Artificial Object in Trans-lunar Orbit to Impact Earth on November 13

WT1190F observed on 9 October 2015 with the University of Hawaii 2.2 meter telescope on Mauna Kea, Hawaii. [Credits: B. Bolin, R. Jedicke, M. Micheli]

Get ready for a man-made fireball. A object discovered by the Catalina Sky Survey on Oct 3rd temporarily designated WT1190F is predicted to impact the Earth about 60 miles (100 km) off the southern coast of Sri Lanka around 6:20 Universal Time (12:20 a.m CST) on November 13.

The object orbits Earth with a period of about three weeks. Because it was also observed twice in 2013 by the same survey team, astronomers have the data they need to model its orbit and trajectory, and as far anyone can tell,  it’s likely man-made. 

S-IVB stage of Apollo 17. Credit: NASA
The first two stages of the Saturn V rockets used to send the seven Apollo missions to the Moon fell back to Earth, but the third stage (S-IVB), pictured here, propelled the spacecraft into a lunar trajectory. Could this be WT1190F? Credit: NASA

Solar radiation pressure, the physical “push” exerted by photons of sunlight, is proportional to a space object’s area-to-mass ratio. Small, lightweight objects get pushed around more easily than heavier, denser ones. Taking that factor into account in examining WT1190F’s motion over two years, the survey team has indirectly measured WT1190F’s density at about 10% that of water. This is too low to be a typical asteroid made of rock, but a good fit with a hollow shell, possibly the upper stage of a rocket.

Spectacular re-entry of the Jules Verne ATV-1 cargo ship over the Pacific Ocean on September 29, 2008. Still image definition TV camera operated by Jessie Carpenter and Bill Moede of NASA Ames Research Center
Spectacular re-entry of the Jules Verne ATV-1 cargo ship over the Pacific Ocean on September 29, 2008. Still image from a TV camera operated by Jessie Carpenter and Bill Moede of NASA Ames Research Center. A similar spectacle is expected on November 13 south of Sri Lanka.

It’s also quite small, at most only about six feet or a couple of meters in diameter. Most or all of it is likely to burn up upon re-entry, creating a spectacular show for anyone near the scene. During the next week and a half, the European Space Agency’s NEO (Near-Earth Object) Coordination Center is organizing observing campaigns to collect as much data as possible on the object, according to a posting on their website. The agency has two goals: to better understand satellite re-entries from high orbits and to use the opportunity to test our readiness for a possible future event involving a real asteroid. The latter happened once before when 2008 TC3 (a real asteroid) was spotted on October 6, 2008 and predicted to strike Earth the very next day. Incredibly, it did and peppered the Sudan with meteorites that were later recovered.

Assuming WT1190F is artificial, its trans-lunar orbit (orbit that carries it beyond the Moon) hints at several possibilities. Third stages from the Saturn-V rockets that launched the Apollo missions to the Moon are still out there. It could also be a stage from one of the old Russian or more recent Chinese lunar missions. Even rockets used to give interplanetary probes a final push are game.

J002E3 discovery images taken by Bill Yeung on September 3, 2002. J002E3 is in the circle. Images taken with Astroworks Centurion 18" f2.8 scope and Apogee AP9e CCD camera, 10 u second exposure. Auto detected with PinPoint Astrometry Engine by Bob Denny. North is up. Animation created by Bob Denny.
Near-Earth object J002E3 discovery images taken by Bill Yeung on September 3, 2002. The 16th magnitude object was tentatively identified as the Apollo 12 third stage rocket. Animation created by Bob Denny.

Case in point. What was thought initially to be a new asteroid discovered by amateur astronomer Bill Yeung on September 3, 2002 proved a much better fit with an Apollo 12 S-IVB (third) stage after University of Arizona astronomers found that spectra taken of the object strongly correlated with absorption features seen in a combination of man-made materials including white paint, black paint, and aluminum, all consistent with Saturn V rockets.

On April 14th 1970, the Apollo 13 Saturn IVB upper stage impacted the moon north of Mare Cognitum, at -2.55° latitude, -27.88° East longitude. The impact crater, which is roughly 30 meters in diameter, is clearly visible in LROC NAC image M109420042LE. Credit: NASA/Goddard/Arizona State University
On April 14th 1970, the Apollo 13 Saturn IVB upper stage impacted the moon north of Mare Cognitum. The impact crater, which is roughly 30 meters in diameter, is clearly visible in this photo taken by the Lunar Reconnaissance Orbiter. Credit: NASA/Goddard/Arizona State University

Apollo 13’s booster was the first deliberately crashed into the Moon, where it blew out it a crisp, 98-foot-wide (30-meter) crater. Why do such a crazy thing? What better way to test the seismometers left by the Apollo 12 crew? All subsequent boosters ended their lives similarly in the name of seismography. Third stages from earlier missions — Apollos 8, 10 and 11 —  entered orbit around the Sun, while Apollo 12, which is orbiting Earth, briefly masqueraded as asteroid J002E3.

The nominal impact point is located about 60 miles south of the island nation Sri Lanka. Credit: Bill Gray at Project Pluto
The nominal impact point is located about 60 miles south of the island nation Sri Lanka. Given the object’s small size and mass, it will likely be completely incinerated during re-entry. Credit: Bill Gray at Project Pluto

Bill Gray at Project Pluto has a page up about the November 13 impact of WT1190F with more information. Satellite and asteroid watchers are hoping to track the object before and right up until it burns up in the atmosphere. Currently, it’s extremely faint and moving eastward in Orion. You can click HERE for an ephemeris giving its position at the JPL Horizons site. How exciting if we could see whatever’s coming down before its demise on Friday the 13th!

The Asteroid That Fell To Earth: Meteorites from 2008 TC3 Still Giving Up Their Secrets

Almahata Sitta 15. The black fragment of Almahata Sitta meteorite number 15 shows up black against the lighter coloured rocks of the Nubian desert in Northern Sudan. Image credit: Peter Jenniskens (SETI Institute/NASA Ames)

[/caption]

It was an unprecedented event: On October 6, 2008, asteroid 2008 TC3 was spotted by the Catalina Sky Survey Telescope in Arizona. Plotting its trajectory, astronomers knew the 80-ton rock was heading for a collision course with Earth. Just 19 hours later, 2008 TC3 streaked over skies of northern Sudan and then exploded about 37 km above the Nubian Desert. This was the first time an asteroid was predicted – and predicted correctly — to impact Earth. Luckily, it wasn’t big enough to cause any problems, and its path brought it over a remote area. But this presented scientists with an exciting and unparalleled opportunity to possibly study fragments of an asteroid that had been spectrally classified before striking Earth.

Shortly afterwards, expeditions led by Dr. Peter Jenniskens, a meteor astronomer from SETI and NASA’s Ames Research Center, and Mauwia Shaddad, a physicist at the University of Khartoum, collected nearly 600 pieces of the asteroid strewn over 29 kilometers of desert. Altogether the meteorites weighed less than 10 kilograms – all that was left of the 80-ton asteroid.

But these fragments that fell to Earth are revealing secrets about the asteroid belt and the early days of the solar system, says Dr. Jon Friedrich from Fordham University, one of the many different researchers who have been studying pieces of the fragments, now called the “Almahata Sitta” meteorites.

“We can now say the asteroid belt has lots of different types of materials that give little snapshots of conditions within the early solar system,” Friedrich told Universe Today. “We’ve seen that these asteroids haven’t changed a whole lot since the Solar System formed, so it speaks to the diversity of the chemistry and the processes that were acting on these small bodies in the early Solar System.”

Scientists agree that understanding the composition of the asteroid belt is crucial to how we might deal with a larger asteroid that might be heading directly towards Earth.

Discovery images of asteroid 2008 TC3, as it was seen on October 6, 2008, by the Catalina Sky Survey at Mount Lemmon in Arizona (Richard Kowalski).

Although scientists have been able to study and catalog many thousands of meteorites and have also analyzed hundreds of asteroids in space, this is the first time a “fresh” chunk of an asteroid that has fallen to Earth as a meteorite — and been analyzed through spectroscopy while it was still in space — has been found so quickly after hitting Earth. These meteorites are the first to be unequivocally connected with its parent asteroid.

“It is amazing to be able to finally positively link an asteroid to a certain type of meteorite,” said Friedrich. “When we look at asteroids in space we are only looking at the outside, and the asteroid’s surface has changed from being in the environment of space. For the first time we can study the interior of an object we have seen the exterior of in space. That knowledge gives us a map as to how the exteriors of asteroids change. We can have a better understanding of the population of objects in space and their distribution in the solar system.”

About three-quarters of meteorites that are found on Earth are an “ordinary” kind of stony meteorites called chondrites. Analysis of the Almahata Sitta meteorites revealed a rare, carbon-rich type of meteorite called an ureilite. Ureilites are believed to come from a large organic–rich, primitive asteroid that had melted sometime in its past.

“These are a strange type of meteorite which are rather odd in the sense that it is an igneous rock, much like a volcanic rock here on Earth,” Friedrich said, “so this meteorite’s origin is from a magma, so they were surely melted at one point. That also means they are like rocks you might pick up on Earth, but they also contain what we might call relatively primitive materials also, like graphite, organic compounds and other things.”

And so ureilites, and in particular the Almahata Sitta meteorites, contain material from both primitive and evolved types of asteroids.

There are few ureilites in meteorite collections, which is another reason the Almahata Sitta meteorites are so interesting. They have an unusually fine-grained and porous texture, making the meteorites extremely fragile. The researchers think that is why Asteroid 2008 TC3 shattered high in Earth’s atmosphere.

Friedrich and a student at Fordham, Julianna Troiano, studied fragments of the meteorites using an inductively coupled plasma mass spectrometer, which specializes in looking at inorganic composition of rock.

“We found chemically that all the different pieces were indeed ureilites,” Friedrich said, “but one other interesting thing was that these don’t seem to have any evidence of terrestrial contamination at all, which is what you would expect from such a ‘fresh’ fall. Most ureilite meteorites have been found in Antarctica, and oftentimes, the Antarctic samples seem to have concentrations that are somewhat elevated in certain elements, such are rare Earth elements like lanthanum, cerium. But the Almahata Sitta meteorites don’t seem to have an obvious contamination signature.”

Various meteorites from 2008 TC3. Credit: P. Jenniskens, et. al. Click image for full description

This allows the researchers to better explore the solar system’s makeup.

While chondrites normally have not been modified due to melting or differentiation of the parent asteroid — and researchers suspect they are not necessarily representative of typical asteroid parent bodies — ureilites normally do show signs of the parent body being melted.

So what has happened to an asteroid that is has somehow been heated to the point of “melting?”

The latest research on the Almahata Sitta meteorites reveal that the parent asteroid was probably formed through collisions of three different types of asteroids. This would also explain why the meteorites contain both evolved and primitive asteroid materials.

Dr. Julie Gayon-Markt from the Observatoire de la Cote d’Azur in France also recently provided more insight on the family of asteroids from which 2008 TC3 originated.

“Because falls of meteorites of different types are rare, the question of the origin of an asteroid harbouring both primitive and evolved characteristics is a challenging and intriguing problem,” said Gayon-Markt, who presented her findings at the Europlanet Science Conference in October. “A workable explanation for how asteroid 2008TC3 could have formed involves low velocity collisions between these asteroid fragments of very different mineralogies.

Gayon-Markt and her team also looked at the dynamics and spectroscopy of asteroids in the main asteroid belt to shed light on the origin of the Almahata Sitta fragments. “We show that the Nysa-Polana asteroid family, located in the inner Main Belt is a very good candidate for the origin of 2008 TC3,” she said.

Primitive asteroids, which are relatively unchanged since the birth of the Solar System, contain high proportions of hydrated minerals and organic materials. However, many other asteroids have undergone heating at some point, probably through the decay of radioactive materials, and the molten magma has separated into an iron core surrounded by a rocky mantle.

Friedrich and Gayton-Markt are just two of the researchers who are studying the Almahatta Sitta meteorites to try and garner a better understanding of our solar system, as well as figuring out more about the asteroid that fell to Earth in 2008.

“The study of these meteorites has been interdisciplinary and collaborative, and our work is just a small piece of a greater puzzle,” Friedrich said.

Sources: Interview with Jon Friedrich, Europlanet Conference

Note: Almahata Sitta, which is Arabic for “Station Six,” a train station between Wadi Halfa and Khartoum near where the fragments were found.

Understanding 2008 TC3 a Year After Impact

Discovery images of asteroid 2008 TC3, as it was seen on October 6, 2008, by the Catalina Sky Survey at Mount Lemmon in Arizona (Richard Kowalski).

[/caption]

The first asteroid to have been spotted before hitting Earth, 2008 TC3, crashed in northern Sudan one year ago on October 6. Several astronomers have been trying to piece together a profile of this asteroid, pulling together information from meteorites found at the impact site and the images captured of the object in the hours before it crashed to Earth.

“We have a gigantic jigsaw puzzle on our hands, from which we try to create a picture of the asteroid and its origins,” said SETI Institute astronomer Peter Jenniskens, who worked at the crash site, “and now we have with a composite sketch of the culprit, cleverly using the eyewitness accounts of astronomers that saw the asteroid sneak up on us.” Their description? 2008 TC3 looked like a loaf of walnut-raisin bread.

“The asteroid now has a face,” said Jenniskens, chair of the special session at the fall meeting for the Division for Planetary Sciences of the American Astronomical Society. Last December, Jenniskens and Sudan astronomer Muawia Shaddad went to the crash site and recovered 300 fragments in the Nubian Desert. Like detectives, students from the University of Khartoum helped sweep the desert to look for remains of the asteroid. They found many different-looking meteorites close to, but a little south, of the calculated impact trajectory.

The team has also been able to recreate the shape of the asteroid from looking at images captured by Astronomers Marek Kozubal and Ron Dantowitz of the Clay Center Observatory in Brookline, Massachusetts, who tracked the asteroid with a telescope and captured the flicker of light during a two hour period just before impact.

An irregular shape and rapid tumbling caused asteroid 2008 TC3 to flicker when it reflected sunlight on approach to Earth.

Peter Scheirich and colleagues at Ondrejov Observatory and Charles University in the Czech Republic combined all the various observations to work out the shape and orientation of the asteroid.

Watch a video recreation of 2008 TC3 tumbling in space.

Larger version. (1.32 MB Mpeg 4 file)

Video of 2008 TC3 as seen through a telescope (large file, 7.63 MB)

Other forensic evidence based on analysis of the recovered meteorites at the Almahata Sitta site showed the asteroid was an unusual “polymict ureilite” type. Jason S. Herrin of NASA’s Johnson Space Center confirmed that the meteorites still carry traces of being heated to 1150-1300 degrees C, before rapidly cooling down at a rate of tens of degrees C per hour, during which carbon in the asteroid turned part of the olivine mineral iron into metallic iron. Hence, asteroid 2008 TC3 is the remains of a minor planet that endured massive collisions billions of years ago, melting some of the minerals, but not all, before a final collision shattered the planet into asteroids.

Mike Zolensky of NASA’s Johnson Space Center first pointed out that, as far as ureilites are concerned, his meteorite is unusually rich in pores, with pore walls coated by crystals of the mineral olivine. He now reports, from X-ray tomography work with Jon Friedrich of Fordham University in New York, that those pores appear to outline grains that have been incompletely welded together and that the pore linings appear to be vapor phase deposits. According to Zolensky, “Almahata Sitta may represent an agglomeration of coarse- to fine-grained, incompletely reduced pellets formed during impact, and subsequently welded together at high temperature.”

The carbon in the recovered meteorites is among the most cooked of all known meteorites. Carbon crystals of graphite and nanodiamonds have been detected. Still, it turns out that some of the organic matter in the original material survived the heating. Amy Morrow, Hassan Sabbah, and Richard Zare of Stanford University have found polycyclic aromatic hydrocarbons in high abundances. Amazingly, Michael Callahan and colleagues of NASA’s Goddard Space Flight Center now report that even some amino acids have survived.

Jenniskens and Shaddad plan to revisit the scene of the crash in the Nubian Desert. They reported their findings at the Division for Planetary Sciences of the American Astronomical Society meeting in Puerto Rico.

Listen to Oct. 6th’s 365 Days of Astronomy podcast by Emily Lakdawalla about 2008 TC3.

Source: AAS Planetary Science Division