NASA’s OSIRIS-REx Asteroid Sampling Probe Assembled at Florida Launch Base for Sep. 8 Blastoff — Cleanroom Photos

NASA’s OSIRIS-REx asteroid sampling spacecraft, return capsule and payload fairings inside the Payloads Hazardous Servicing Facility high bay at NASA's Kennedy Space Center is being processed for Sep. 8, 2016 launch to asteroid Bennu from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
NASA’s OSIRIS-Rex asteroid sampling spacecraft inside the Payloads Hazardous Servicing Facility high bay at NASA's Kennedy Space Center  is being processed for Sep. 8, 2016 launch to asteroid Bennu from Cape Canaveral, FL.  Credit: Ken Kremer/kenkremer.com
NASA’s OSIRIS-REx asteroid sampling spacecraft, return capsule and payload fairings inside the Payloads Hazardous Servicing Facility high bay at NASA’s Kennedy Space Center is being processed for Sep. 8, 2016 launch to asteroid Bennu from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – OSIRIS-Rex, the first American sponsored probe aimed at retrieving “pristine materials” from the surface of an asteroid and returning them to Earth has been fully assembled at its Florida launch base and is ready to blastoff ten days from today on Sep. 8. It’s a groundbreaking mission that could inform us about astrobiology and the ‘Origin of Life.’

“We are interested in that material because it is a time capsule from the earliest stages of solar system formation,” said Dante Lauretta, principal investigator for OSIRIS-REx at the University of Arizona, Tucson, in an interview with Universe Today beside the completed spacecraft inside the Payloads Hazardous Servicing Facility, or PHSF, clean room processing facility at NASA’s Kennedy Space Center in Florida.

With virtually all prelaunch processing complete, leading members of the science, engineering and launch team including Lauretta met with several members of the media, including Universe Today, inside the clean room for a last and exclusive up-close look and briefing with the one-of-its-kind $800 million Asteroid sampling probe last week.

NASA’s Origins, Spectral Interpretation, Resource Identification, Security – Regolith Explorer (OSIRIS-REx) spacecraft will launch from Space Launch Complex 41 at Cape Canaveral Air Force Station on a United Launch Alliance Atlas V rocket on September 8 at 7:05 p.m. EDT.

OSIRIS-REx goal is to fly on a roundtrip seven-year journey to the near-Earth asteroid target named Bennu and back. 101955 Bennu is a near Earth asteroid and was selected specifically because it is a carbon-rich asteroid.

While orbiting Bennu it will move in close and snatch pristine soil samples containing organic materials from the surface using the TAGSAM collection dish, and bring them back to Earth for study by researchers using all of the most sophisticated science instruments available to humankind.

“The primary objective of the OSIRIS-Rex mission is to bring back pristine material from the surface of the carbonaceous asteroid Bennu, OSIRIS-Rex Principal Investigator Dante Lauretta told Universe Today in the PHSF, as the probe was undergoing final preparation for shipment to the launch pad.

“It records the very first material that formed from the earliest stages of solar system formation. And we are really interested in the evolution of carbon during that phase. Particularly the key prebiotic molecules like amino acids, nucleic acids, phosphates and sugars that build up. These are basically the biomolecules for all of life.”

Overhead view of NASA’s OSIRIS-Rex asteroid sampling spacecraft with small white colored sample return canister atop,  inside the Payloads Hazardous Servicing Facility high bay at NASA's Kennedy Space Center. Launch is slated for Sep. 8, 2016 to asteroid Bennu from Cape Canaveral Air Force Station, FL.   Credit:  Julian Leek
Overhead view of NASA’s OSIRIS-REx asteroid sampling spacecraft with small white colored sample return canister atop, inside the Payloads Hazardous Servicing Facility high bay at NASA’s Kennedy Space Center. Launch is slated for Sep. 8, 2016 to asteroid Bennu from Cape Canaveral Air Force Station, FL. Credit: Julian Leek

OSIRIS-REx will gather rocks and soil and bring at least a 60-gram (2.1-ounce) sample back to Earth in 2023. It has the capacity to scoop up to about 1 kg or more.

The mission will help scientists investigate how planets formed and how life began. It will also improve our understanding of asteroids that could impact Earth by measuring the Yarkovsky effect.

I asked Lauretta to explain in more detail why was Bennu selected as the target to answer fundamental questions related to the origin of life?

“We selected asteroid Bennu as the target for this mission because we feel it has the best chance of containing those pristine organic compounds from the early stage of solar system formation,” Lauretta told me.

“And that information is based on our ground based spectral characterization using telescopes here on Earth. Also, space based assets like the Hubble Space Telescope and the Spitzer Space Telescope.”

What is known about the presence of nitrogen containing compounds like amino acids and other elements on Bennu that are the building blocks of life?

“When we look at the compounds that make up these organic materials in these primitive asteroidal materials, we see a lot of carbon,” Lauretta explained.

“But we also see nitrogen, oxygen, hydrogen, sulfur and phosphorous. We call those the CHONPS. Those are the six elements we really focus on when we look at astrobiology and prebiotic chemistry and how those got into the origin of life.”

View of science instrument suite and TAGSAM robotic sample return arm on NASA’s OSIRIS-REx asteroid sampling spacecraft inside the Payloads Hazardous Servicing Facility at NASA's Kennedy Space Center.  Probe is slated for Sep. 8, 2016 launch to asteroid Bennu from Cape Canaveral Air Force Station, FL.  Credit: Ken Kremer/kenkremer.com
View of science instrument suite and TAGSAM robotic sample return arm on NASA’s OSIRIS-REx asteroid sampling spacecraft inside the Payloads Hazardous Servicing Facility at NASA’s Kennedy Space Center. Probe is slated for Sep. 8, 2016 launch to asteroid Bennu from Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

The OSIRIS-REx spacecraft was built for NASA by prime contractor Lockheed Martin at their facility near Denver, Colorado and flown to the Kennedy Space Center on May 20.

For the past three months it has undergone final integration, processing and testing inside the PHSF under extremely strict contamination control protocols to prevent contamination by particle, aerosols and most importantly organic residues like amino acids that could confuse researchers seeking to discover those very materials in the regolith samples gathered for return to Earth.

The PHFS clean room was most recently used to process the Orbital ATK Cygnus space station resupply vehicles. It has also processed NASA interplanetary probes such as the Curiosity Mars Science Laboratory and MAVEN Mars orbiter missions.

Side view of NASA’s OSIRIS-Rex asteroid sampling spacecraft showing the High Gain Antenna at left and solar panel, inside the Payloads Hazardous Servicing Facility high bay at NASA's Kennedy Space Center.  Probe is being processed for Sep. 8, 2016 launch to asteroid Bennu from Cape Canaveral Air Force Station, FL.  Credit: Ken Kremer/kenkremer.com
Side view of NASA’s OSIRIS-REx asteroid sampling spacecraft showing the High Gain Antenna at left and solar panel, inside the Payloads Hazardous Servicing Facility high bay at NASA’s Kennedy Space Center. Probe is being processed for Sep. 8, 2016 launch to asteroid Bennu from Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

The spacecraft will reach Bennu in 2018. Once within three miles (5 km) of the asteroid, the spacecraft will begin at least six months of comprehensive surface mapping of the carbonaceous asteroid, according to Heather Enos, deputy principal investigator, in an interview with Universe Today.

“We will then move the spacecraft to within about a half kilometer or so to collect further data,” Enos elaborated.

It will map the chemistry and mineralogy of the primitive carbonaceous asteroid. The team will initially select about 10 target areas for further scrutiny as the sampling target. This will be whittled down to two, a primary and backup, Enos told me.

After analyzing the data returned, the science team then will select a site where the spacecraft’s robotic sampling arm will grab a sample of regolith and rocks. The regolith may record the earliest history of our solar system.

Engineers will command the spacecraft to gradually move on closer to the chosen sample site, and then extend the arm to snatch the pristine samples the TAGSAM sample return arm.

PI Lauretta will make the final decision on when and which site to grab the sample from.

“As the Principal Investigator for the mission I have responsibility for all of the key decisions during our operations,” Lauretta replied. “So we will be deciding on where we want to target our high resolution investigations for sample site evaluation. And ultimately what is the one location we want to send the spacecraft down to the surface of the asteroid to and collect that sample.”

“And then we have to decide like if we collected enough sample and are we ready to stow it in the sample return capsule. Or are we going to use one of our 2 contingency bottles of gas to go for a second attempt.”

“The primary objective is one successful sampling event. So when we collect 60 grams or 2 ounces of sample then we are done!”

“In the event that we decide to collect more, it will be intermixed with anything we collected on the first attempt.”

The priceless sample will then be stowed in the on board sample return capsule for the long journey back to Earth.

NASA’s OSIRIS-Rex asteroid sampling spacecraft inside the Payloads Hazardous Servicing Facility high bay at NASA's Kennedy Space Center. Launch is slated for Sep. 8, 2016 to asteroid Bennu from Cape Canaveral Air Force Station, FL.   Credit: Lane Hermann
NASA’s OSIRIS-Rex asteroid sampling spacecraft inside the Payloads Hazardous Servicing Facility high bay at NASA’s Kennedy Space Center. Launch is slated for Sep. 8, 2016 to asteroid Bennu from Cape Canaveral Air Force Station, FL. Credit: Lane Hermann

Bennu is an unchanged remnant from the collapse of the solar nebula and birth of our solar system some 4.5 billion years ago, little altered over time.

Bennu is a near-Earth asteroid and was selected for the sample return mission because it could hold clues to the origin of the solar system and host organic molecules that may have seeded life on Earth.

Artist’s conception of NASA’s OSIRIS-REx spacecraft at Bennu.  Credits: NASA/GSFC
Artist’s conception of NASA’s OSIRIS-REx spacecraft at Bennu. Credits: NASA/GSFC

OSIRIS-REx will return the largest sample from space since the American and Soviet Union’s moon landing missions of the 1970s.

Watch this USLaunchReport video shot during media visit inside the PHSF on Aug. 20, 2016:

Video caption: Our first introduction to the OSIRIS-REx asteroid bound mission in search of the origins of life, from inside the Payloads Hazardous Servicing Facility at NASA’s Kennedy Space Center on Aug. 20, 2016. Credit: USLaunchReport

OSIRIS-REx is the third mission in NASA’s New Frontiers Program, following New Horizons to Pluto and Juno to Jupiter, which also launched on Atlas V rockets.

NASA’s Goddard Space Flight Center in Greenbelt, Maryland, is responsible for overall mission management.

OSIRIS-REx complements NASA’s Asteroid Initiative – including the Asteroid Redirect Mission (ARM) which is a robotic spacecraft mission aimed at capturing a surface boulder from a different near-Earth asteroid and moving it into a stable lunar orbit for eventual up close sample collection by astronauts launched in NASA’s new Orion spacecraft. Orion will launch atop NASA’s new SLS heavy lift booster concurrently under development.

Watch for Ken’s continuing OSIRIS-REx mission and launch reporting from on site at the Kennedy Space Center and Cape Canaveral Ait Force Station, FL.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Dr Dante Lauretta, principal investigator for OSIRIS-REx at the University of Arizona, Tucson, and Dr. Ken Kremer, Universe Today point to NASA’s OSIRIS-Rex asteroid sampling spacecraft inside the Payloads Hazardous Servicing Facility at the Kennedy Space Center on Aug. 20, 2016.  Credit: Ken Kremer/kenkremer.com
Dr Dante Lauretta, principal investigator for OSIRIS-REx at the University of Arizona, Tucson, and Dr. Ken Kremer, Universe Today point to NASA’s OSIRIS-Rex asteroid sampling spacecraft inside the Payloads Hazardous Servicing Facility at the Kennedy Space Center on Aug. 20, 2016. Credit: Ken Kremer/kenkremer.com
The University of Arizona’s camera suite, OCAMS, sits on a test bench that mimics its arrangement on the OSIRIS-REx spacecraft. The three cameras that compose the instrument – MapCam (left), PolyCam and SamCam – are the eyes of NASA’s OSIRIS-REx mission. They will map the asteroid Bennu, help choose a sample site, and ensure that the sample is correctly stowed on the spacecraft.  Credits: University of Arizona/Symeon Platts
The University of Arizona’s camera suite, OCAMS, sits on a test bench that mimics its arrangement on the OSIRIS-REx spacecraft. The three cameras that compose the instrument – MapCam (left), PolyCam and SamCam – are the eyes of NASA’s OSIRIS-REx mission. They will map the asteroid Bennu, help choose a sample site, and ensure that the sample is correctly stowed on the spacecraft. Credits: University of Arizona/Symeon Platts

Who Else Is Looking For Cool Worlds Around Proxima Centauri?

Artist's impression of a system of exoplanets orbiting a low mass, red dwarf star. Credit: NASA/JPL

Finding exoplanets is hard work. In addition to requiring seriously sophisticated instruments, it also takes teams of committed scientists; people willing to pour over volumes of data to find the evidence of distant worlds. Professor Kipping, an astronomer based at the Harvard-Smithsonian Center for Astrophysics, is one such person.

Within the astronomical community, Kipping is best known for his work with exomoons. But his research also extends to the study and characterization of exoplanets, which he pursues with his colleagues at the Cool Worlds Laboratory at Columbia University. And what has interested him most in recent years is finding exoplanets around our Sun’s closest neighbor – Proxima Centauri.

Kipping describes himself as a “modeler”, combining novel theoretical modeling with modern statistical data analysis techniques applied to observations. He is also the Principal Investigator (PI) of The Hunt for Exomoons with Kepler (HEK) project and a fellow at the Harvard College Observatory. For the past few years, he and his team have been taking the hunt for exoplanets to the local stellar neighborhood.

The inspiration for this search goes back to 2012, when Kipping was at a conference and heard the news about a series of exoplanets being discovery around Kepler 42 (aka. KOI-961). Using data from the Kepler mission, a team from the California Institute of Technology discovered three exoplanets orbiting this red dwarf star, which is located about 126 light years from Earth.

At the time, Kipping recalled how the author of the study – Professor Philip Steven Muirhead, now an associate professor at the Institute for Astrophysical Research at Boston University – commented that this star system looked a lot like our nearest red dwarf stars – Barnard’s Star and Proxima Centauri.

In addition, Kepler 42’s planets were easy to spot, given that their proximity to the star meant that they completed an orbital period in about a day. Since they pass regularly in front of their star, the odds of catching sight of them using the Transit Method were good.

As Prof. Kipping told Universe Today via email, this was the “ah-ha moment” that would inspire him to look at Proxima Centauri to see if it too had a system of planets:

“We were inspired by the discovery of planets transiting KOI-961 by Phil Muirhead and his team using the Kepler data. The star is very similar to Proxima, a late M-dwarf harboring three sub-Earth sized planets very close to the star. It made me realize that if that system was around Proxima, the transit probability would be 10% and the star’s small size would lead to quite detectable signals.”

The MOST satellite, a Canadian built space telescope. Credit: Canadian Space Agency
The MOST satellite, a Canadian built space telescope. Credit: Canadian Space Agency

In essence, Kipping realized that if such a planetary system also existed around Proxima Centauri, a star with similar characteristics, then they would very easy to detect. After that, he and his team began attempting to book time with a space telescope. And by 2014-15, they had been given permission to use the Canadian Space Agency’s Microvariability and Oscillation of Stars (MOST) satellite.

Roughly the same size as a suitcase, the MOST satellite weighs only 54 kg and is equipped with an ultra-high definition telescope that measures just 15 cm in diameter. It is the first Canadian scientific satellite to be placed in orbit in 33 years, and was the first space telescope to be entirely designed and built in Canada.

Despite its size, MOST is ten times more sensitive than the Hubble Space Telescope. In addition, Kipping and his team knew that a mission to look for transiting exoplanets around Proxima Centauri would be too high-risk for something like Hubble. In fact, the CSA initially rejected their applications for this same reason.

“MOST initially denied us because they wanted to look at Alpha Centauri following the announcement by Dumusque et al. of a planet there,” said Kipping. “So understandably Proxima, for which no planets were known at the time, was not as high priority as Alpha Cen. We never even tried for Hubble time, it would be a huge ask to stare HST at a single star for months on end with just a a 10% chance for success.”

Artist's impression of the Earth-like exoplanet discovered orbiting Alpha Centauri B iby the European Southern Observatory on October 17, 2012. Credit: ESO
Artist’s impression of the Earth-like exoplanet discovered orbiting Alpha Centauri B iby the European Southern Observatory on October 17, 2012. Credit: ESO

By 2014 and 2015, they secured permission to use MOST and observed Proxima Centauri twice – in May of both years. From this, they acquired a month and half’s-worth of space-based photometry, which they are currently processing to look for transits. As Kipping explained, this was rather challenging, since Proxima Centauri is a very active star – subject to star flares.

“The star flares very frequently and prominently in our data,” he said. “Correcting for this effect has been one the major obstacles in our analysis. On the plus side, the rotational activity is fairly subdued. The other issue we have is that MOST orbits the Earth once every 100 minutes, so we get data gaps every time MOST goes behind the Earth.”

Their efforts to find exoplanets around Proxima Centauri are especially significant in light of the European Southern Observatory’s recent announcement about the discovery of a terrestrial exoplanet within Proxima Centauri’s habitable zone (Proxima b). But compared to the ESO’s Pale Red Dot project, Kipping and his team were relying on different methods.

As Kipping explained, this came down to the difference between the Transit Method and the Radial Velocity Method:

“Essentially, we seek planets which have the right alignment to transit (or eclipse) across the face of the star, whereas radial velocities look for the wobbling motion of a star in response to the gravitational influence of an orbiting planet. Transits are always less likely to succeed for a given star, because we require the alignment to be just right. However, the payoff is that we can learn way more about the planet, including things like it’s size, density, atmosphere and presence of moons and rings.”

Artist’s impression of the planet Proxima b orbiting the red dwarf star Proxima Centauri, the closest star to the Solar System. Credit: ESO/M. Kornmesser
Artist’s impression of the planet Proxima b orbiting the red dwarf star Proxima Centauri, the closest star to the Solar System. Credit: ESO/M. Kornmesser

In the coming months and years, Kipping and his team may be called upon to follow up on the success of the ESO’s discovery. Having detected Proxima b using the Radial Velocity method, it now lies to astronomers to confirm the existence of this planet using another detection method.

In addition, much can be learned about a planet through the Transit Method, which would be helpful considering all the things we still don’t know about Proxima b. This includes information about its atmosphere, which the Transit Method is often able to reveal through spectroscopic measurements.

Suffice it to say, Kipping and his colleagues are quite excited by the announcement of Proxima b. As he put it:

“This is perhaps the most important exoplanet discovery in the last decade. It would be bitterly disappointing if Proxima b does not transit though, a planet which is paradoxically so close yet so far in terms of our ability to learn more about it. For us, transits would not just be the icing on the cake, serving merely as a confirmation signal – rather, transits open the door to learning the intimate secrets of Proxima, changing Proxima b from a single, anonymous data point to a rich world where each month we would hear about new discoveries of her nature and character.”

This coming September, Kipping will be joining the faculty at Columbia University, where he will continue in his hunt for exoplanets. One can only hope that those he and his colleagues find are also within reach!

Further Reading: Cool Worlds

Aliens? “Strong” Signal Detected From Sun-Like Star Being Verified By SETI

RATAN-600 radio telescope located in Northern Caucasus in the Karachaevo-Circassian Republic of Russian Federation. . Credit: SAO RAS.

We’re not saying its aliens, but this could be the most enticing SETI-related signal from space since the famous “Wow! Signal” in 1977.

Over the weekend, interstellar expert Paul Gilster broke the news that “a strong signal” was detected by Russian radio astronomers from the region around the star HD 164595. This signal has attracted enough attention that two prominent SETI observatories are quickly making follow-up observations. Alan Boyle reports in Geekwire that the Allen Telescope Array in California has already been observing the star system and the Boquete Optical SETI Observatory in Panama will make an attempt this evening, if the weather is clear.

Doug Vakoch, the President of METI International (Messaging Extraterrestrial Intelligence) told Universe Today via email that the Allen Telescope Array has already completed its initial reconnaissance of HD 164595, “with no indications of alien technologies at radio frequencies.”

“The first step in following up a putative SETI signal is to look at the same frequency where it was first detected,” Vakoch said, and with the nil detection from the ATA, “now it’s time to search other parts of the electromagnetic spectrum.”

Vakoch said METI International will be observing HD 164595 for brief laser pulses from the Boquete Optical SETI Observatory in Panama as soon as weather permits.

“It looks like the Boquete Observatory will be hit by heavy thundershowers late this afternoon and into this evening,” he said, “so we’ll likely need to wait to observe until another night. Once the evening sky is clear in Boquete, we’ll have about an hour to observe in the direction of the constellation Hercules shortly after sunset.”

The signal from HD 164595 was originally detected on May 15, 2015, by the Russian Academy of Science-operated RATAN-600 radio telescope in Zelenchukskaya, Russia. It is located about 95 light years from Earth in the constellation Hercules. The signal had a wavelength of 2.7 cm, with an estimated amplitude of 750 mJy.

Gilster wrote on his Centauri Dreams website that the researchers have worked out the strength of the signal and that if “it came from an isotropic beacon, it would be of a power possible only for a Kardashev Type II civilization,” which means a civilization capable of harnessing the energy of the entire star, and developing something like a Dyson sphere surrounding the star, and transfer all the energy to the planet.

Freeman Dyson theorized that eventually, a civilization would be able to build a megastructure around its star to capture all its energy. Credit: SentientDevelopments.com
Freeman Dyson theorized that eventually, a civilization would be able to build a megastructure around its star to capture all its energy. Credit: SentientDevelopments.com

If the beam was narrow and sent directly to our Solar System, the researchers say it would be of a power available to a Kardashev Type I civilization, a type of civilization more advanced than us that is able to harness the full amount of solar power it receives from its star.

Of course, like any other signal, such as the recent study of the dimming light curve of KIC 8462852 (Tabby’s Star) that is still being researched, it is possible the signal comes from other “natural” events such microlensing of a background source or even comets as been proposed for both Tabby’s Star or the “Wow! Signal.”

The SETI website explains that narrow-band signals – ones that are only a few Hertz wide or less – are the mark of a purposely built transmitter. “Natural cosmic noisemakers, such as pulsars, quasars, and the turbulent, thin interstellar gas of our own Milky Way, do not make radio signals that are this narrow. The static from these objects is spread all across the dial.”

And so Gilster said “the signal is provocative enough that the RATAN-600 researchers are calling for permanent monitoring of this target.” You can see a graph of the signal on Centauri Dreams.

Update: A member of the SETI@Home team posted a note online that they were “unimpressed” with the paper from the Russian radio astronomers. “Because the receivers used were making broad band measurements, there’s really nothing about this “signal” that would distinguish it from a natural radio transient (stellar flare, active galactic nucleus, microlensing of a background source, etc.) There’s also nothing that could distinguish it from a satellite passing through the telescope field of view. All in all, it’s relatively uninteresting from a SETI standpoint.”

So, this detection might not be as exciting as originally reported. Also SETI senior astronomer Seth Shostak has now weighed in on the topic, also with measured skepticism on the excitement, with a post about this event on the SETI website.

What has probably fueled interest in this signal is the striking similarities between the star and our Sun. HD 164595 is a star just a tad smaller than our Sun (0.99 solar masses), with the exact same metallicity. The age of the star has been estimated at 6.3 billion years it is already known to have at least one planet, HD 164595 b, a Neptune-sized world that orbits the star every 40 days. And as we’ve seen with data from the Kepler spacecraft, with the detection of one planet comes the very high probability that more planets could orbit this star.

The signal has been traveling for 95 years, so it “occurred” (or was sent) in 1920 on Earth calendars. (There is a good discussion of this in the comment section on Gilster’s article.)

Why the Russian team has only made this detection public now is unclear and it may have only come out now because the team wrote a paper to be discussed at an upcoming SETI committee meeting during the 67th International Astronautical Congress in Guadalajara, Mexico, on Tuesday, September 27.

As Gilster wrote, “No one is claiming that this is the work of an extraterrestrial civilization, but it is certainly worth further study.”

Sources: Centauri Dreams, Alan Boyle on Geekwire, SETI

I Actually Learned to Photograph the Milky Way

Milky Way by Fraser Cain
Wow, my first acceptable image of the Milky Way. Credit: Me/Cory & Tanja Schmitz

Milky Way by Fraser Cain
Wow, my first acceptable image of the Milky Way. Credit: Me/Cory & Tanja Schmitz

I’m really fortunate to live in a region of the world with pretty dark skies. And, I’ve got pretty nice camera gear that we use to make all our YouTube videos. But for some reason, I’ve never been able to take an acceptable photo of the Milky Way, and I wasn’t exactly sure where I was going wrong. Turns out… I was going wrong everywhere; wrong exposure, aperture, ISO, JPG vs RAW.

I finally reached out to two of the best astrophotographers I know, Cory and Tanja Schmitz from PhotographingSpace.com. Both are world-class astrophotographers, with amazing shots of the Milky Way, galaxies, star clusters, nebulae and other deep space objects. And you should see their timelapses. They generously agreed to give me direct advice using the gear I have available, and then helped turn the raw photos into something usable through Photoshop (which is another area of dark wizardry).

I ended up using my Canon 5D MkII camera, which we shoot all our Guide to Space videos on. I tried taking pictures with its regular lens, and then got better results with a Rokinon 14mm lens that I actually don’t really use very often. It’s the wide angle lens we use in the car driving up to Comox Lake.

I captured the image at f/2.8, 30 second exposure, ISO 3200. Our shooting location had pretty dark skies, but it was earlier in the evening, and there was some light pollution off to the southern skies.

Here’s the final collaboration video, where Tanja and Cory give me their advice on which gear to use, how to set up and take the picture, and then how to clean it all up in Photoshop afterwards.

This is just the beginning of a whole new rabbit hole hobby for me, so hopefully you’ll see me improve over time as I learn to get more out of my gear, and find darker and darker skies.

Of course, you should check out Cory and Tanja’s PhotographingSpace.com, follow them on Instagram, and begin your own journey of learning how to shoot the night sky.

Northern Lights by Drone? You Won’t Believe Your Eyes

Credit: Oli Haukur, Ozzo Photography


Northern lights over Iceland filmed by Icelandic photographer Oli Haukur using a drone. Don’t forget to expand the screen.

I knew the era of real-time northern lights video was upon us. I just didn’t think drones would get into the act this soon. What was I thinking? They’re perfect for the job! If watching the aurora ever made you feel like you could fly, well now you can in Oli Haukur’s moving, real-time footage of an amazing aurora display filmed by drone.

Oli Haukur operates the drone and camera during a test run. Credit: Oli Hauku / OZZO Photography
Oli Haukur operates the drone and camera during a test run. Credit: Oli Hauku / OZZO Photography

Haukur hooked up a Sony a7S II digital camera and ultra-wide Sigma 20mm f/1.4 lens onto his DJI Matrice 600 hexacopter. The light from the gibbous moon illuminates the rugged shoreline and crashing waves of the Reykjanes Peninsula (The Steamy Peninsula) as while green curtains of aurora flicker above.

The Sony camera is shown attached to the drone. To capture the aurora, Haukur used a fast lens, high ISO and set the frame rate to 25 frames per second (fps) or 1/25th of a second per frame. Credit: Oli Haukur / OZZO Photography
The Sony camera is shown attached to the drone. To capture the aurora, Haukur used a fast lens, high ISO and set the frame rate to 25 frames per second (fps) or 1/25th of a second per frame. Credit: Oli Haukur / OZZO Photography

When the camera ascends over a sea stack, you can see gulls take off below, surprised by the mechanical bird buzzing just above their heads. Breathtaking. You might notice at the same time a flash of light — this is from the lighthouse beacon seen earlier in the video.

To capture his the footage, Haukur used a “fast” lens (one that needs only a small amount of light to make a picture) and an ISO of 25,600. The camera is capable of ISO 400,000, but the lower ISO provided greater resolution and color quality.

Moonlight provided all the light needed to bring out the landscape.

The drone used to make the night flight. Credit: Oli Haukur
The drone used to make the night flight and aurora recording is seen up close on takeoff. Haukur, of Rejkyavik, Iceland, works as a freelance photographer and filmmaker as well as providing professional drone services in that country. Credit: Oli Haukur / OZZO Photography

Remember when ISO 1600 or 3200 was as far you dared to go before the image turned to a grainy mush? Last year Canon released a camera that can literally see in the dark with a top ISO over 4,000,000! There’s no question we’ll be seeing more live aurora and drone aurora video in the coming months. Haukur plans additional shoots this winter and early next spring. Living in Iceland, which lies almost directly beneath the permanent auroral oval, you can schedule these sort of things!

Am I allowed one tiny criticism? I want more — a minute and a half is barely enough! Haukur shot plenty but released only a taste to social media to prove it could be done and share the joy. Let’s hope he compiles the rest and makes it available for us to lose our selves in soon.

NASA Goes With Atlas V To Launch Mars 2020 Rover

The deployment of the Mars 2020 rover will be the next step in their "Journey to Mars". Credit: NASA

NASA’s Mars Exploration Program has accomplished some truly spectacular things in the past few decades. Officially launched in 1992, this program has been focused on three major goals: characterizing the climate and geology of Mars, looking for signs of past life, and preparing the way for human crews to explore the planet.

And in the coming years, the Mars 2020 rover will be deployed to the Red Planet and become the latest in a long line of robotic rovers sent to the surface. In a recent press release, NASA announced that it has awarded the launch services contract for the mission to United Launch Alliance (ULA) – the makers of the Atlas V rocket.

The mission is scheduled to launch in July of 2020 aboard an Atlas V 541 rocket from Cape Canaveral in Florida, at a point when Earth and Mars are at opposition. At this time, the planets will be on the same side of the Sun and making their closest approach to each other in four years, being just 62.1 million km (38.6 million miles) part.

The design of NASA's Mars 2020 rover leverages many successful features of the agency's Curiosity rover, which landed on Mars in 2012, but it adds new science instruments and a sampling system to carry out the new goals for the 2020 mission. Credits: NASA
The design of NASA’s Mars 2020 rover combines proven features with some new science instruments and a sampling system. Credits: NASA

Following in the footsteps of the Curiosity, Opportunity and Spirit rovers, the goal of Mars 2020 mission is to  determine the habitability of the Martian environment and search for signs of ancient Martian life. This will include taking samples of soil and rock to learn more about Mars’ “watery past”.

But whereas these and other members of the Mars Exploration Program were searching for evidence that Mars once had liquid water on its surface and a denser atmosphere (i.e. signs that life could have existed), the Mars 2020 mission will attempt to find actual evidence of ancient microbial life.

The design of the rover also incorporates several successful features of Curiosity. For instance, the entire landing system (which incorporates a sky crane and heat shield) and the rover’s chassis have been recreated using leftover parts that were originally intended for Curiosity.

There’s also the rover’s radioisotope thermoelectric generator – i.e. the nuclear motor – which was also originally intended as a backup part for Curiosity. But it will also have several upgraded instrument on board that allow for a new guidance and control technique. Known as “Terrain Relative Navigation”, this new landing method allows for greater maneuverability during descent.

Artist's impression of the Mars 2020 with its sky crane landing system deployed. Credit: NASA/JPL
Artist’s impression of the Mars 2020, with its sky crane landing system deployed. Credit: NASA/Mars Science Laboratory

Another new feature is the rover’s drill system, which will collect core samples and store them in sealed tubes. These tubes will then be left in a “cache” on the surface, where they will be retrieved by future missions and brought back to Earth – which will constitute the first sample-return mission from the Red Planet.

In this respect, Mars 2020 will help pave the way for a crewed mission to the Red Planet, which NASA hopes to mount sometime in the 2030s. The probe will also conduct numerous studies designed to improve landing techniques and assess the planet’s natural resources and hazards, as well as coming up with methods to allow astronauts to live off the environment.

In terms of hazards, the probe will be looking at Martian weather patterns, dust storms, and other potential environmental conditions that will affect human astronauts living and working on the surface. It will also test out a method for producing oxygen from the Martian atmosphere and identifying sources of subsurface water (as a source of drinking water, oxygen, and hydrogen fuel).

As NASA stated in their press release, the Mars 2020 mission will “offer opportunities to deploy new capabilities developed through investments by NASA’s Space Technology Program and Human Exploration and Operations Mission Directorate, as well as contributions from international partners.”

The microphone for the upcoming Mars mission will be attached to the SuperCam, seen here in this illustration zapping a rock with its laser. Credit: NASA/JPL-Caltech
Illustration of the Mars 2020 mission zapping a rock with its laser. Credit: NASA/JPL-

They also emphasized the opportunities to learn ho future human explorers could rely on in-situ resource utilization as a way of reducing the amount of materials needed to be shipped – which will not only cut down on launch costs but ensure that future missions to the planet are more self-reliant.

The total cost for NASA to launch Mars 2020 is approximately $243 million. This assessment includes the cost of launch services, processing costs for the spacecraft and its power source, launch vehicle integration and tracking, data and telemetry support.

The use of spare parts has also meant reduced expenditure on the overall mission. In total, the Mars 2020 rover and its launch will cost and estimated $2.1 billion USD, which represents a significant savings over previous missions like the Mars Science Laboratory – which cost a total of $2.5 billion USD.

Between now and 2020, NASA also intends to launch the Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) lander mission, which is currently targeted for 2018. This and the Mars 2020 rover will be the latest in a long line of orbiters, rovers and landers that are seeking to unlock the mysteries of the Red Planet and prepare it for human visitors!

Further Reading: NASA, Mars 2020 Rover

JUNO Transmits First Up-Close Look Soarin’ over Jupiter

Jupiter's north polar region is coming into view as NASA's Juno spacecraft approaches the giant planet. This view of Jupiter was taken on August 27, when Juno was 437,000 miles (703,000 kilometers) away. Credits: NASA/JPL-Caltech/SwRI/MSSS
Jupiter's north polar region is coming into view as NASA's Juno spacecraft approaches the giant planet. This view of Jupiter was taken on August 27, when Juno was 437,000 miles (703,000 kilometers) away.   Credits: NASA/JPL-Caltech/SwRI/MSSS
Jupiter’s north polar region is coming into view as NASA’s Juno spacecraft approaches the giant planet. This view of Jupiter was taken on August 27, when Juno was 437,000 miles (703,000 kilometers) away. Credits: NASA/JPL-Caltech/SwRI/MSSS

NASA’s JUNO spacecraft successfully swooped over the Jovian cloud tops today, Saturday, Aug. 27, gathering its first up close images and science observations of the ‘King of the Planets’ since braking into orbit on America’s Independence Day.

Saturdays’ close encounter with Jupiter soaring over its north pole was the first of 36 planned orbital flyby’s by Juno during the scheduled 20 month long prime mission.

“Soarin’ over #Jupiter. My 1st up-close look of the gas-giant world was a success!” the probe tweeted today post-flyby.

NASA released Juno’s first up-close image taken by the JunoCam visible light camera just hours later – as seen above.

Juno was speeding at some 130,000 mph (208,000 kilometers per hour) during the time of Saturday’s closest approach at 9:44 a.m. EDT (6:44 a.m. PDT 13:44 UTC) over the north polar region.

It passed merely 2,600 miles (4,200 kilometers) above the turbulent clouds of the biggest planet in our solar system during its initial 53.5 day polar elliptical capture orbit.

And apparently everything proceeded as the science and engineering team leading the mission to the gas giant had planned.

“Early post-flyby telemetry indicates that everything worked as planned and Juno is firing on all cylinders,” said Rick Nybakken, Juno project manager at NASA’s Jet Propulsion Laboratory in Pasadena, California, in a statement.

This dual view of Jupiter was taken on August 23, when NASA's Juno spacecraft was 2.8 million miles (4.4 million kilometers) from the gas giant planet on the inbound leg of its initial 53.5-day capture orbit. Credit: NASA/JPL-Caltech/SwRI/MSSS
This dual view of Jupiter was taken on August 23, when NASA’s Juno spacecraft was 2.8 million miles (4.4 million kilometers) from the gas giant planet on the inbound leg of its initial 53.5-day capture orbit. Credit: NASA/JPL-Caltech/SwRI/MSSS

Indeed Saturday’s encounter will count as the closest of the entire prime mission. It also marks the first time that the entire suite of nine state-of-the-art science instruments had been turned on to gather the totally unique observations of Jupiter’s interior and exterior environment.

“We are getting some intriguing early data returns as we speak,” said Scott Bolton, principal investigator of Juno from the Southwest Research Institute in San Antonio, in a statement.

“This is our first opportunity to really take a close-up look at the king of our solar system and begin to figure out how he works.”

Additional up-close high resolution imagery of the Jovian atmosphere, swirling cloud tops and north and south poles snapped by JunoCam will be released in the coming weeks, perhaps as soon as next week.

“We are in an orbit nobody has ever been in before, and these images give us a whole new perspective on this gas-giant world,” said Bolton.

“It will take days for all the science data collected during the flyby to be downlinked and even more to begin to comprehend what Juno and Jupiter are trying to tell us.”

The prime mission is scheduled to end in February of 2018 with a suicide plunge into the Jovian atmosphere to prevent any possible contamination with Jupiter’s potentially habitable moons such as Europa and Ganymede.

“No other spacecraft has ever orbited Jupiter this closely, or over the poles in this fashion,” said Steve Levin, Juno project scientist from NASA’s Jet Propulsion Laboratory in Pasadena, California. “This is our first opportunity and there are bound to be surprises. We need to take our time to make sure our conclusions are correct.”

The team did release an approach image taken by JunoCam on Aug. 23 when the spacecraft was 2.8 million miles (4.4 million kilometers) from the gas giant planet on the inbound leg of its initial 53.5-day capture orbit.

One additional long period orbit is planned. The main engine will fire again in October to reduce the orbit to the 14 day science orbit.

Animation of Juno 14-day orbits starting in late 2016.  Credits: NASA/JPL-Caltech
Animation of Juno 14-day orbits starting in late 2016. Credits: NASA/JPL-Caltech

The solar powered probe will collect unparalleled new data that will unveil the hidden inner secrets of Jupiter’s origin and evolution as it peers “beneath the obscuring cloud cover of Jupiter and study its auroras to learn more about the planet’s origins, structure, atmosphere and magnetosphere.”

The $1.1 Billion Juno was launched on Aug. 5, 2011 from Cape Canaveral Air Force Station, Florida atop the most powerful version of the Atlas V rocket augmented by 5 solid rocket boosters and built by United Launch Alliance (ULA). That same Atlas V 551 version recently launched MUOS-5 for the US Navy on June 24.

The Juno spacecraft was built by prime contractor Lockheed Martin in Denver.

Illustration of NASA's Juno spacecraft firing its main engine to slow down and go into orbit around Jupiter. Lockheed Martin built the Juno spacecraft for NASA's Jet Propulsion Laboratory.  Credit: NASA/Lockheed Martin
Illustration of NASA’s Juno spacecraft firing its main engine to slow down and go into orbit around Jupiter. Lockheed Martin built the Juno spacecraft for NASA’s Jet Propulsion Laboratory. Credit: NASA/Lockheed Martin

The last NASA spacecraft to orbit Jupiter was Galileo in 1995. It explored the Jovian system until 2003.

In the final weeks of the approach before Jupiter Orbit Insertion (JOI), JunoCam captured dramatic views of Jupiter and all four of the Galilean Moons moons — Io, Europa, Ganymede and Callisto.

At the post JOI briefing at JPL on July 5, these were combined into a spectacular JunoCam time-lapse movie released by Bolton and NASA.

Watch and be mesmerized -“for humanity, our first real glimpse of celestial harmonic motion” says Bolton.

Video caption: NASA’s Juno spacecraft captured a unique time-lapse movie of the Galilean satellites in motion about Jupiter. The movie begins on June 12th with Juno 10 million miles from Jupiter, and ends on June 29th, 3 million miles distant. The innermost moon is volcanic Io; next in line is the ice-crusted ocean world Europa, followed by massive Ganymede, and finally, heavily cratered Callisto. Galileo observed these moons to change position with respect to Jupiter over the course of a few nights. From this observation he realized that the moons were orbiting mighty Jupiter, a truth that forever changed humanity’s understanding of our place in the cosmos. Earth was not the center of the Universe. For the first time in history, we look upon these moons as they orbit Jupiter and share in Galileo’s revelation. This is the motion of nature’s harmony. Credits: NASA/JPL-Caltech/MSSS

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

United Launch Alliance Atlas V liftoff with NASA’s Juno to Jupiter orbiter on Aug. 5, 2011 from Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer/kenkremer.com
United Launch Alliance Atlas V liftoff with NASA’s Juno to Jupiter orbiter on Aug. 5, 2011 from Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer/kenkremer.com

SpaceX Dragon Splashes Down with NASA’s Station Science Cargo

SpaceX Dragon CRS-9 returned to Earth with a splash down in the Pacific Ocean on Friday, Aug. 26, 2016 after more than a month stay at the International Space Station. Credit: SpaceX
SpaceX Dragon CRS-9 returned to Earth with a splash down in the Pacific Ocean on Friday, Aug. 26, 2016 after more than a month stay at the International Space Station.  Credit: SpaceX
SpaceX Dragon CRS-9 returned to Earth with a splash down in the Pacific Ocean on Friday, Aug. 26, 2016 after more than a month stay at the International Space Station. Credit: SpaceX

A SpaceX commercial Dragon cargo ship returned to Earth today, Friday, Aug. 26, 2016, by splashing down safely in the Pacific Ocean – thus concluding more than a month long stay at the International Space Station (ISS). The vessel was jam packed with some 1.5 tons of NASA cargo and critical science samples for eagerly waiting researchers.

The parachute assisted splashdown of the Dragon CRS-9 cargo freighter took place at 11:47 a.m. EDT today in the Pacific Ocean – located some 326 miles (520 kilometers) southwest of Baja California.

Dragon departed after spending more than five weeks berthed at the ISS.

This image, captured from NASA Television's live coverage, shows SpaceX's Dragon spacecraft departing the International Space Station at 6:10 am EDT Friday, Aug. 26, 2016, after successfully delivering almost 5,000 pounds of supplies and scientific cargo on its ninth resupply mission to the orbiting laboratory.  Credits: NASA Television
This image, captured from NASA Television’s live coverage, shows SpaceX’s Dragon spacecraft departing the International Space Station at 6:10 am EDT Friday, Aug. 26, 2016, after successfully delivering almost 5,000 pounds of supplies and scientific cargo on its ninth resupply mission to the orbiting laboratory. Credits: NASA Television

It was loaded with more than 3,000 pounds of NASA cargo and critical research samples and technology demonstration samples accumulated by the rotating six person crews of astronauts and cosmonauts living and working aboard the orbiting research laboratory.

This station based research will contribute towards NASA’s strategic plans to send astronauts on a ‘Journey to Mars’ by the 2030s.

It arrived at the station on July 20 ferrying over 2.5 tons of priceless research equipment, gear, spare parts and supplies, food, water and clothing for the station’s resident astronauts and cosmonauts as well as the first of two international docking adapters (IDAs) in its unpressurized cargo hold known as the “trunk.”

The SpaceX Dragon is captured in the grips of the Canadarm2 robotic arm. Credit: NASA TV
The SpaceX Dragon is captured in the grips of the Canadarm2 robotic arm. Credit: NASA TV

Dragon was launched on July 18 during a mesmerizing post midnight, back-to-back liftoff and landing of the SpaceX Falcon 9 rocket in its upgraded, full thrust version.

SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing  rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT on July 18, 2016 carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT on July 18, 2016 carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com

The SpaceX Falcon 9 blasted off at 12:45 a.m. EDT July 18, from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida and successfully delivered the Dragon CRS-9 resupply ship to its preliminary orbit about 10 minutes later.

SpaceX also successfully executed a spellbinding ground landing of the Falcon 9 first stage back at Cape Canaveral Air Force Station’s Landing Zone 1, located a few miles south of launch pad 40.

The dramatic ground landing of the 156 foot tall Falcon 9 first stage at LZ -1 took place about 9 minutes after liftoff. It marked only the second time a spent, orbit class booster has touched down intact and upright on land.

Moments before dramatic touchdown of SpaceX Falcon 9 1st stage at Landing Zone-1 (LX-1) accompanied by sonic booms after launching Dragon CRS-9 supply ship to orbit from Cape Canaveral Air Force Station, Florida at 12:45 a.m., bound for the International Space Station (ISS).   Credit: Ken Kremer/kenkremer.com
Moments before dramatic touchdown of SpaceX Falcon 9 1st stage at Landing Zone-1 (LX-1) accompanied by sonic booms after launching Dragon CRS-9 supply ship to orbit from Cape Canaveral Air Force Station, Florida at 12:45 a.m., bound for the International Space Station (ISS). Credit: Ken Kremer/kenkremer.com

The stage was set for today’s return to Earth when ground controllers robotically detached Dragon from the Earth-facing port of the Harmony module early this morning using the station’s 57.7-foot (17.6-meter) long Canadian-built robotic arm.

Expedition 48 Flight Engineers Kate Rubins of NASA and Takuya Onishi of the Japan Aerospace Exploration Agency (JAXA) then used Canadarm 2 to release Dragon from the grappling snares at about 6:10 a.m. EDT (1011 GMT) this morning.

“Houston, station, on Space to Ground Two, Dragon depart successfully commanded,” radioed Rubins.

The ISS was soaring some 250 miles over the Timor Sea, north of Australia.

“Congratulations to the entire team on the successful release of the Dragon. And thank you very much for bringing all the science, and all the important payloads, and all the important cargo to the station,” Onishi said. “We feel really sad to see it go because we had a great time and enjoyed working on all the science that the Dragon brought to us.”

Dragon then backed away and moved to a safe distance from the station via a trio of burns using its Draco maneuvering thrusters.

The de-orbit burn was conducted at 10:56 a.m. EDT (1456 GMT) to drop Dragon out of orbit and start the descent back to Earth.

SpaceX contracted recovery crews hauled Dragon aboard the recovery ship and are transporting it to a port near Los Angeles, where some time critical cargo items and research samples will be removed and returned to NASA for immediate processing.

SpaceX plans to move Dragon back to the firms test facility in McGregor, Texas, for further processing and to remove the remaining cargo cache.

Among the wealth of over 3900 pounds (1790 kg) of research investigations loaded on board Dragon was an off the shelf instrument designed to perform the first-ever DNA sequencing in space and the first international docking adapter (IDA) that is absolutely essential for docking of the SpaceX and Boeing built human spaceflight taxis that will ferry our astronauts to the International Space Station (ISS) in some 18 months.

During a spacewalk last week on Aug. 19, the initial docking adapter known as International Docking Adapter-2 (IDA-2) was installed Expedition 48 Commander Jeff Williams and Flight Engineer Kate Rubins of NASA.

Other science experiments on board included OsteoOmics to test if magnetic levitation can accurately simulate microgravity to study different types of bone cells and contribute to treatments for diseases like osteoporosis, a Phase Change Heat Exchanger to test temperature control technology in space, the Heart Cells experiments that will culture heart cells on the station to study how microgravity changes the human heart, new and more efficient three-dimensional solar cells, and new marine vessel tracking hardware known as the Automatic Identification System (AIS) that will aid in locating and identifying commercial ships across the globe.

The ring shaped IDA-2 unit was stowed in the Dragon’s unpressurized truck section. It weighs 1029 lbs (467 kg), measures about 42 inches tall and sports an inside diameter of 63 inches in diameter – so astronauts and cargo can easily float through. The outer diameter measures about 94 inches.

“Outfitted with a host of sensors and systems, the adapter is built so spacecraft systems can automatically perform all the steps of rendezvous and dock with the station without input from the astronauts. Manual backup systems will be in place on the spacecraft to allow the crew to take over steering duties, if needed,” says NASA.

“It’s a passive system which means it doesn’t take any action by the crew to allow docking to happen and I think that’s really the key,” said David Clemen Boeing’s director of Development/Modifications for the space station.

“Spacecraft flying to the station will use the sensors on the IDA to track to and help the spacecraft’s navigation system steer the spacecraft to a safe docking without astronaut involvement.”

CRS-9 counts as the company’s ninth of 26 scheduled flight to deliver supplies, science experiments and technology demonstrations to the International Space Station (ISS).

The CRS-9 mission was launched for the crews of Expeditions 48 and 49 to support dozens of the approximately 250 science and research investigations in progress under NASA’s Commercial Resupply Services (CRS) contract.

Watch for Ken’s continuing SpaceX and CRS mission coverage where he reported onsite direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

An illustration of how the IDA will look when attached to the International Space Station. Credits: NASA
An illustration of how the IDA will look when attached to the International Space Station.
Credits: NASA
Up close view of SpaceX Dragon CRS-9 resupply ship and solar panels atop Falcon 9 rocket at pad 40 prior to blastoff to the ISS on July 18, 2016 from Cape Canaveral Air Force Station, Florida.   Credit: Ken Kremer/kenkremer.com
Up close view of SpaceX Dragon CRS-9 resupply ship and solar panels atop Falcon 9 rocket at pad 40 prior to blastoff to the ISS on July 18, 2016 from Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer/kenkremer.com
View of International Docking Adapter 2 (IDA-2) being processed inside the Space Station Processing Facility (SSPF) at NASA Kennedy Space Center for eventual launch to the ISS in the trunk of a SpaceX Dragon on the CRS-9 mission. It will be connected to the station to provide a port for Commercial Crew spacecraft carrying astronauts to dock to the orbiting laboratory as soon as 2017.  The identical IDA-1 was destroyed during SpaceX CRS-7 launch failure on June 28, 2015.  Credit: Ken Kremer/kenkremer.com
View of International Docking Adapter 2 (IDA-2) being processed inside the Space Station Processing Facility (SSPF) at NASA Kennedy Space Center for eventual launch to the ISS in the trunk of a SpaceX Dragon on the CRS-9 mission. It will be connected to the station to provide a port for Commercial Crew spacecraft carrying astronauts to dock to the orbiting laboratory as soon as 2017. The identical IDA-1 was destroyed during SpaceX CRS-7 launch failure on June 28, 2015. Credit: Ken Kremer/kenkremer.com

What Are The Lagrange Points?

What Are The Lagrange Points?

Being stuck here on Earth, at the bottom of this enormous gravity well really sucks. The amount of energy it takes to escape into the black would make even Captain Reynolds curse up a gorram storm.

But gravity has a funny way of evening the score, giving and taking in equal measure.

There are special places in the Universe, where the forces of gravity nicely balance out. Places that a clever and ambitious Solar System spanning civilization could use to get a toehold on the exploration of the Universe.

The five Sun-Earth Lagrange points. Credit: NOAA
The five Sun-Earth Lagrange points. Credit: NOAA

These are known as the Lagrange Points, or Lagrangian Points, or libration points, or just L-Points. They’re named after the French mathematician Joseph-Louis Lagrange, who wrote an “Essay on the Three Body Problem” in 1772. He was actually extending the mathematics of Leonhard Euler.

Euler discovered the first three Lagrangian Points, even though they’re not named after him, and then Lagrange turned up the next two.

But what are they?

When you consider the gravitational interaction between two massive objects, like the Earth and the Sun, or the Earth and the Moon, or the Death Star and Alderaan. Actually, strike that last example…

As I was saying, when you’ve got two massive objects, their gravitational forces balance out perfectly in 5 places. In each of these 5 places you could position a relatively low mass satellite, and maintain its position with very little effort.

Sun-Earth Lagrange Points. Credit: Xander89/Wikimedia Commons
Sun-Earth Lagrange Points. Credit: Xander89/Wikimedia Commons

For example, you could park a space telescope or an orbital colony, and you’d need very little, or even zero energy to maintain its position.

The most famous and obvious of these is L1. This is the point that’s balanced between the gravitational pull of the two objects. For example, you could position a satellite a little above the surface of the Moon. The Earth’s gravity is pulling it towards the Moon, but the Moon’s gravity is counteracting the pull of the Earth, and the satellite doesn’t need to use much fuel to maintain position.

There’s an L1 point between the Earth and the Moon, and a different spot between the Earth and the Sun, and a different spot between the Sun and Jupiter, etc. There are L1 points everywhere.

L2 is located on the same line as the mass but on the far side. So, you’d get Sun, Earth, L2 point. At this point, you’re probably wondering why the combined gravity of the two massive objects doesn’t just pull that poor satellite down to Earth.

It’s important to think about orbital trajectories. The satellite at that L2 point will be in a higher orbit and would be expected to fall behind the Earth, as it’s moving more slowly around the Sun. But the gravitational pull of the Earth pulls it forward, helping to keep it in this stable position.

Animation showing the relationship between the five Lagrangian points (red) of a planet (blue) orbiting a star (yellow), and the gravitational potential in the plane containing the orbit (grey surface with purple contours of equal potential). Credit: cmglee (CC-SA 3.0)
Animation showing the relationship between the Lagrangian points (red) of a planet (blue) orbiting a star (yellow), and the gravitational potential in the plane containing the orbit (grey surface with purple contours of equal potential). Credit: cmglee (CC-SA 3.0)

You’ll want to play a lot of Kerbal Space Program to really wrap your head around it. Sadly, your No Man’s Sky time isn’t helping you at all, except to teach you that hyperdrives are notoriously finicky and you’ll never have enough inventory space.

L3 is located on the direct opposite side of the system. Again, the forces of gravity between the two masses balance out so that the third object maintains the same orbital velocity. For example, a satellite in the L3 point would always remain exactly hidden by the Sun.

Hold on, hold on, I know there are a million thoughts going through your brain right now, but bear with me.

There are two more points, the L4 and L5 points. These are located ahead and behind the lower mass object in orbit. You form an equilateral triangle between the two masses, and the third point of the triangle is the L4 point, flip the triangle upside down and there’s L5.

Now, it’s important to note that the first 3 Lagrange points are gravitationally unstable. Any satellite positioned there will eventually drift away from stability. So they need some kind of thrusters to maintain this position.

Imagine a tall smooth mountain, with a sharp peak. Put a bowling ball at the very top and you’re not going to need a lot of energy to keep it in that location. But the blowing wind will eventually knock it out of place, and down the mountain. That’s L1, L2 and L3, and it’s why we don’t see any natural objects located in those places.

But L4 and L5 are actually stable. It’s the opposite situation, a deep valley where a bowling ball will tend to fall down into. And we find asteroids in the natural L4 and L5 positions in the larger planets, like Jupiter. These are the Trojan asteroids, trapped in these natural gravity wells though the gravitational interaction of Jupiter and the Sun.

Artist's diagram of Jupiter and some Trojan asteroids nearby the gas giant. Credit: NASA/JPL-Caltech
Artist’s diagram of Jupiter and some Trojan asteroids nearby the gas giant. Credit: NASA/JPL-Caltech

So what can we use Lagrange points for? There are all kinds of space exploration applications, and there are already a handful of satellites in the various Earth-Sun and Earth-Moon points.

Sun-Earth L1 is a great place to station a solar telescope, where it’s a little closer to the Sun, but can always communicate with us back on Earth.

The James Webb Space Telescope is destined for Sun-Earth L2, located about 1.5 million km from Earth. From here, the bright Sun, Earth and Moon are huddled up in a tiny location in the sky, leaving the rest of the Universe free for observation.

Image: James Webb Space Telescope
NASA’s James Webb Telescope, shown in this artist’s conception, will provide more information about previously detected exoplanets. It will be at Sun-Earth L2.

Earth-Moon L1 is a perfect place to put a lunar refueling station, a place that can get to either the Earth or the Moon with minimal fuel.

Perhaps the most science fictiony idea is to put huge rotating O’Neill Cylinder space stations at the L4 and L5 points. They’d be perfectly stable in orbit, and relatively easy to get to. They’d be the perfect places to begin the colonization of the Solar System.

Thanks gravity. Thanks for interacting in all the strange ways that you do, and creating these stepping stones that we can use as we reach up and out from our planet to become a true Solar System spanning civilization.

A New NASA Cumulative Time in Space Record

Astronaut Jeff Williams just established a new record for most time spent in space by a NASA astronaut. Credit: NASA

The International Space Station has provided astronauts and space agencies with immense opportunities for research during the decade and a half that it has been in operation. In addition to studies involving meteorology, space weather, materials science, and medicine, missions aboard the ISS has also provided us with valuable insight into human biology.

For example, studies conducted aboard the ISS’ have provided us with information about the effects of long-term exposure to microgravity. And all the time, astronauts are pushing the limits of how long someone can healthily remain living under such conditions. One such astronauts is Jeff Williams, the Expedition 48 commander who recently established a new record for most time spent in space.

This record-breaking feat began back in 2000, when Williams spent 10 days aboard the Space Shuttle Atlantis for mission STS-101. At the time, the International Space Station was still under construction, and as the mission’s flight engineer and spacewalker, Williams helped prepare the station for its first crew.

Station Commander Jeff Williams passed astronaut Scott Kelly, also a former station commander, on Aug. 24, 2016, for most cumulative days living and working in space by a NASA astronaut (520 days and counting). Williams is scheduled to land Sept. 6, 2016, for a record total of 534 days in space. Credit: NASA
Station Commander Jeff Williams passed astronaut Scott Kelly, also a former station commander, on Aug. 24, 2016, for most cumulative days living and working in space by a NASA astronaut. Credit: NASA

This was followed up in 2006, where Williams’ served as part of Expedition 13 to the ISS. The station had grown significantly at this point with the addition of Russian Zvezda service module, the U.S. Destiny laboratory, and the Quest airlock. Numerous science experiments were also being conducted at this time, which included studies into capillary flow and the effects of microgravity on astronauts’ central nervous systems.

During the six months he was aboard the station, Williams was able to get in two more spacewalks, set up additional experiments on the station’s exterior, and replaced equipment. Three years later, he would return to the station as part of Expedition 21, then served as the commander of Expedition 22, staying aboard the station for over a year (May 27th, 2009 to March 18th, 2010).

By the time Expedition 48’s Soyuz capsule launched to rendezvous with the ISS on July 7th, 2016, Williams had already spent more than 362 days in space. By the time he returns to Earth on Sept. 6th, he will have spent a cumulative total of 534 days in space. He will have also surpassed the previous record set by Scott Kelly, who spent 520 days in space over the course of four missions.

 Expedition 48 crew portrait with 46S crew (Jeff Williams, Oleg Skripochka, Aleksei Ovchinin) and 47S crew (Anatoli Ivanishin, Kate Rubins, Takuya Onishi). Credit: NASA

Expedition 48 crew portrait with 46S crew (Jeff Williams, Oleg Skripochka, Aleksei Ovchinin) and 47S crew (Anatoli Ivanishin, Kate Rubins, Takuya Onishi). Credit: NASA

On Wednesday, August 24th, the International Space Station raised its orbit ahead of Williams’ departure. Once he and two of his mission colleagues – Oleg Skripochka and Alexey Ovchinin – undock in their Soyuz TMA-20M spacecraft, they begin their descent towards Kazakhstan, arriving on Earth roughly three and a half hours later.

Former astronaut Scott Kelly was a good sport about the passing of this record, congratulating Williams in a video created by the Johnson Space Center (see below). Luckily, Kelly still holds the record for the longest single spaceflight by a NASA astronaut – which lasted a stunning 340 days.

And Williams may not hold the record for long, as astronaut Peggy Whitson is scheduled to surpass him in 2017 during her next mission (which launches this coming November). And as we push farther out into space in the coming years, mounting missions to NEOs and Mars, this record is likely to be broken again and again.

NASA's Journey to Mars. NASA is developing the capabilities needed to send humans to an asteroid by 2025 and Mars in the 2030s. Credit: NASA/JPL
NASA’s Journey to Mars. NASA is developing the capabilities needed to send humans to an asteroid by 2025 and Mars in the 2030s. Credit: NASA/JPL

In the meantime, Williams and his crew will continue to dedicate their time to a number of crucial experiments. In the course of this mission, they have conducted research into human heart function, plant growth in microgravity, and executed a variety of student-designed experiments.

Like all research conducted aboard the ISS, the results of this research will be used to improve health treatments, have numerous industrial applications here on Earth, and will help NASA plan mission farther into space. Not the least of which will be NASA’s proposed (and rapidly approaching) crewed mission to Mars.

In addition to spending several months in zero-g for the sake of the voyage, NASA will need to know how their astronauts will fair when conducting research on the surface of Mars, where the gravity is roughly 37% that of Earth (0.376 g to be exact).

And be sure to enjoy this video of Scott Kelly congratulating Williams on his accomplishment, courtesy of the Johnson Space Center:

Further Reading: NASA