What's Inside Uranus and Neptune? A New Way to Find Out

Artist expoded view of an ice giant planet similar to Uranus and Neptune. Credit: @iammoteh/Quanta magazine

In our search for exoplanets, we’ve found that many of them fall into certain types or categories, such as Hot Jupiters, Super-Earths, and Ice Giants. While we don’t have any examples of the first two in our solar system, we do have two Ice Giants: Uranus and Neptune. They are mid-size gas planets formed in the cold outer regions of the solar system. Because of this, they are rich in water and other volatile compounds, and they are very different from large gas giants such as Jupiter. We still have a great deal to learn about these worlds, but what we’ve discovered so far has been surprising, such as the nature of their magnetic fields.

Continue reading “What's Inside Uranus and Neptune? A New Way to Find Out”

Just Built a Giant, Next Generation Planet Hunting Space Telescope? Here’s Where to Point It

LIFE will have five separate space telescopes that fly in formation and work together to detect biosignatures in exoplanet atmospheres. Image Credit: LIFE, ETH Zurich

You know what it’s like. You get a new telescope and need to know where to point it! The bigger the telescope, the more potential targets and the harder the decision! To date, we have found over 5,000 confirmed exoplanets (5,288 to be exact) with thousands more candidates. With missions like Gaia identifying thousands of nearby stars like our Sun where Earth-like planets could be lurking, its time to hunt them down. A new paper takes on the goiath task of trying to filter down all the millions of candidates into about 1,000 main sequence stars or binaries worth exploring. From these, they have identified 100 most promising targets and from them, the 10 best planetary systems.

Continue reading “Just Built a Giant, Next Generation Planet Hunting Space Telescope? Here’s Where to Point It”

NASA Is Seeking Ideas for Rescuing an Astronaut from the Moon

Space exploration is a dangerous business, especially when squishy living organisms, such as humans, are involved. NASA has always prided itself on how seriously it takes the safety of its astronauts, so as it gears up for the next big push in crewed space exploration, the Artemis program, it is looking for solutions to potentially catastrophic situations that might arise. One such catastrophe would be if one of the Artemis astronauts was incapacitated and couldn’t return to the lander. The only person who could potentially be able to save them would be their fellow astronaut, but carrying a fully suited human back to their base of operations would be a challenge for an astronaut similarly kitted out in their own bulky suit. So, NASA decided to address it as precisely that – a challenge – and ask for input from the general public, offering up to $20,000 for the best solution to the problem.

Continue reading “NASA Is Seeking Ideas for Rescuing an Astronaut from the Moon”

A CubeSat Mission to Phobos Could Map Staging Bases for a Mars Landing

The moons of Mars are garnering increased attention, not only because they could provide a view of the solar system’s past but also because they could provide invaluable staging areas for any future human settlement on Mars itself. However, missions specifically designed to visit Phobos, the bigger of the two moons, have met with varying stages of failure. So why not make an inexpensive mission to do so – one that could launch multiple copies of itself if necessary? That’s the idea behind a CubeSat-based mission to Phobos, known as Perseus, which was initially described back in 2020.

Continue reading “A CubeSat Mission to Phobos Could Map Staging Bases for a Mars Landing”

Interstellar Objects Can't Hide From Vera Rubin

Artist impression of the interstellar comet 2I/Borisov as it travels through our solar system. Credit: NRAO/AUI/NSF, S. Dagnello

We have studied the skies for centuries, but we have only found two objects known to come from another star system. The first interstellar object to be confirmed was 1I/2017 U1, more commonly known as ?Oumuamua. It was discovered with the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) and stood out because of its large proper motion. Because ?Oumuamua swept through the inner solar system, it was relatively easy to distinguish. The second interstellar object, 2I/Borisov, stood out because it entered the inner solar system from well above the orbital plane. But while we have only discovered two alien visitors so far, astronomers think interstellar objects are common. It’s estimated that several of them visit our solar system each year, and there may be thousands within the orbit of Neptune on any given day. They just don’t stand out, so we don’t notice them. But that could soon change.

Continue reading “Interstellar Objects Can't Hide From Vera Rubin”

The Early Earth Wasn’t Completely Terrible

Illustration of the early Earth.

Earth formed 4.54 billion years ago. The first period of the history of the Earth was known as the Hadean Period which lasted from 4.54 billion to 4 billion years ago. During that time, Earth was thought to be a magma filled, volcanic hellscape. It all sounds rather inhospitable at this stage but even then, liquid oceans of water are thought to have existed under an atmosphere of carbon dioxide and nitrogen. Recent research has shown that this environment may well have been rather more habitable than once thought. 

Continue reading “The Early Earth Wasn’t Completely Terrible”

Globular Clusters Evolve in Interesting Ways Over Time

Image gallery of the 16 globular clusters analysed in order of difference in the kinematic properties observed between the multiple stellar populations. Credits: ESA/Hubble - ESO - SDSS

Globular clusters are among the oldest objects in the Universe. The early Universe was filled with dwarf galaxies and its just possible that globular clusters are the remains of these ancient relics. Analysis of the stars in the clusters reveals ages in the region of 12-13 billion years old. A new paper just published shows that the globular clusters are home to two distinct types of stars; the primordial ones with normal chemical composition and those with unusual heavy amounts of heavier elements. 

Continue reading “Globular Clusters Evolve in Interesting Ways Over Time”

A Superfast Supercomputer Creates the Biggest Simulation of the Universe Yet

These images are a small sample from the Frontier supercomputer simulations. They reveal the evolution of the expanding universe in a region containing a massive cluster of galaxies from billions of years ago to present day (left). Red areas show hotter gasses, where temperatures reach 100 million Kelvin or more. The panel on the right is a zoom-in, where star tracer particles track the formation of galaxies and their movement over time. Credit: Argonne National Laboratory, U.S Dept of Energy

Scientists at the Department of Energy’s Argonne National Laboratory have created the largest astrophysical simulation of the Universe ever. They used what was until recently the world’s most powerful supercomputer to simulate the Universe at an unprecedented scale. The simulation’s size corresponds to the largest surveys conducted by powerful telescopes and observatories.

Continue reading “A Superfast Supercomputer Creates the Biggest Simulation of the Universe Yet”

How Much Are Asteroids Really Worth?

Asteroid mining concept. Credit: NASA/Denise Watt
Asteroid mining concept. Credit: NASA/Denise Watt

Popular media love talking about asteroid mining using big numbers. Many articles talk about a mission to Psyche, the largest metallic asteroid in the asteroid belt, as visiting a body worth $10000000000000000000, assumedly because their authors like hitting the “0” key on their keyboards a lot. But how realistic is that valuation? And what does it actually mean? A paper funded by Astroforge, an asteroid mining start-up based in Huntington Beach, and written by a professor at the Colorado School of Mine’s Space Resources Program takes a good hard look at what metals are available on asteroids and whether they’d genuinely be worth as much as the simple calculations say that would be.

Continue reading “How Much Are Asteroids Really Worth?”

Euclid Could Find 170,000 Strong Gravitational Lenses

A gravitational lens, seen by Hubble

Gravitational lensing is a concept where dark matter distorts space revealing its presence through its interaction with light. ESA’s Euclid mission is mapping out the gravitational lensing events to chart the large scale structure of the Universe. Euclid is also expected to discover in excess of 170,000 strong gravitational lensing features too. AI is expected to help achieve this goal but machine learning is still in its infancy so human beings are likely to have to confirm each lens candidate.

Continue reading “Euclid Could Find 170,000 Strong Gravitational Lenses”