procedure of Shenzhou-8 spacecraft docking with Tiangong-1 space lab module on Nov. 3, 2011. (Xinhua/Lu Zhe)
Graphic shows the procedure of Shenzhou-8 spacecraft docking with Tiangong-1 space lab module on Nov. 3, 2011. (Xinhua/Lu Zhe)

Jonathan McDowell, an astrophysicist at the Harvard-Smithsonian Center for Astrophysics who also monitors objects in orbit, said via Twitter that Tiangong-1’s reentry could be anywhere between the latitudes of 43 degrees North and 43 degrees South, which is a rather large area on our planet and are the latitudes where a majority of Earth’s population resides. That’s not especially comforting, but remember, the odds are in your favor.

This plot shows the orbital height of the Chinese space station Tiangong-1 over the last year. It's orbit was boosted in mid-December 2015. Credit: Chris Peat/Heavens-Above.com.
This plot shows the orbital height of the Chinese space station Tiangong-1 over the last year. It’s orbit was boosted in mid-December 2015. Credit: Chris Peat/Heavens-Above.com.

Peat now has a page on Heavens-Above showing the orbital height of Tiangong-1 and you can see how the height is reducing as a function of time. It shows there was an orbital boost in December 2015.

Tiangong-1 was launched in September 2011 and ended its functional life in March this year, when it had “comprehensively fulfilled its historical mission,” Chinese officials said. It was operational for four and a half years, which is two and a half years longer than its designed life. It was visited by the un-crewed Shenzhou-8 in 2011, and the crewed missions of Shenzhou-9 in 2012 and Shenzhou-10 in 2013. It also was used for Earth observation and studying the space environment, according to CMSE.

If you happen to capture an image of Tiangong-1, please add it to Universe Today’s Flickr pool page.

NASA Targets ‘Return to Flight’ of Upgraded Antares for mid-October for Station Resupply

Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13 2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station. Credit: Ken Kremer - kenkremer.com
Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13  2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station.  Credit: Ken Kremer - kenkremer.com
Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13 2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station. Credit: Ken Kremer – kenkremer.com

NASA is targeting mid-October for the ‘Return to Flight’ launch of the upgraded Orbital ATK Antares rocket on a cargo mission to resupply the International Space Station (ISS) for the first time in nearly two years.

The 14 story tall commercial Antares rocket will launch for the first time in the upgraded 230 configuration powered by new Russian-built first stage engines.

In light of the grounding of the SpaceX Falcon 9 and Dragon cargo flights following the catastrophic Sept.1 launch pad disaster,and the catastrophic Antares launch failure in Oct. 2014, this Orbital ATK mission becomes more critical than ever to keep the space station stocked and fully operational for the resident crews with a reliable American supply train.

NASA and Orbital ATK announced that the re-engined Antares will launch during a five-day launch window that opens no earlier than October 9-13, 2016 on the OA-5 Cygnus cargo mission from the Mid-Atlantic Regional Spaceport at NASA’s Wallops Flight Facility on Virginia’s picturesque Eastern shore.

“A more specific date will be identified upon completion of final operational milestones and technical reviews,” according to statements from NASA and Orbital ATK.

If Antares launches on Oct. 9, liftoff is set 10:47 p.m. EDT and becomes progressively earlier on succeeding days. The launch time moves up to 9:13 p.m. EDT on Oct. 13.

If the launch takes place during this window, it will mark the first truly nighttime launch for Antares from Virgina.

“The arrival and berthing of Cygnus to the International Space Station will be determined by the exact launch date and in coordination with other space station activities,” says NASA.

Orbital ATK's Cygnus cargo spacecraft, protected inside the vertical container shown here, was shipped from our payload processing facility on Wallops main base to our spacecraft fueling facility on Wallops Island earlier this week.  Credit: NASA
Orbital ATK’s Cygnus cargo spacecraft, protected inside the vertical container shown here, was shipped from our payload processing facility on Wallops main base to our spacecraft fueling facility on Wallops Island earlier this week. Credit: NASA

The Cygnus cargo spacecraft was moved this week from the NASA Wallops payload processing facility to the spacecraft fueling facility on Wallops Island.

The next step is to integrate Cygnus onto the Orbital ATK Antares 230 rocket inside the HIF (Horizontal Integration Facility) in anticipation of the launch slated for no earlier than Oct. 9 at 10:47 p.m. EDT.

The Antares 230 medium-class commercial launch vehicle rocket has been upgraded with new first stage Russian-built RD-181 engines fueled by LOX/kerosene – that had to be fully validated before launching NASA’s precious cargo to the International Space Station (ISS).

For the OA-5 mission, the Cygnus advanced maneuvering spacecraft will be loaded with approximately 2,400 kg (5,290 lbs.) of supplies and science experiments for the International Space Station (ISS).

Under the Commercial Resupply Services (CRS) contract with NASA, Orbital ATK will deliver approximately 28,700 kilograms of cargo to the space station. OA-5 is the sixth of these missions.

Orbital ATK’s Antares commercial rocket had to be overhauled with completely new first stage engines following the catastrophic launch failure nearly two years ago on October 28, 2018 just seconds after blastoff that doomed the Orb-3 resupply mission to the space station.

The goal of the Antares ‘Return to Flight’ mission is to launch Orbital ATK’s Cygnus cargo freighter on the OA-5 resupply mission for NASA to the ISS and restore the Antares rocket to flight status.

To that end the aerospace firm completed a successful 30 second long test firing of the re-engined first stage on May 31 at Virginia Space’s Mid-Atlantic Regional Spaceport (MARS) Launch Pad 0A – as I reported here earlier.

First stage of Orbital ATK Antares rocket outfitted with new RD-181 engines stands erect at Launch Pad-0A on NASA Wallops Flight Facility on May 24, 2016 in preparation for the upcoming May 31 hot fire engine test. Credit:  Ken Kremer/kenkremer.com
First stage of Orbital ATK Antares rocket outfitted with new RD-181 engines stands erect at Launch Pad-0A on NASA Wallops Flight Facility on May 24, 2016 in preparation for the upcoming May 31 hot fire engine test. Credit: Ken Kremer/kenkremer.com

Teams from Orbital ATK and NASA have been scrutinizing the data in great detail ever since then to ensure the rocket is really ready before committing to the high stakes launch.

“Orbital ATK completed a stage test at the end of May and final data review has confirmed the test was successful, clearing the way for the Antares return to flight,” said the company.

“Simultaneously, the company has been conducting final integration and check out of the flight vehicle that will launch the OA-5 mission to ensure that all technical, quality and safety standards are met or exceeded.”

The projected launch date has been delayed several times since the May 31 hot fire test to deal with ‘vibration’ issues detected during the test.

Antares launches had immediately ground to a halt following the devastating launch failure 23 months ago which destroyed the rocket and its critical payload of space station science and supplies for NASA in a huge fireball just seconds after blastoff – as witnessed by this author.

First stage propulsion system at base of Orbital Sciences Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
First stage propulsion system at base of Orbital Sciences Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

As a direct consequence of the catastrophic launch disaster, Orbital ATK managers decided to outfit the Antares medium-class rocket with new first stage RD-181 engines built in Russia.

The launch mishap was traced to a failure in the AJ26 first stage engine turbopump and caused Antares launches to immediately grind to a halt.

Top Orbital ATK management soon decided to ditch the AJ26s, which were 40 year old refurbished engines, originally built during the Soviet era for their moon rocket and originally known as the NK-33.

Soviet era NK-33 engines refurbished as the AJ26 exactly like pictured here caused Antares’ rocket failure on Oct. 28, 2014. Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS. Credit: Ken Kremer – kenkremer.com
Soviet era NK-33 engines refurbished as the AJ26 exactly like pictured here probably caused Antares’ rocket failure on Oct. 28, 2014. Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS. Credit: Ken Kremer – kenkremer.com

The RD-181 replaces the previously used AJ26 engines which failed moments after liftoff during the last launch on Oct. 28, 2014 resulting in a catastrophic loss of the rocket and Cygnus cargo freighter.

The RD-181 flight engines are built by Energomash in Russia and had to be successfully tested via the static hot fire test to ensure their readiness.

Aerial view of an Orbital ATK Antares rocket on launch pad at Virginia Space’s Mid-Atlantic Regional Spaceport (MARS) Pad 0A located at NASA's Wallops Flight Facility.  Credit: Patrick J. Hendrickson / Highcamera.com
Aerial view of an Orbital ATK Antares rocket on launch pad at Virginia Space’s Mid-Atlantic Regional Spaceport (MARS) Pad 0A located at NASA’s Wallops Flight Facility. Credit: Patrick J. Hendrickson / Highcamera.com

Watch for Ken’s continuing Antares/Cygnus mission and launch reporting. He will be reporting from on site at NASA’s Wallops Flight Facility, VA during the launch campaign.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Aerial view of Orbital ATK launch pad at Virginia Space’s Mid-Atlantic Regional Spaceport (MARS) Pad 0A located at NASA's Wallops Flight Facility.  Credit: Credit: Patrick J. Hendrickson / Highcamera.com
Aerial view of Orbital ATK launch pad at Virginia Space’s Mid-Atlantic Regional Spaceport (MARS) Pad 0A located at NASA’s Wallops Flight Facility. Credit: Credit: Patrick J. Hendrickson / Highcamera.com
The new RD-181 engines are installed on the Orbital ATK Antares first stage core ready to support a full power hot fire test at the NASA Wallops Island launch pad in March 2016.  Credit: Ken Kremer/kenkremer.com
The new RD-181 engines are installed on the Orbital ATK Antares first stage core ready to support a full power hot fire test at the NASA Wallops Island launch pad in May 2016. Credit: Ken Kremer/kenkremer.com

Hubble’s Surprising Find On Europa To Be Announced By NASA Monday

Europa as imaged by the Galileo spacecraft. Europa is a prime target in the search for life because of its sub-surface ocean. Image: NASA/JPL-Caltech/SETI Institute

NASA will make a “surprising” announcement about Jupiter’s moon Europa on Monday, Sept. 26th, at 2:00 PM EDT. They haven’t said much, other than there is “surprising evidence of activity that may be related to the presence of a subsurface ocean on Europa.” Europa is a prime target for the search for life because of its subsurface ocean.

The new evidence is from a “unique Europa observing campaign” aimed at the icy moon. The Hubble Space Telescope captured the images in these new findings, so maybe we’ll be treated to some more of the beautiful images that we’re accustomed to seeing from the Hubble.

Images from NASA's Galileo spacecraft show the intricate detail of Europa's icy surface. Image: NASA/JPL-Caltech/ SETI Institute
Images from NASA’s Galileo spacecraft show the intricate detail of Europa’s icy surface. Image: NASA/JPL-Caltech/ SETI Institute

We always welcome beautiful images, of course. But the real interest in Europa lies in its suitability for harboring life. Europa has a frozen surface, but underneath that ice there is probably an ocean. The frozen surface is thought to be about 10 – 30 km thick, and the ocean may be about 100 km (62 miles) thick. That’s a lot of water, perhaps double what Earth has, and that water is probably salty.

Back in 2012, the Hubble captured evidence of plumes of water vapor escaping from Europa’s south pole. Hubble didn’t directly image the water vapor, but it “spectroscopically detected auroral emissions from oxygen and hydrogen” according to a NASA news release at the time.

This artist's illustration shows what plumes of water vapour might look like being ejected from Europa's south pole. Image: NASA, ESA, L. Roth (Southwest Research Institute, USA/University of Cologne, Germany) and M. Kornmesser.
This artist’s illustration shows what plumes of water vapour might look like being ejected from Europa’s south pole. Image: NASA, ESA, L. Roth (Southwest Research Institute, USA/University of Cologne, Germany) and M. Kornmesser.

There are other lines of evidence that support the existence of a sub-surface ocean on Europa. But there are a lot of questions. Will the frozen top layer be several tens of kilometres thick, or only a few hundred meters thick? Will the sub-surface ocean be warm, liquid water? Or will it be frozen too, but warmer than the surface ice and still convective?

Two models of the interior of Europa. Image: NASA/JPL.
Two models of the interior of Europa. Image: NASA/JPL.

Hopefully, new evidence from the Hubble will answer these questions definitively. Stay tuned to Monday’s teleconference to find out what NASA has to tell us.

These are the scientists who will be involved in the teleconference:

  • Paul Hertz, director of the Astrophysics Division at NASA Headquarters in Washington
  • William Sparks, astronomer with the Space Telescope Science Institute in Baltimore
  • Britney Schmidt, assistant professor at the School of Earth and Atmospheric Sciences at Georgia Institute of Technology in Atlanta
  • Jennifer Wiseman, senior Hubble project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland

The NASA website will stream audio from the teleconference.

More About Europa:

Occultation Palooza: The Moon Covers Aldebaran and More

Aldebaran
The Moon crosses the Hyades on July 29th, 2016. Image credit and copyright: Alan Dyer

This week, we thought we’d try an experiment for tonight’s occultation of Aldebaran by the Moon. As mentioned, we’re expanding the yearly guide for astronomical events for the year in 2017. We’ve done this guide in various iterations since 2009, starting on Astroguyz and then over to Universe Today, and it has grown from a simple Top 10 list, to a full scale preview of what’s on tap for the following year.

You, the reader, have made this guide grow over the years, as we incorporate feedback we’ve received.

Anyhow, we thought we’d lay out this week’s main astro-event in a fashion similar to what we have planned for the guide: each of the top 101 events will have a one page entry (two pages for the top 10 events) with a related graphic, fun facts, etc.

So in guide format, tonight’s occultation of Aldebaran would break down like this:

Wednesday, September 21st: The Moon Occults Aldebaran

The occultation footprint of tonight's Aldebaran event.
The occultation footprint of tonight’s Aldebaran event.

Image credit Occult 4.2

The 67% illuminated waning gibbous Moon occults the +0.9 magnitude star Aldebaran. The Moon is two days prior to Last Quarter phase during the event. Both are located 109 degrees west of the Sun at the time of the event. The central time of conjunction is 22:37 Universal Time (UT). The event occurs during the daylight hours over southeast Asia, China, Japan and the northern Philippines and under darkness for India, Pakistan and the Arabian peninsula and the Horn of Africa. The Moon will next occult Aldebaran on October 19th. This is occultation 23 in the current series of 49 running from January 29th 2015 to September 3rd, 2018. This is one of the more central occultations of Aldebaran by the Moon for 2016.

india-view

The view from India tonight, just before the occultation begins. Image credit: Stellarium

Fun Fact-In the current century, (2001-2100 AD) the Moon occults Aldebaran 247 times, topped only by Antares (386 times) and barely beating out Spica (220 times).

Or maybe, another fun fact could be: A frequent setting for science fiction sagas, Aldebaran is now also often confused in popular culture with Alderaan, Princess Leia’s late homeworld from the Star Wars saga.

Like it? Thoughts, suggestions, complaints?

Now for the Wow! Factor for tonight’s occultation. Aldebaran is 65 light years distant, meaning the light we’re seeing left the star in 1951 before getting photobombed by the Moon just over one second before reaching the Earth.

There are also lots of other occultations of fainter stars worldwide over the next 24 hours, as the Moon crosses the Hyades.

And follow that Moon, as a series of 20 occultations of the bright star Regulus during every lunation begins later this year on December 18th.

Gadi Eidelheit managed to catch the March 14th, 2016 daytime occultation of Aldebaran from Israel:

And also in the ‘Moon passing in front of things’ department, here’s a noble attempt at capturing a difficult occultation of Neptune by the Moon last week on September 15th, courtesy of Veijo Timonen based in Hämeenlinna Finland:

Lets see, that’s a +8th magnitude planet next to a brilliant -13th magnitude Moon, one million (15 magnitudes) times brighter… it’s amazing you can see Neptune at all!

Last item: tomorrow marks the September (southward) equinox, ushering in the start of astronomical fall in the northern hemisphere, and the beginning of Spring in the southern. The precise minute of equinoctial crossing is 14:21 UT. In the 21st century, the September equinox can fall anywhere from September 21st to September 23rd. Bob King has a great recent write-up on the equinox and the Moon.

Here's EVERY occultation of Aldebaran from 2015 through 2018. (Click to enlarge) Credit: Occult 4.2.
Here’s EVERY occultation of Aldebaran from 2015 through 2018. (Click to enlarge) Credit: Occult 4.2.

Don’t miss tonight’s passage of Aldebaran through the Hyades, and there’s lots more where that came from headed into 2017!

Musk Looks Confidently Past Mars With Interplanetary Transport System

SpaceX founder and CEO Elon Musk. Credit: Ken Kremer/kenkremer.com

For Elon Musk, it’s always been about Mars. Musk, and his company SpaceX, haven’t always been explicit about how exactly they’ll get to Mars. But SpaceX’s fourteen years of effort in rocketry have been aimed at getting people into space cheaper, and getting people to Mars.

Musk has revealed hints along the way. One of the boldest was his statement at Code Conference 2016. At that conference he said, “I think, if things go according to plan, we should be able to launch people probably in 2024, with arrival in 2025.”

He went on to explain it this way: “The basic game plan is we’re going to send a mission to Mars with every Mars opportunity from 2018 onwards. They occur approximately every 26 months. We’re establishing cargo flights to Mars that people can count on for cargo.”

Those comments certainly removed any lingering doubt that Mars is the goal.

But a recent Tweet from Musk has us wondering if Mars will just be a stepping stone to more distant destinations in our Solar System. On Sept. 16th, Musk tweeted:

Turns out MCT can go well beyond Mars, so will need a new name…

And the new name is Interplanetary Transport System (ITS).

So, is SpaceX developing plans to go beyond Mars? Is the plan to establish cargo flights to Mars still central to the whole endeavour? Does the name change from Mars Cargo Transporter (MCT) to Interplanetary Transport System (ITS) signal a change in focus? These questions may be answered soon, on September 27th, when Musk will speak at the International Astronautical Congress (IAC), in Guadalajara, Mexico.

Musk hinted back in January that he would be revealing some major details of the MCT at the IAC later this month. In January, he said at the StartmeupHK Festival in Hong Kong that “I’m hoping to describe that architecture later this year at IAC … and I think that will be quite exciting.”

So, lots of hints. And these hints bring questions. Is SpaceX developing a super heavy rocket of some type? A BFR? If the Mars Colonial Transport system can go much further than Mars, maybe to the moons of the gas giants, won’t that require a much larger rocket than the Falcon Heavy?

In the past, SpaceX has conceptualized about larger rockets and the engines that would power them. At the 2010 American Institute of Aeronautics and Astronautics (AIAA) Joint Propulsion Conference, SpaceX presented some of these conceptual designs. They featured a super-heavy lift vehicle larger than the Falcon Heavy, dubbed the Falcon X. Beyond that, and in increasingly powerful designs, were the Falcon X Heavy, and the Falcon XX Heavy.

These were only concepts, but it’s six years later now. Surely, any further thinking around a super-heavy lift vehicle would have started there. And if the MCT can now go well beyond Mars, as Musk said in his Tweet, there must be a more powerful rocket. Mustn’t there?

So with one tweet, Musk has sucked the air out of the room, and got everybody speculating. But Musk isn’t the only one with eyes on building a greater human presence in space. He has a competitor: Jeff Bezos, former Amazon CEO, and his company Blue Origin.

The New Shepard reusable rocket is Blue Origin's flagship. Image: Blue Origin
The New Shepard reusable rocket is Blue Origin’s flagship. Image: Blue Origin

The original space race pitted the USA against the USSR in a battle for scientific supremacy and prestige. The USA won that race, and they’re still reaping the benefits of that technological victory. But a new race might be brewing between Musk and Bezos, between SpaceX and Blue Origin.

The two companies haven’t been directly competing. They’ve both been working on reusable rockets, but Blue Origin has concerned itself with sub-orbital rocketry designed to take people into space for a few minutes. Space tourism, if you will. SpaceX’s focus has always been on orbital capability, and more.

But not to be outdone by SpaceX, Blue Origin has recently announced the New Glenn orbital launch vehicle, to be powered by seven of their new, powerful, BE-4 engines.

In rocketry, size definitely matters. Image: Blue Origin
In rocketry, size definitely matters. Image: Blue Origin

There’s definitely some one-upmanship going on between Musk and Bezos. So far, it’s mostly been civil, with each acknowledging each other’s achievements and milestones in rocketry. But they’re also both quick to point out why they’re better than the other.

Bezos, with the announcement of the New Glenn orbital launch vehicle, and the BE-4 engines that will power it, took every opportunity to mention the fact that his company spends zero tax dollars, while SpaceX benefits from financial arrangements with NASA. Musk, on the other hand, likes to point out the fact that Blue Origin has never delivered anything into orbit, while SpaceX has delivered numerous payloads into orbit successfully.

But for now, anyway, the focus is on SpaceX, and what Musk will reveal at the upcoming IAC Congress. If he reveals a solid plan for recurring cargo missions to Mars, the excitement will be palpable. And if he reveals plans to go further than Mars, with much larger rockets, we may never catch our breaths.

Stellar Ghosts: Understanding Our Origins

Eta Carinae, one of the most massive stars known. Image credit: NASA
Eta Carinae, one of the most massive stars known. Credit: NASA
The Crab Nebula; at its core is a long dead star... Image credit: NASA, ESA, J. Hester and A. Loll (Arizona State University)
The Crab Nebula; at its core is a long dead star… Image credit: NASA, ESA, J. Hester and A. Loll (Arizona State University)

Our sky is blanketed in a sea of stellar ghosts; all potential phantoms that have been dead for millions of years and yet we don’t know it yet. That is what we will be discussing today. What happens to the largest of our stars, and how that influences the very makeup of the universe we reside in.

We begin this journey by observing the Crab Nebula. Its beautiful colors extend outward into the dark void; a celestial tomb containing a violent event that occurred a millennia ago. You reach out and with the flick of your wrist, begin rewinding time and watch this beautiful nebulae begin to shrink. As the clock winds backwards, the colors of the nebula begin to change, and you notice that they are shrinking to a single point. As the calendar approaches July 5, 1054, the gaseous cloud brightens and settles onto a single point in the sky that is as bright as the full moon and is visible during the day. The brightness fades and eventually there lay a pinpoint of light; a star that we don’t see today. This star has died, however at this moment in time we wouldn’t have known that. To an observer before this date, this star appeared eternal, as all the other stars did. Yet, as we know from our privileged vantage point, this star is about to go supernova and birth one of the most spectacular nebulae that we observe today.

Stellar ghosts is an apt way of describing many of the massive stars we see scattered throughout the universe. What many don’t realize is that when we look out deep into the universe, we are not only looking across vast distances, but we are peering back into time. One of the fundamental properties of the universe that we know quite well is that light travels at a finite speed: approximately 300,000,000 m/s (roughly 671,000,000 mph). This speed has been determined through many rigorous tests and physical proofs. In fact, understanding this fundamental constant is a key to much of what we know about the universe, especially in respect to both General Relativity and Quantum Mechanics. Despite this, knowing the speed of light is key to understanding what I mean by stellar ghosts. You see, information moves at the speed of light. We use the light from the stars to observe them and from this understand how they operate.

A decent example of this time lag is our own sun. Our sun is roughly 8 light-minutes away. Meaning that the light we see from our star takes 8 minutes to make the journey from its surface to our eyes on earth. If our sun were to suddenly disappear right now, we wouldn’t know about it for 8 minutes; this doesn’t just include the light we see, but even its gravitational influence that is exerted on us. So if the sun vanished right now, we would continue in our orbital path about our now nonexistent star for 8 more minutes before the gravitational information reached us informing us that we are no longer gravitationally bound to it. This establishes our cosmic speed limit for how fast we can receive information, which means that everything we observe deep into the universe comes to us as it was an ‘x’ amount of years ago, where ‘x’ is its light distance from us. This means we observe a star that is 10 lightyears away from us as it was 10 years ago. If that star died right now, we wouldn’t know about it for another 10 years. Thus, we can define it as a “stellar ghost”; a star that is dead from its perspective at its location, but still alive and well at ours.

As covered in a previous article of mine (Stars: A Day in the Life), the evolution of a star is complex and highly dynamic. Many factors play an important role in everything from determining if the star will even form in the first place, to the size and thus the lifetime of said star. In the previous article mentioned above, I cover the basics of stellar formation and the life of what we call main sequence stars, or rather stars that are very similar to our own sun. Whereas the formation process and life of a main sequence star and the stars we will be discussing are fairly similar, there are important differences in the way the stars we will be investigating die. Main sequence star deaths are interesting, but they hardly compare to the spacetime-bending ways that these larger stars terminate.

As mentioned above, when we were observing the long gone star that lay at the center of the Crab Nebula, there was a point in which this object glowed as bright as the full moon and could be seen during the day. What could cause something to become so bright that it would be comparable to our nearest celestial neighbor? Considering the Crab Nebula is 6,523 lightyears away, that meant that something that is roughly 153 billion times farther away than our moon was shining as bright as the moon. This was because the star went supernova when it died, which is the fate of stars that are much larger than our sun. Stars larger than our sun will end up in two very extreme states upon its death: neutron stars and black holes. Both are worthy topics that could span weeks in an astrophysics course, but for us today, we will simply go over how these gravitational monsters form and what that means for us.

Inward force of gravity versus the outward pressure of fusion within a star (hydrostatic equilibrium) Credit: NASA
Inward force of gravity versus the outward pressure of fusion within a star (hydrostatic equilibrium)
Credit: NASA

A star’s life is a story of near runaway fusion contained by the grip of its own gravitational presence. We call this hydrostatic equilibrium, in which the outward pressure from the fusing elements in the core of a star equals that of the inward gravitational pressure being applied due to the star’s mass. In the core of all stars, hydrogen is being fused into helium (at first). This hydrogen came from the nebula that the star was born from, that coalesced and collapsed, giving the star its first chance at life. Throughout the lifetime of the star, the hydrogen will be used up, and more and more helium “ash” will condense down in the center of the star. Eventually, the star will run out of hydrogen, and the fusion will briefly stop. This lack of outward pressure due to no fusion taking place temporarily allows gravity to win and it crushes the star downwards. As the star shrinks, the density, and thus the temperature in the core of the star increases. Eventually, it reaches a certain temperature and the helium ash begins to fuse. This is how all stars proceed throughout the main portion of its life and into the first stages of its death. However, this is where sun-sized stars and the massive stars we are discussing part ways.

The core and subsequent layers of a dying star. Each layer has been left over from millions of years of fusing each subsequent element into the next one. This is a snapshot of a massive star about to erupt. Credit: Wikimedia
The core and subsequent layers of a dying star. Each layer has been left over from millions of years of fusing each subsequent element into the next one. This is a snapshot of a massive star about to erupt. Credit: Wikimedia

A star that is roughly near the size of our own sun will go through this process until it reaches carbon. Stars that are this size simply aren’t big enough to fuse carbon. Thus, when all the helium has been fused into oxygen and carbon (via two processes that are too complex to cover here), the star cannot “crush” the oxygen and carbon enough to start fusion, gravity wins and the star dies. But stars that have sufficiently more mass than our sun (about 7x the mass) can continue on past these elements and keep shining. They have enough mass to continue this “crush and fuse” process that is the dynamic interactions at the hearts of these celestial furnaces.

These larger stars will continue their fusion process past carbon and oxygen, past silicon, all the way until they reach iron. Iron is the death note sung by these blazing behemoths, as when iron begins to fill their now dying core, the star is in its death throws. But these massive structures of energy do not go quietly into the night. They go out in the most spectacular of ways. When the last of the non-iron elements fuse in their cores, the star begins its decent into oblivion. The star comes crashing in upon itself as it has no way to stave off gravity’s relentless grip, crushing the subsequent layers of left over elements from its lifetime. This inward free-fall is met at a certain size with an impossible force to breach; a neutron degeneracy pressure that forces the star to rebound outwards. This massive amount of gravitational and kinetic energy races back out with a fury that illuminates the universe, outshining entire galaxies in an instant. This fury is the life-blood of the cosmos; the drum beats in the symphony galactic, as this intense energy allows for the fusion of elements heavier than iron, all the way to uranium. These new elements are blasted outwards by this amazing force, riding the waves of energy that casts them deep into the cosmos, seeding the universe with all the elements that we know of.

Artistic impression of a star going supernova, casting its chemically enriched contents into the universe. Credit: NASA/Swift/Skyworks Digital/Dana Berry
Artistic impression of a star going supernova, casting its chemically enriched contents into the universe. These new elements are blasted outwards by this amazing force, riding the waves of energy that casts them deep into the cosmos, seeding the universe with all the elements that we know of. Credit: NASA/Swift/Skyworks Digital/Dana Berryto

But what is left? What is there after this spectacular event? That all depends again on the mass of the star. As mentioned earlier, the two forms that a dead massive star takes are either a Neutron Star or a Black Hole. For a Neutron Star, the formation is quite complex. Essentially, the events that I described occurs, except after the supernovae all that is left is a ball of degenerate neutrons. Degenerate is simply a term we apply to a form that matter takes on when it is compressed to the limits allowed by physics. Something that is degenerate is intensely dense, and this holds very true for a neutron star. A number you may have heard tossed around is that a teaspoon of neutron star material would weigh roughly 10 million tons, and have an escape velocity (the speed needed to get away from its gravitational pull) at about .4c, or 40% the speed of light. Sometimes the neutron star is left spinning at incredible velocities, and we label these as pulsars; the name derived from how we detect them.

A pulsar with its magnetic field lines illustrated. The beams emitting from the poles are what washes over our detectors as the dead star spins.
A pulsar with its magnetic field lines illustrated. The beams emitting from the poles are what washes over our detectors as the dead star spins.

These types of stars generate a LOT of radiation. Neutron stars have an enormous magnetic field. This field accelerates electrons in their stellar atmospheres to incredible velocities. These electrons follow the magnetic field lines of the neutron star to its poles, where they can release radio waves, X-Rays, and gamma rays (depending on what type of neutron star it is). Since this energy is being concentrated to the poles, it creates a sort of lighthouse effect with high energy beams acting like the beams of light out of a lighthouse. As the star rotates, these beams sweep around many times per second. If the Earth, and thus our observation equipment, happens to be oriented favorably with this pulsar, we will register these “pulses” of energy as the stars’ beams wash over us. For all the pulsars we know about, we are much too far away for these beams of energy to hurt us. But if we were close to one of these dead stars, this radiation washing over our planet continuously would spell certain extinction for life as we know it.

What of the other form that a dead star takes; a black hole? How does this occur? If degenerate material is as far as we can crush matter, how does a black hole appear? Simply put, black holes are the result of an unimaginably large star and thus a truly massive amount of matter that is able to “break” this neutron degeneracy pressure upon collapse. The star essentially falls inward with such force that it breaches this seemingly physical limit, turning in upon itself and wrapping up spacetime into a point of infinite density; a singularity. This amazing event occurs when a star has roughly 18x the amount of mass that our sun has, and when it dies, it is truly the epitome of physics gone to the extreme. This “extra bit of mass” is what allows it to collapse this ball of degenerate neutrons and fall towards infinity. It is both terrifying and beautiful to think about; a point in spacetime that is not entirely understood by our physics, and yet something that we know exists. The truly remarkable thing about black holes is that it is like the universe working against us. The information we need to fully understand the processes within a black hole are locked behind a veil that we call the event horizon. This is the point of no return for a black hole, for which anything beyond this point in spacetime has no future paths that lead out of it. Nothing escapes at this distance from the collapsed star at its core, not even light, and thus no information ever leaves this boundary (at least not in a form we can use). The dark heart of this truly astounding object leaves a lot to be desired, and tempts us to cross into its realm in order to try and know the unknowable; to grasp the fruit from the tree of knowledge.

A black hole is the final form a massive star collapses to. The light (and spacetime itself) is warped around the black hole's event horizon due to extreme gravitational effects. This is as accurate as we can be to visualizing an actual black hole as it was generated with a code that implemented General Relativity accurately. Credit and Copyright: Paramount Pictures/Warner Bros. Mathematical Model used to create the image developed by Dr. Kip Thorne
A black hole is the final form a massive star collapses to. The light (and spacetime itself) is warped around the black hole’s event horizon due to extreme gravitational effects. This is as accurate as we can be to visualizing an actual black hole as it was generated with a code that implemented General Relativity accurately. Credit and Copyright: Paramount Pictures/Warner Bros. From “Interstellar” the film. Mathematical model used to create the image developed by Dr. Kip Thorne

Now it must be said, there is much in the way of research with black holes to this day. Physicists such as Professor Stephen Hawking, among others, have been working tirelessly on the theoretical physics behind how a black hole operates, attempting to solve the paradoxes that frequently appear when we try to utilize the best of our physics against them. There are many articles and papers on such research and their subsequent findings, so I will not dive into their intricacies for both wishing to preserve simplicity in understanding, and to also not take away from the amazing minds that are working these issues. Many suggest that the singularity is a mathematical curiosity that does not completely represent what physically happens. That the matter inside an event horizon can take on new and exotic forms. It is also worth noting that in General Relativity, anything with mass can collapse to a black hole, but we generally hold to a range of masses as creating a black hole with anything less than is in that mass range is beyond our understanding of how that could happen. But as someone who studies physics, I would be remiss to not mention that as of now, we are at an interesting cross section of ideas that deal very intimately with what is actually going on within these specters of gravity.

All of this brings me back to a point that needs to be made. A fact that needs to be recognized. As I described the deaths of these massive stars, I touched on something that occurs. As the star is being ripped apart from its own energy and its contents being blown outwards into the universe, something called nucleosynthesis is occurring. This is the fusion of elements to create new elements. From hydrogen up to uranium. These new elements are being blasted outwards an incredible speeds, and thus all of these elements will eventually find their way into molecular clouds. Molecular clouds (Dark Nebulae) are the stellar nurseries of the cosmos. This is where stars begin. And from star formation, we get planetary formation.

Planets coalescing out of the remaining molecular cloud the star formed out of. Within this accretion disk lay the fundamental elements necessary for planet formation and potential life. Credit: NASA/JPL-Caltech/T. Pyle (SSC) - February, 2005
Planets coalescing out of the remaining molecular cloud the star formed out of. Within this accretion disk lay the fundamental elements necessary for planet formation and potential life. Credit: NASA/JPL-Caltech/T. Pyle (SSC) – February, 2005

As a star forms, a cloud of debris that is made up of the molecular cloud that birthed said star begins to spin around it. This cloud, as we now know, contains all those elements that were cooked up in our supernovae. The carbon, the oxygen, the silicates, the silver, the gold; all present in this cloud. This accretion disk about this new star is where planets form, coalescing out of this enriched environment. Balls of rock and ice colliding, accreting, being torn apart and then reformed as gravity works its diligent hands to mold these new worlds into islands of possibility. These planets are formed from those very same elements that were synthesized in that cataclysmic eruption. These new worlds contain the blueprints for life as we know it.

Upon one of these worlds, a certain mixture of hydrogen and oxygen occurs. Within this mixture, certain carbon atoms form up to create replicating chains that follow a simple pattern. Perhaps after billions of years, these same elements that were thrust into the universe by that dying star finds itself giving life to something that can look up and appreciate the majesty that is the cosmos. Perhaps that something has the intelligence to realize that the carbon atom within it is the very same carbon atom that was created in a dying star, and that a supernovae occurred that allowed that carbon atom to find its way into the right part of the universe at the right time. The energy that was the last dying breath of a long dead star was the same energy that allowed life to take its first breath and gaze upon the stars. These stellar ghosts are our ancestors. They are gone in form, but yet remain within our chemical memory. They exist within us. We are supernova. We are star dust. We are descended from stellar ghosts…

We are awash in the light from long dead stars, each contributing essential ingredients to the universe that are necessary for life. Image Credit: Hubble
We are awash in the light from long dead stars, each contributing essential ingredients to the universe that are necessary for life. Image Credit: Hubble

New Soyuz Mission A Go After Technical Delays

The Soyuz MS-01 spacecraft preparing to launch from the Baikonur Cosmodrome, in Kazakhstan, on Monday, July 4th, 2016. Credit: (NASA/Bill Ingalls)

On Saturday, September 17th, the Russian space agency (Roscosmos) stated that it would be delaying the launch of the crewed spacecraft Soyuz MS-02. The rocket was scheduled to launch on Friday, September 23rd, and would be carrying a crew of three astronauts – two Russia and one American – to the ISS.

After testing revealed technical flaws in the mission (which were apparently due to a short circuit), Rocosmos decided to postpone the launch indefinitely. But after after days of looking over the glitch, the Russians space agency has announced that it is prepared for a renewed launch on Nov. 1st.

The mission crew consists of mission commander Sergey Ryzhikov, flight engineer Andrey Borisenko and NASA astronaut Shane Kimbrough. Originally scheduled to launch on Sept. 23rd, the mission would spend the next two days conducting a rendezvous operation before docking with the International Space Station on Sept. 25th.

The crew of MS-02 (from left to right) - Shane Kimgrough, Sergey Ryzhikov and Andrey Borisenko, pictured in Red Square in Moscow. Credit: NASA/Bill Ingalls
The crew of MS-02 (from left to right): Shane Kimgrough, Sergey Ryzhikov and Andrey Borisenko, pictured in Red Square in Moscow. Credit: NASA/Bill Ingalls

The station is currently being staffed by three crew members – MS-01 commander Anatoly Ivanishin, NASA astronaut Kate Rubins and Japanese astronaut Takuya Onish. These astronauts arrived on the station on Sept.6th, and all three were originally scheduled to return to Earth on October 30th.

Meanwhile, three more astronauts – commander Oleg Novitskiy, ESA flight engineer Thomas Pesquet and NASA astronaut Peggy Whitson – were supposed to replace them as part of mission MS-03, which was scheduled to launch on Nov. 15th. But thanks to the technical issue that grounded the MS-02 flight, this schedule appeared to be in question.

However, the news quickly began to improve after it seemed that the mission might be delayed indefinitely. On Sept.18th, a day after the announcement of the delay, the Russian International News Agency (RIA Novosti) cited a source that indicated that the spacecraft could be replaced and the mission could be rescheduled for next month:

“RIA Novosti’s source noted that the mission was postponed indefinitely because of an identified short circuit during the pre-launch checks. It is possible that the faulty ship “MS – 02 Alliance” can be quickly replaced on the existing same rocket, and then the launch to the ISS will be held in late October.”

Three newly arrived crew of Expedition 48 in Soyuz MS-01 open the hatch and enter the International Space Station after docking on July 9, 2016. Credit: NASA TV
Three newly arrived crew of Expedition 48 in Soyuz MS-01 open the hatch and enter the International Space Station after docking on July 9, 2016. Credit: NASA TV

Then, on Monday, Sept.19th, another source cited by RIA Novosti said that the State Commission responsible for the approval of a new launch date would be reaching a decision no sooner than Tuesday, Sept. 20th. And as of Tuesday morning, a new launch date appears to have been set.

According to news agency, Roscomos notified NASA this morning that the mission will launch on Nov.1st. Sputnik International confirmed this story, claiming that the source was none other than Alexander Koptev – a NASA representative with the Russian Mission Control Center.

“The Russian side has informed the NASA central office of the preliminary plans to launch the manned Soyuz MS-02 on November 1,” he said.

It still not clear where the technical malfunction took place. Since this past Saturday, Russian engineers have been trying to ascertain if the short circuit occurred in the descent module or the instrument module. However, the Russians are already prepared to substitute the Soyuz spacecraft for the next launch, so there will be plenty of time to locate the source of the problem.

The Soyuz MS-01 spacecraft launches from the Baikonur Cosmodrome with Expedition 48-49 crewmembers Kate Rubins of NASA, Anatoly Ivanishin of Roscosmos and Takuya Onishi of the Japan Aerospace Exploration Agency (JAXA) onboard, Thursday, July 7, 2016 , Kazakh time (July 6 Eastern time), Baikonur, Kazakhstan. Photo Credit: NASA/Bill Ingalls
The Soyuz MS-01 spacecraft launches from the Baikonur Cosmodrome on July 7th, 2016. Credit: NASA/Bill

The Soyuz MS is the latest in a long line of revisions to the venerable Soyuz spacecraft, which has been in service with the Russians since the 1960s. It is perhaps the last revision as well, as Roscosmos plans to develop new crewed spacecraft in the coming decades.

The MS is an evolution of the Soyuz TMA-M spacecraft, another modernized version of the old spacecraft. Compared to its predecessor, the MS model’s comes with updated communications and navigation subsystems, but also boasts some thruster replacements.

The first launch of the new spacecraft – Soyuz MS-01 – took place on July 7th, 2016, aboard a Soyuz-FG launch vehicle, which is itself an improvement on the traditional R-7 rockets. Like the MS-02 mission, MS-01 spent two days undergoing a checkout phase in space before rendezvousing with the ISS.

As such, it is understandable why the Russians would like to get this mission underway and ensure that the latest iteration of the Soyuz MS performs well in space. Until such time as the Russians have a new crewed module to deliver astronauts to the ISS, all foreseeable missions will come down to craft like this one.

Further Reading: Roscosmos, Spaceflightnow.com

‘Walk on Mars’ with Moonwalker Buzz Aldrin at Limited Engagement ‘Destination Mars’ Holographic Exhibit at KSC Visitor Complex

A scene from ‘Destination Mars’ of Buzz Aldrin and NASA’s Curiosity Mars rover with the Gale crater rim in the distance. The new, limited time interactive exhibit is now showing at the Kennedy Space Center visitor complex in Florida through Jan 1, 2017. Credit: NASA/JPL/Microsoft
A scene from ‘Destination Mars’ of Buzz Aldrin and  NASA’s Curiosity Mars rover with the Gale crater rim in the distance. The new, limited time interactive exhibit is now showing at the Kennedy Space Center visitor complex in Florida through Jan 1, 2017. Credit: NASA/JPL/Microsoft
A scene from ‘Destination Mars’ of Buzz Aldrin and NASA’s Curiosity Mars rover with the Gale crater rim in the distance. The new, limited time interactive exhibit is now showing at the Kennedy Space Center visitor complex in Florida through Jan 1, 2017. Credit: NASA/JPL/Microsoft

KENNEDY SPACE CENTER VISITOR COMPLEX, FL- Think a Holodeck adventure on Star Trek guided by real life Apollo 11 moonwalker Buzz Aldrin and you’ll get a really good idea of what’s in store for you as you explore the surface of Mars like never before in the immersive new ‘Destination Mars’ interactive holographic exhibit opening to the public today, Monday, Sept.19, at the Kennedy Space Center visitor complex in Florida.

The new Red Planet exhibit was formally opened for business during a very special ribbon cutting ceremony featuring Buzz Aldrin as the star attraction – deftly maneuvering the huge ceremonial scissors during an in depth media preview and briefing on Sunday, Sept. 18, 2016, including Universe Today.

The fabulous new ‘Destination Mars’ limited engagement exhibit magically transports you to the surface of the Red Planet via Microsoft HoloLens technology.

It literally allows you to ‘Walk on Mars’ using real imagery taken by NASA’s Mars Curiosity rover and explore the alien terrain, just like real life scientists on a geology research expedition.

A ceremonial ribbon is cut for the opening of new "Destination: Mars" experience at the Kennedy Space Center visitor complex in Florida during media preview on Sept. 18, 2016. From the left are Therrin Protze, chief operating officer of the visitor complex; center director Bob Cabana; Apollo 11 astronaut Buzz Aldrin; Kudo Tsunoda of Microsoft; and Jeff Norris of NASA's Jet Propulsion Laboratory in Pasadena, California. Credit: Ken Kremer/kenkremer.com
A ceremonial ribbon is cut for the opening of new “Destination: Mars” experience at the Kennedy Space Center visitor complex in Florida during media preview on Sept. 18, 2016. From the left are Therrin Protze, chief operating officer of the visitor complex; center director Bob Cabana; Apollo 11 astronaut Buzz Aldrin; Kudo Tsunoda of Microsoft; and Jeff Norris of NASA’s Jet Propulsion Laboratory in Pasadena, California. Credit: Ken Kremer/kenkremer.com

“Technology like HoloLens leads us once again toward exploration,” Aldrin said during the Sept. 18 media preview. “It’s my hope that experiences like “Destination: Mars” will continue to inspire us to explore.”

Destination Mars was jointly developed by NASA’s Jet Propulsion Laboratory – which manages the Curiosity rover mission for NASA – and Microsoft HoloLens.

A ceremonial ribbon is cut for the opening of new "Destination: Mars" experience at the Kennedy Space Center visitor complex in Florida during media preview on Sept. 18, 2016. From the left are Therrin Protze, chief operating officer of the visitor complex; center director Bob Cabana; Apollo 11 astronaut Buzz Aldrin; Kudo Tsunoda of Microsoft; and Jeff Norris of NASA's Jet Propulsion Laboratory in Pasadena, California. Credit: Dawn Taylor Leek
A ceremonial ribbon is cut for the opening of new “Destination: Mars” experience at the Kennedy Space Center visitor complex in Florida during media preview on Sept. 18, 2016. From the left are Therrin Protze, chief operating officer of the visitor complex; center director Bob Cabana; Apollo 11 astronaut Buzz Aldrin; Kudo Tsunoda of Microsoft; and Jeff Norris of NASA’s Jet Propulsion Laboratory in Pasadena, California. Credit: Dawn Taylor Leek

Buzz was ably assisted at the grand ribbon cutting ceremony by Bob Cabana, former shuttle commander and current Kennedy Space Center Director, Therrin Protze, chief operating officer of the visitor complex, Kudo Tsunoda of Microsoft, and Jeff Norris of NASA’s Jet Propulsion Laboratory in Pasadena, California.

The experience is housed in a pop-up theater that only runs for the next three and a half months, until New Years Day, January 1, 2017.

Before entering the theater, you will be fitted with specially adjusted HoloLens headsets individually tailored to your eyes.

The entire ‘Destination Mars’ experience only lasts barely 8 minutes.
So, if you are lucky enough to get a ticket inside you’ll need to take advantage of every precious second to scan around from left and right and back, and top to bottom. Be sure to check out Mount Sharp and the rim of Gale Crater.

You’ll even be able to find a real drill hole that Curiosity bored into the Red Planet at Yellowknife Bay about six months after the nailbiting landing in August 2012.

During your experience you will be guided by Buzz and Curiosity rover driver Erisa Hines of JPL. They will lead you to areas of Mars where the science team has made many breakthrough discoveries such as that liquid water once flowed on the floor of Curiosity’s Gale Crater landing site.

Curiosity rover driver Erisa Hines and Jeff Norris of NASA's Jet Propulsion Laboratory at the grand opening for Destination Mars at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016. Credit Julian Leek
Curiosity rover driver Erisa Hines and Jeff Norris of NASA’s Jet Propulsion Laboratory at the grand opening for Destination Mars at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016. Credit Julian Leek

The scenes come to life based on imagery combining the Mastcam color cameras and the black and white navcam cameras, Jeff Norris of NASA’s Jet Propulsion Laboratory in Pasadena, California, told Universe Today in an interview.

Among the surface features visited is Yellowknife Bay where Curiosity conducted the first interplanetary drilling and sampling on another planet in our Solar System. The sample were subsequently fed to and analyzed by the pair of miniaturized chemistry labs – SAM and CheMin – inside the rovers belly.

They also guide viewers to “a tantalizing glimpse of a future Martian colony.”

“The technology that accomplishes this is called “mixed reality,” where virtual elements are merged with the user’s actual environment, creating a world in which real and virtual objects can interact, “ according to a NASA description.

“The public experience developed out of a JPL-designed tool called OnSight. Using the HoloLens headset, scientists across the world can explore geographic features on Mars and even plan future routes for the Curiosity rover.”

Curiosity is currently exploring the spectacular looking buttes in the Murray Buttes region in lower Mount Sharp. Read my recent update here.

A scene from ‘Destination Mars’ of Erisa Hines and  NASA’s Curiosity Mars rover with Mount Sharp Gale crater rim in the distance. The new, limited time interactive exhibit is now showing at the Kennedy Space Center visitor complex in Florida through Jan 1, 2017. Credit: NASA/JPL/Microsoft
A scene from ‘Destination Mars’ of Erisa Hines and NASA’s Curiosity Mars rover with Mount Sharp Gale crater rim in the distance. The new, limited time interactive exhibit is now showing at the Kennedy Space Center visitor complex in Florida through Jan 1, 2017. Credit: NASA/JPL/Microsoft

Be sure to pay attention or your discovery walk on Mars will be over before you know it. Personally, as a Mars lover and Mars mosaic maker I was thrilled by the 3 D reality and I was ready for more.

Curiosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182) and discovered a habitable zone, shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169). The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals – dramatically back dropped with her ultimate destination; Mount Sharp. Credit: NASA/JPL-Caltech/Ken Kremer-kenkremer.com/Marco Di Lorenzo
Curiosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182) and discovered a habitable zone, shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169). The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals – dramatically back dropped with her ultimate destination; Mount Sharp. Credit: NASA/JPL-Caltech/Ken Kremer-kenkremer.com/Marco Di Lorenzo

This limited availability, timed experience is available on a first-come, first-served basis. Reservations must be made the day of your visite at the Destination: Mars reservation counter, says the KSC Visitor Complex (KSCVC).

You can get more information or book a visit to Kennedy Space Center Visitor Complex, by clicking on the website link:

https://www.kennedyspacecenter.com/things-to-do/destination-mars.aspx

Be sure to visit this spectacular holographic exhibit before it closes on New Year’s Day 2017 because it is only showing at KSCVC.

There are no plans to book it at other venues, Norris told me.

Apollo 11 moonwalker Buzz Aldrin describes newly opened ‘Destination Mars’ holographic experience during media preview at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016.
Apollo 11 moonwalker Buzz Aldrin describes newly opened ‘Destination Mars’ holographic experience during media preview at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016. Credit: Ken Kremer/kenkremer.com

As of today, Sol 1465, September 19, 2016, Curiosity has driven over 7.9 miles (12.7 kilometers) since its August 2012 landing inside Gale Crater, and taken over 354,000 amazing images.

Apollo 11 moonwalker Buzz Aldrin during media preview of newly opened ‘Destination Mars’ holographic experience at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016.  Credit Julian Leek
Apollo 11 moonwalker Buzz Aldrin during media preview of newly opened ‘Destination Mars’ holographic experience at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016. Credit Julian Leek

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Inside the Destination Mars exhibit area, Ken Kremer of Universe Today is fitted with the Microsoft HoloLens gear. Credit Julian Leek
Inside the Destination Mars exhibit area, Ken Kremer of Universe Today is fitted with the Microsoft HoloLens headset gear. Credit Julian Leek