And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.
Happy Earth Day! Earth Day is good time to think about the beauty of our home planet and reflect on our stewardship of environmental resources like air and water.
Sometimes, though, our planet can be a bit unpredictable. The folks at HooplaHa have put together this entertaining 2-minute look at a few of our planet’s oddities… and it’s like a combo of “Funniest Home Videos” and “Science Friday.” While our astute readers will likely already know several of these facts, this video will be sure to make you smile.
April showers bring May flowers, and this month also brings a shower of the celestial variety, as the Lyrid meteors peak this week.
And the good news is, 2015 should be a favorable year for the first major meteor shower of the Spring season for the northern hemisphere. The peak for the shower in 2015 is predicted to arrive just after midnight Universal Time on Thursday April 23rd, which is 8:00 PM EDT on the evening of Wednesday April 22nd. This favors European longitudes right around the key time, though North America could be in for a decent show as well. Remember, meteor showers don’t read forecasts, and the actual peak can always arrive early or late. We plan to start watching tonight and into Wednesday and Thursday morning as well. April also sees a extremely variable level of cloud cover over the northern hemisphere, another reason to start your meteor vigil early on if skies are clear.
Another favorable factor this year is the phase of the Moon, which is only a slender 20% illuminated waxing crescent on Wednesday night. This means that it will have set well before local midnight when the action begins.
The source of the Lyrid meteors is Comet C/1861 G1 Thatcher, which is on a 415 year orbit and is expected to come back around again in 2276 A.D. 1861 actually sported two great comets, the other being C/1861 J1, also known as the Great Comet of 1861.
The Lyrids typically exhibit an ideal Zenithal Hourly Rate (ZHR) of 15-20 per hour, though this shower has been known to produce moderate outbursts from time to time. In 1803 and 1922, the Lyrids produced a ZHR of 100 per hour, and in recent times, we had an outburst of 250 per hour back in 1982. Researchers have tried over the years to tease out a periodicity for Lyrid outbursts, which seem erratic at best. In recent years, the Lyrids hit a ZHR of 20 (2011), 25 (2012), 22 (2013), and 16 last year in 2014.
Keep in mind, we say that the ZHR is an ideal rate, or what you could expect from the meteor shower with the radiant directly overhead under dark skies: expect the actual number of meteors observed during any shower to be significantly less.
The radiant for the Lyrids actually sits a few degrees east of the bright star Vega across the Lyra border in the constellation Hercules. They should, in fact, be named the Herculids! In mid-April, the radiant for the April Lyrids has already risen well above the northeastern horizon as seen from latitude 40 degrees north at 10 PM local, and is roughly overhead by 4 AM local. Several other minor showers are also active around late April, including the Pi Puppids (April 24th), the Eta Aquarids (May 6th), and the Eta Lyrids (May 9th). The constellation of the Lyre also lends its name to the June Lyrids peaking around June 6th.
The April Lyrids are intersecting the Earth’s orbit at a high 80 degree angle at a swift velocity of 49 kilometres per second. About a quarter of the Lyrid meteors are fireballs, leaving bright, persistent smoke trains. It’s a good idea to keep a set of binoculars handy to study these lingering smoke trails post-passage.
The Lyrids also have the distinction of having the longest recorded history of any known meteor shower. Chinese chronicles indicate that “stars dropped down like rain,” on a late Spring night in 687 BC.
Observing a meteor shower requires nothing more than a set of working ‘Mark-1 eyeballs’ and patience. The International Meteor Organization always welcomes reports of meteor counts from observers worldwide to build an accurate picture of evolving meteor debris streams. You can even hear meteor ‘pings’ via FM radio.
Expect the rate to pick up past local midnight, as the Earth plows headlong into the oncoming meteor stream. Remember, the front of the car gets the love bugs, an apt analogy for any Florida resident in mid-April.
Catching a photograph of a Lyrid or any meteor is as simple as plopping a DSLR down on a tripod and doing a series of 30 second to several minute long time exposures. Use the widest field of view possible, and aim the camera off at about a 45 degree angle from the radiant to catch the meteors sidelong in profile. Be sure to take a series of test shots to get the ISO/f-stop combination set for the local sky conditions.
Don’t miss the 2015 Lyrids, possibly the first good meteor shower of the year!
Join Universe Today in celebrating the 45th anniversary of Apollo 13 with insights from NASA engineer Jerry Woodfill as we discuss various turning points in the mission.
The final scenes of the movie Apollo 13 depict the spacecraft’s dramatic reentry into Earth’s atmosphere. As the seconds count beyond the time radio blackout should have lifted, the Capcom calls for Apollo 13’s crew to answer, but there is no response.
Everyone’s thoughts run through the possibilities: Had the heat shield been compromised by shrapnel from the exploded oxygen tank? Had the previously finicky hatch failed at this critical time? Had the parachutes turned to blocks of ice? Had the Inertial Measurement Unit (IMU) gyros failed, having inadequate time to warm-up causing the capsule to skip off the atmosphere, or incinerate with the crew in a fiery death plunge to Earth?
Of course, the crew finally did answer, but confirmation that Lovell, Haise and Swigert had survived reentry came nearly a minute and a half later than expected.
Some might feel director Ron Howard may have over-sensationalized the re-entry scenes for dramatic effect. But in listening to the actual radio communications between Mission Control and the ARIA 4 aircraft that was searching for a signal from the Apollo 13 crew, the real drama is just as palpable – if not more — than in the movie.
For virtually every reentry from Mercury through Apollo 12, the time of radio blackout was predictable, almost to the second. So why did Apollo 13’s radio blackout period extend for 87 seconds longer than expected, longer than any other flight?
During the Apollo era, the radio blackout was a normal part of reentry. It was caused by ionized air surrounding the command module during its superheated reentry through the atmosphere, which interfered with radio waves. The radio blackout period for the space shuttle program ended in 1988 when NASA launched the Tracking and Data Relay Satellite System (TDRS), which allowed nearly constant communication between the spacecraft and Mission Control.
It is difficult to find official NASA documentation about the extended radio blackout time for Apollo 13. In the mission’s Accident Review Board Report, there’s no mention of this anomaly. The only discussion of any communication problem comes in a section about reentry preparations, after the Service Module was jettisoned. There was a half-hour period of very poor communications with the Command Module due to the spacecraft being in a poor attitude with the Lunar Module still attached. Some of the reentry preparations were unnecessarily prolonged by the poor communications, but was more of a nuisance than an additional hazard to the crew, the report said.
In numerous interviews that I’ve done and listened to in preparation for this series of articles, when those involved with the Apollo 13 mission are asked about why the blackout period was longer than normal, the answer normally comes as a hedged response, with the crew or a flight director indicating they don’t know exactly why it happened. It seems analysis of this has defied a reasonable and irrefutable scientific explanation.
At an event at the Smithsonian Air & Space Museum in 2010, Apollo 13 Flight Director Gene Kranz said he never heard an answer or explanation that he believed, and Fred Haise chuckled and said, “We just did Ron Howard a favor!”
Jim Lovell gave the most detailed response – which is the one most often given as a likely explanation — suggesting it perhaps had to do with a shallowing reentry angle problem, with a strange space-like breeze that seemed to be blowing the spacecraft off-course with respect to entry.
“I think the reason why it was longer was the fact we were coming in shallower than we had planned,” Lovell said at the 2010 event. “Normally we come in from a Moon landing and have to hit the atmosphere inside a very narrow pie-shaped wedge and I think we were continually being pushed off that wedge. The reason was, we found out about 2-3 months after from analysis, was the lander’s venting of cooling vapor. The way we cool the electronic systems in LM was to pass water through a heat exchanger, and that water evaporates into space. That evaporation — which would be insignificant during a normal lunar landing mission — was going on for the 4 days we were using the LM as a lifeboat, acting as a small force, forcing us off the initial trajectory.”
Coming in on a shallower trajectory would result in a longer period in the upper atmosphere where there was less deceleration of the spacecraft. In turn, the reduced pace of deceleration lengthened the time that the heat of reentry produced the ionized gasses that would block communications.
But NASA engineer Jerry Woodfill offers additional insight into the communication delays. He recently spoke with Jerry Bostick, the Flight Dynamics Officer (FIDO) for Apollo 13, who told him, “Many believe the added time resulted from the communication signal skipping, like a stone, over layers of the upper atmosphere because of the shallow entry angle.”
“Bostick likened the radio signals to a stone skipping on a pond, and finally, the signal found a location to sink Earthward,” Woodfill said.
However, this explanation too, leaves questions. Woodfill said he has studied the “signal skipping” phenomenon, and has found information to both support and refute the concept by virtue of when such an occurrence could be expected.
“The consensus was it is a night time phenomena,” Woodfill said. “Apollo 13 entered in daylight in the Pacific and in Houston. Nevertheless, the question to this day demonstrates just how near Apollo 13 came to disaster. If the radio signal almost skipped off the Earth’s atmosphere, one wonders, just how very close was Apollo 13’s capsule and crew near to a fatal skipping into the oblivion of space as well.”
Another “angle” on Apollo 13’s reentry was how it very nearly escaped another potential disaster: landing in a typhoon.
“A tropical storm is a retro’s (retrofire officer) worst nightmare,” said Woodfill. “Knowing how unpredictable the movement and intensity of such storms are makes selecting a landing site difficult. No NASA reentry had ever landed in a tropical storm, and Apollo 13 might be the first. Among NASA scientists are meteorologists, and by their best science, they predicted that Tropical Storm Helen would move into the designated Apollo 13 landing site the day of reentry and splashdown.”
If Apollo 13 had splashed down amidst the storm, the capsule may have drifted and been lost at sea. To conserve the entry battery power, the beacon light recovery system had been deactivated. The crew would have been invisible to those looking for the capsule bobbing up and down in the Pacific Ocean. They eventually would have had to blow the hatch, and the Apollo 13 capsule likely would have sunk, similar to Gus Grissom’s Liberty Bell during the Mercury program. But the crew of Apollo 13 might not have been as fortunate as Grissom who had helicopter rescuers overhead quickly pulling him to safety.
However, the decision was made to ignore the weather forecasts, which ended up being fortuitous because Helen ultimately changed course. But then there was the uncertainty of the entry location due to the ‘shallowing’ the spacecraft was experiencing.
“Once more, the retro made the decision to ignore that shallowing at reentry in the same fashion as he had ignored the weathermen’s ominous prediction,” said Woodfill. “In both instances, the retro was correct. He rightly predicted that the drift would not be a problem in the final stages of reentry after the lander was jettisoned. Again, this was altogether fortuitous in that no one knew the lander’s cooling system was the source of the drift. Earlier, however, the retro had compensated for the shallowing drift by bringing Apollo 13 into the correct entry corridor angle via first having the crew fire the lander’s descent engine and later the lander’s thrusters.”
As it turned out those mysterious extra seconds caused by coming in at a shallow angle were also fortuitous.
While the added time of communications blackout was nail-biting, the more shallow and longer angle “added to the downrange path of Apollo 13, dropping the capsule in calm water so near the waiting aircraft carrier Iwo Jima that the accuracy was among the finest of the program,” Woodfill said.
Revisiting the length of the communications blackout, there are some discrepancies in various sources about the length of the extra time Apollo 13’s blackout time lasted. Some websites lists 25-30 seconds, others a minute. Again, I was unable to find an ‘official’ NASA statement on the subject and the transcript of the technical air to ground voice communications does not include time stamps for the beginning and end of blackout. Additionally, two of the definitive books about Apollo 13 – Lost Moon by Jim Lovell and Jeffrey Kluger, and A Man on the Moon by Andrew Chaikin – don’t give exact numbers on the timing of the blackout.
“Per my mission log it started at 142:39 and ended at 142:45— a total of six minutes,” Kranz told journalist Joe Pappalardo in 2007. “Blackout was 1:27 longer than predicted … Toughest minute and a half we ever had.”
87 seconds also is confirmed by a transmission recorded on one of the ARIA, the Apollo/Advanced Range Instrumentation Aircraft, which provided tracking and telemetry information for the Apollo missions, especially at launch and reentry, when the Manned Spaceflight Network tracking could not.
Space Historian Colin Mackellar from the Honeysuckle Creek website told Universe Today that until it was recently published on the Honeysuckle Creek website, the recording had not been heard by anyone other than Dunn’s family. Mackellar explained that it contains simultaneous audio of the NASA Public Affairs commentary, audio of the Flight Director’s loop, the ARIA transmissions and a portion of the Australian Broadcast Commission radio coverage.
Again, you can hear the palpable tension in the recording, which you can listen to at this link. At 7:21 in the audio, as communications blackout nears the predicted end, one of the ARIA communicators asks ARIA 4 if they can see the spacecraft. Negative is the reply.
At 7:55 you can hear Kranz asking if there is any acquisition of signal yet. Again at 8:43, Kranz asks, “Contact yet?” The answer is negative. Finally, at 8:53 in the audio, ARIA 4 reports AOS (acquisition of signal), which is relayed to Kranz. You can hear his relieved exhalation as he replies, “Rog (roger).”
Then comes Kranz saying, “Capcom, why don’t you try giving them a call.”
It required no great imagination to know that back in the US, and in fact all around the world, folks were glued to their TV sets in anticipation, and that Walter Cronkite was holding forth with Wally Schirra on CBS, and at the Houston Space Center breathing had ceased.
But we were there, ground zero, with front row seats and we would be the first to know and the first ones to tell the rest of the world if the Apollo 13 crew had survived…
On all the aircraft and all the airwaves there was complete silence as well as we all listened intently for any signal from Apollo 13.
ARIA 2 had no report of contact; ARIA 3 also had no report.
Then I observed a signal and Jack Homan, the voice radio operator advised me we had contact.
From Apollo 13 came the reply “OK, Joe……” relayed again from our radios to Houston and the rest of the world. Not much, but even such a terse reply was enough to let the world know the spacecraft and its crew had survived. In an age before satellite TV, teleconferencing, and the Internet, it was easy for us in the clouds at 30,000 feet above the splashdown zone to visualize breathing resuming in Houston and around the world.
Dunn concluded, “Now, exactly why would Ron Howard leave such a dramatic moment out of his film? There’s a real mystery!”
In the world of quantum mechanics, particles behave in discreet ways. One breakthrough experiment was the Stern-Gerlach Experiment, performed in 1922. They passed silver atoms through a magnetic field and watched how the spin of the atoms caused the particles to deflect in a very specific way. Continue reading “Astronomy Cast Ep. 374: Stern-Gerlach Experiment”
If you wake up in the middle of the night with weird dreams about flying asteroids, I wouldn’t be surprised. Around 3 a.m. (CDT) tomorrow morning April 21, a 50-foot-wide asteroid will hurdle just 0.2 lunar distances or 45,600 miles over your bed.
The Mt. Lemmon Survey, based in Tucson, Arizona, snagged the space rock Saturday. 2015 HD1 is about as big as a full grown T-rex through not nearly as scary, since it will safely miss Earth … but not by much.
Geostationary satellites, used for global communications, weather forecasting and satellite TV, are parked in orbits about 22,300 miles above the Earth. 2015 HD1 will zip by at just twice that distance, putting it in a more select group of extremely close-approaching objects. Yet given its small size, even if it were to collide with Earth, this dino-sized rock would probably break up into a shower of meteorites.
Lucky for all of us, astronomers conducting photographic surveys like the one at Mt. Lemmon rake the skies every clear night, turning up a dozen or more generally small, Earth-approaching asteroids every month. None yet has been found on a collision course with Earth, but many pass within a few lunar distances.
A common misunderstanding about approaching asteroids concerns Earth’s gravity. While our planet has plenty of gravitational pull, it’s no match for speedy asteroids. We can’t “pull” them in like some tractor beam.
Because they’re moving at miles per second velocities, they have lots of angular momentum (desire to keep moving in the direction they’re headed). Only asteroids headed directly for us have any hope of striking our atmosphere and potentially leaving fragments behind as meteorites.
Still, both Earth and asteroid interact. Close-approaching asteroids often will have their orbits altered by Earth’s gravity. They come in in one direction and leave on a slightly different one after Earth weighs in (literally!)
All the known asteroids orbiting the Sun – in 3D
Moving rapidly across the constellations Hydra, Antlia and Puppis tomorrow morning, 2015 HD1 is expected to reach climb briefly to magnitude +13.2. That’s faint, but with a good map, amateur astronomers with 8-inch or larger telescopes will see it move in real time across the sky like a slow satellite. To create a map, you’ll need sky-charting software like MegaStar, The Sky or Starry Night and these orbital elements.
Maximum brightness and visibility occurs between about 1 and 3 a.m CDT (6-8 UT) for observers in low northern or southern latitudes. From the West Coast, the asteroid will be low in the southwestern sky around 10 p.m. local time. Hawaiian skywatchers will get the brightest views with the asteroid highest in the sky around 9 p.m. local time. IF you live in the eastern two-thirds of the U.S., it’s either too far south or will have set by the time it’s bright enough to see.
No worries. Italian astronomer Gianluca Masi will once again fire up his telescope to provide live views of 2015 HD1 on his Virtual Telescope Project websitetoday April 20 starting at 4 p.m. CDT (21:00 UT). So if you like, you can get a gander after all.
Could there be a mirror universe, where everything is backwards – and everybody has goatees? How badly do you need to bend the laws of physics to make this happen?
One of the great mysteries in cosmology is why the Universe is mostly matter and not antimatter. If you want to learn more about that specific subject, you can click here and watch an episode all about that.
During the Big Bang, nearly equal amounts of matter and antimatter were created, and subsequently annihilated. Nearly equal. And so we’re left with a Universe made of matter.
But could there be antimatter stars out there? With antimatter planets in orbit. Could there be a backwards Universe that operates just like our regular Universe, but everything’s made of antimatter? And if it’s out there, does it have to be evil? Do they only know how to conquer? Does everyone, even the antimatter babies and ladies, have handsome goatees? How about sashes? I hear they’re big on sashes. OOH and daggers. Gold daggers with little teensy antimatter emeralds and rubies.
Antimatter, without the goatee, was theorized in 1928 by Paul Dirac, who realized that one implication of quantum physics was that you could get electrons that had a positive charge instead of a negative charge. They were discovered by Carl D. Anderson just 4 years later, which he named “positron” for positive electron.
We believe he was clearly snubbing Dirac, by not naming them the “Diracitron”, alternately they were saving that name for a giant Japanese robot.
These antiparticles are created through high energy particle collisions happening naturally in the Universe, or unnaturally inside our “laugh in the face of God and nature” particle accelerators. We can even detect the annihilation out there in the Universe where matter and antimatter crash into each other.
Physicists have discovered a range of anti-particles. Anti-protons, anti-neutrons, anti-hydrogen, anti-helium. To date, there’s been no evidence of any goatees or sashes. Naturally, they wondered what might happen if the balance of the Universe was flipped. What if we had a Universe made out of mostly antimatter? Would it still… you know, work? Could you have antimatter stars, antimatter planets, and even those antimatter people we mentioned?
When physics swap out matter for anti-matter in their equations, they call it charge conjugation. It turns out, no. If you reversed the charge of all the particles in the Universe, it wouldn’t evolve in the same way as our “plain old non-sashed” Universe.
To fix this problem, physicists considered the implications if you had an actual mirror Universe, where all the particles behaved as if they were mirror images of themselves. This sounds a little more in line with our “Through a mirror, darkly” goatee and sash every day festival universe. This is all the bits backwards. Spin, charge, velocity, the works. They called this parity inversion. So, would this work?
Again, it turns out that the answer is no. It would almost work out, but there’s a tendency for the weak nuclear force, the one the governs nuclear decay to violate this idea of parity inversion. Even in a mirror Universe, the weak nuclear force is left-handed. Dammit, weak nuclear force, get your act together, if not just for the sake of the costumes and cooler bridge lighting.
What if you reversed both the charge and the parity at the same time? What if you had antimatter in a mirror Universe? Physicists called this charge-parity symmetry, or CP symmetry.
In a dazzling experiment and absolute “what if” one-upmanship exercise by James Cronin and Val Fitch in 1964. They demonstrated that no, you can’t have a mirror-antimatter Universe evolve with our physical laws. This experiment won the Nobel Prize in 1980.
Physicists had one last trick up their sleeves. It turns out that if you reverse time itself as well as making everything out of antimatter and holding it up to a mirror, you get true symmetry. All the physical lays are preserved, and you’d get a Universe that would look exactly like our own.
It turns out we could live in a mirror Universe, as long as you were willing to reverse the charge of every particle and run time backwards. And if you did, it would be indistinguishable from the Universe we actually live in. Now, if you’ll excuse me, I think I need to call my tailor, I hear sashes are going to be huge this year.
So what do you think, do we live in the real Universe or the mirror Universe? Tell us in the comments below.
Beam us up, Scotty. There’s no signs of intelligent life out there. At least, no obvious signs, according to a recent survey performed by researchers at Penn State University. After reviewing data taken by the NASA Wide-field Infrared Survey Explorer (WISE) space telescope of over 100,000 galaxies, there appears to be little evidence that advanced, spacefaring civilizations exist in any of them.
First deployed in 2009, the WISE mission has been able to identify thousands of asteroids in our solar system and previously undiscovered star clusters in our galaxy. However, Jason T. Wright, an assistant professor of astronomy and astrophysics at the Center for Exoplanets and Habitable Worlds at Penn State University, conceived of and initiated a new field of research – using the infrared data to assist in the search for signs of extra-terrestrial civilizations.
And while their first look did not yield much in the way of results, it is an exciting new area of research and provides some very useful information on one of the greatest questions ever asked: are we alone in the universe?
“The idea behind our research is that, if an entire galaxy had been colonized by an advanced spacefaring civilization, the energy produced by that civilization’s technologies would be detectable in mid-infrared wavelengths,” said Wright, “exactly the radiation that the WISE satellite was designed to detect for other astronomical purposes.”
This logic is in keeping with the theories of Russian astronomer Nikolai Kardashev and theoretical physicist Freeman Dyson. In 1964, Kardashev proposed that a civilization’s level of technological advancement could be measured based on the amount of energy that civilization is able to utilize.
To characterize the level of extra-terrestrial development, Kardashev developed a three category system – Type I, II, and III civilizations – known as the “Kardashev Scale”. A Type I civilization uses all available resources on its home planet, while a Type II is able to harness all the energy of its star. Type III civilizations are those that are advanced enough to harness the energy of their entire galaxy.
Similarly, Dyson proposed in 1960 that advanced alien civilizations beyond Earth could be detected by the telltale evidence of their mid-infrared emissions. Believing that a sufficiently advanced civilization would be able to enclose their parent star, he believed it would be possible to search for extraterrestrials by looking for large objects radiating in the infrared range of the electromagnetic spectrum.
These thoughts were expressed in a short paper submitted to the journal Science, entitled “Search for Artificial Stellar Sources of Infrared Radiation“. In it, Dyson proposed that an advanced species would use artificial structures – now referred to as “Dyson Spheres” (though he used the term “shell” in his paper) – to intercept electromagnetic radiation with wavelengths from visible light downwards and radiating waste heat outwards as infrared radiation.
“Whether an advanced spacefaring civilization uses the large amounts of energy from its galaxy’s stars to power computers, space flight, communication, or something we can’t yet imagine, fundamental thermodynamics tells us that this energy must be radiated away as heat in the mid-infrared wavelengths,” said Wright. “This same basic physics causes your computer to radiate heat while it is turned on.”
However, it was not until space-based telescopes like WISE were deployed that it became possible to make sensitive measurements of this radiation. WISE is one of three infrared missions currently in space, the other two being NASA’s Spitzer Space Telescope and the Herschel Space Observatory – a European Space Agency mission with important NASA participation.
WISE is different from these missions in that it surveys the entire sky and is designed to cast a net wide enough to catch all sorts of previously unseen cosmic interests. And there are few things more interesting than the prospect of advanced alien civilizations!
To search for them, Roger Griffith – a postbaccalaureate researcher at Penn State and the lead author of the paper – and colleagues scoured the entries in the WISE satellites database looking for evidence of a galaxy that was emitting too much mid-infrared radiation. He and his team then individually examined and categorized 100,000 of the most promising galaxy images.
And while they didn’t find any obvious signs of a Type II civilization or Dyson Spheres in any of them, they did find around 50 candidates that showed unusually high levels of mid-infrared radiation. The next step will be to confirm whether or not these signs are due to natural astronomical processes, or could be an indication of a highly advanced civilization tapping their parent star for energy.
In any case, the team’s findings were quite interesting and broke new ground in what is sure to be an ongoing area of research. The only previous study, according to the G-HAT team, surveyed only about 100 galaxies, and was unable to examine them in the infrared to see how much heat they emitted. What’s more, the research may help shed some light on the burning questions about the very existence of intelligent, extra-terrestrial life in our universe.
“Our results mean that, out of the 100,000 galaxies that WISE could see in sufficient detail, none of them is widely populated by an alien civilization using most of the starlight in its galaxy for its own purposes,” said Wright. “That’s interesting because these galaxies are billions of years old, which should have been plenty of time for them to have been filled with alien civilizations, if they exist. Either they don’t exist, or they don’t yet use enough energy for us to recognize them.”
Alas, it seems we are no closer to resolving the Fermi Paradox. But for the first time, it seems that investigations into the matter are moving beyond theoretical arguments. And given time, and further refinements in our detection methods, who knows what we might find lurking out there? The universe is very, very big place, after all.
The research team’s first research paper about their Glimpsing Heat from Alien Technologies Survey (G-HAT) survey appeared in the Astrophysical Journal Supplement Series on April 15, 2015.
KENNEDY SPACE CENTER, FL – Following the flawless blastoff of the SpaceX Falcon 9 booster and Dragon cargo ship on Tuesday, April 14, the resupply vessel arrived at the International Space Station today, April 17, and was successful snared by the outposts resident ‘Star Trek’ crewmate, Expedition 43 Flight Engineer Samantha Cristoforetti of the European Space Agency, donning her futuristic outfit from the famed TV show near and dear to space fans throughout the known galaxy!
Cristoforetti grappled the SpaceX Dragon freighter with the station’s robotic arm at 6:55 a.m. EDT, with the able assistance of fellow crewmate and Expedition 43 Commander Terry Virts of NASA.
Dragon is hauling critical supplies to the six astronauts and cosmonauts serving aboard, that now includes the first ever ‘One-Year Mission’ crew comprising NASA’s Scott Kelly and Russia’s Mikhail Kornienko.
Cristoforetti and Virts were manipulating the 57.7-foot-long (17-meter-long) Canadian-built robotic arm while working inside the stations seven windowed domed Cupola, that reminds many of Darth Vader’s lair in ‘Star Wars’ lore.
The SpaceX Dragon blasted off atop a Falcon 9 booster from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT (2010:41 GMT) on the CRS-6 (Commercial Resupply Services-6) mission bound for the space station.
The Dragon cargo spacecraft was berthed to the Earth facing port of Harmony module of the International Space Station at 9:29 a.m. EDT.
The entire multihour grappling and berthing operations were carried live on NASA TV, for much of the morning and everything went smoothly.
The crew plans to open the hatch between Dragon and the station on Saturday.
Overall CRS-6 is the sixth SpaceX commercial resupply services mission and the seventh trip by a Dragon spacecraft to the station since 2012.
Dragon is loaded with more than 4,300 pounds of supplies, science experiments, and technology demonstrations, including critical materials to support about 40 of more than 250 science and research investigations during the station’s Expeditions 43 and 44.
Among the research investigations are a fresh batch of 20 rodents for the Rodent Research Habitat, and experiments on osteoporosis to counteract bone deterioration in microgravity, astronaut vision loss, protein crystal growth, and synthetic muscle for prosthetics and robotics.
An Espresso machine is also aboard to enhance station morale during the daily grind some 250 miles above Earth.
Following the April 14 launch, SpaceX made a nearly successful soft landing of the first stage on an ocean floating platform in the Atlantic Ocean. Read my story – here.
Read Ken’s earlier onsite coverage of the CRS-6 launch from the Kennedy Space Center and Cape Canaveral Air Force Station.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Learn more about SpaceX, Mars rovers, Orion, Antares, MMS, NASA missions and more at Ken’s upcoming outreach events:
Apr 18/19: “Curiosity explores Mars” and “NASA Human Spaceflight programs” – NEAF (NorthEast Astronomy Forum), 9 AM to 5 PM, Suffern, NY, Rockland Community College and Rockland Astronomy Club
We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Google+, Universe Today, or the Universe Today YouTube page.
You can join in the discussion between episodes over at our Weekly Space Hangout Crew group in G+, and suggest your ideas for stories we can discuss each week!