The Lunar Lantern Could be a Beacon for Humanity on the Moon

In October of 2024, NASA’s Artemis Program will return astronauts to the surface of the Moon for the first time since the Apollo Era. In the years and decades that follow, multiple space agencies and commercial partners plan to build the infrastructure that will allow for a long-term human presence on the Moon. An important part of these efforts involves building habitats that can ensure the astronauts’ health, safety, and comfort in the extreme lunar environment.

This challenge has inspired architects and designers from all over the world to create innovative and novel ideas for lunar living. One of these is the Lunar Lantern, a base concept developed by ICON (an advanced construction company based in Austin, Texas) as part of a NASA-supported project to build a sustainable outpost on the Moon. This proposal is currently being showcased as part of the 17th International Architecture Exhibition at the La Biennale di Venezia museum in Venice, Italy.

Continue reading “The Lunar Lantern Could be a Beacon for Humanity on the Moon”

Relativity Space Gets a Huge Investment to Take on SpaceX With Reusable Rockets

They say imitation is the sincerest form of flattery, and that competition is a great way to foster progress and innovation. If these truisms are to be believed, then the NewSpace industry is destined to benefit from the presence of Relativity Space, a commercial space company based in Los Angeles. At the same time, SpaceX founder Elon Musk should be flattered that Tim Ellis and Jordan Noone (founders of Relativity Space) are following his example.

Roughly six years ago, Ellis and Noone founded Relativity for the purpose of using new technologies to disrupt the aerospace industry. Earlier this week (Tuesday, June 8th), the company announced that it had raised an additional $650 million in private capital. This money will go towards the development of rockets that are entirely 3D-printed and fully reusable, as well as the creation of a new class of heavy launch vehicles known as the “Terran-R.”

Continue reading “Relativity Space Gets a Huge Investment to Take on SpaceX With Reusable Rockets”

How Would We Do Surgery in Space?

Virtually rendered cutaway view of a postulated traumapod surgical module. Multiple layers of thermal and radiation shielding are visible. A four?armed surgical robot is situated within the module. The patient is tethered to the operating table, while the assistant, using a touchscreen console, is tethered to the module structure via a movable chair. Illustration by T. Trapp (https://www.planvis.co.uk) CC BY-SA 4.0

Any mission to Mars requires deeper planning than missions to the ISS or the Moon. Based purely on the length of the mission, contingencies branch outwards in complex logistical pathways. What if there’s an accident? What if someone’s appendix bursts?

And what if surgery is needed?

Continue reading “How Would We Do Surgery in Space?”

Astronaut Pee Will Help Build Bases on the Moon

Artist's impression of a lunar base created with 3-d printing techniques. Credits: ESA/Foster + Partners

In the next few decades, NASA, the European Space Agency (ESA), China, and Russia all plan to create outposts on the lunar surface that will allow for a permanent human presence. These proposals seek to leverage advances in additive manufacturing (aka. 3-D printing) with In-Situ Resource Utilization (ISRU) to address the particular challenges of living and working on the Moon.

For the sake of their International Moon Village, the ESA has been experimenting with “lunacrete” – lunar regolith combined with a bonding agent to create a building material. But recently, a team of researchers conducted a study (in cooperation with the ESA) that found that lunacrete works even better if you add a special ingredient that the astronauts make all by themselves – urine!

Continue reading “Astronaut Pee Will Help Build Bases on the Moon”

Using Bacteria to Build a Base on Mars

Credit: TU Delft

When it comes to plans for future missions to space, one of the most important aspects will be the use of local resources and autonomous robots. This process is known as In-Situ Resource Utilization (ISRU), which reduces the amount of equipment and resources that need to be sent ahead or brought along by a mission crew. Meanwhile, autonomous robots can be sent ahead of a crew and have everything prepared for them in advance.

But what about bacteria that can draw iron from extraterrestrial soil, which would then be used to 3D print metal components for a base? That is the idea that is being proposed by PhD candidate Benjamin Lehner of the Delft University of Technology. On Friday (Nov. 22nd), he defended his thesis, which calls for the deployment of an uncrewed mission to Mars that will convert regolith into useable metal using a bacteria-filled bioreactor.

Continue reading “Using Bacteria to Build a Base on Mars”

MOONRISE: Melting lunar regolith with lasers to build structures on the Moon

According to a new study, lunar dust launched from the Moon could help reverse Climate Change. Credit: LZH

The Moon is not just Earth’s closest celestial neighbor. It’s also a natural waypoint for any mission that will be going to Mars or beyond in the coming years. It’s little wonder then why space agencies like NASA, Roscosmos, the ESA and China are hoping to send crewed missions there in the near future and construct bases that could be used to resupply and refuel missions headed to deep space.

So far, all the proposals made for a lunar base have centered on in-situ resource utilization (ISRU) and 3D printing – where robots will manufacture the base out of lunar regolith. For this purpose, the Laser Zentrum Hannover (LZH) and the Institute of Space Systems (IRAS) at the Technical University of Braunschweig came together to develop a laser system capable of turning moon dust into building materials.

Continue reading “MOONRISE: Melting lunar regolith with lasers to build structures on the Moon”

Astronomy Cast Ep. 509: Fiction to Fact: 3D Printers

The technology of 3D printing is taking off. From tiny home-based 3D printers to larger manufacturing. And of course, 3D printing is going to space with the International Space Station and beyond.

We usually record Astronomy Cast every Friday at 3:00 pm EST / 12:00 pm PST / 20:00 PM UTC. You can watch us live on AstronomyCast.com, or the AstronomyCast YouTube page.

Visit the Astronomy Cast Page to subscribe to the audio podcast!

If you would like to support Astronomy Cast, please visit our page at Patreon here – https://www.patreon.com/astronomycast. We greatly appreciate your support!

If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!

Want to support CosmoQuest? Here are specific ways you can help:
* Donate! (Streamlabs link) https://streamlabs.com/cosmoquestx
* Buy stuff from our Redbubble https://www.redbubble.com/people/cosmoquestx
* Help us find sponsors by sharing our program and fundraising efforts through your networks
* Become a Patreon of Astronomy Cast https://www.patreon.com/astronomycast
* Sponsor 365 Days of Astronomy http://bit.ly/sponsor365DoA
* A combination of the above!

Five Teams Compete to Design a 3D Printed Mars Habitat for NASA

Team Zopherus of Rogers, Arkansas, is the first-place winner in NASA’s 3D-Printed Habitat Challenge, Phase 3: Level 1 competition. Credit: NASA

If and when we decide to go to Mars (and stay there), the Martian settlers will face some serious challenges. For one, the planet is extremely cold compared to Earth, averaging at about -63 °C (-82°F), which is comparable to cold night in Antarctica. On top of that, there’s the incredibly thin atmosphere that is unbreathable to humans and terrestrial creatures. Add to that the radiation, and you begin to see why settling Mars will be difficult.

But as the saying goes, necessity is the mother of invention. And to stimulate the invention process, NASA has partnered with Bradley University of Peoria to launch the 3D-Printed Habitat Centennial Challenge competition. As part of NASA’s Centennial Challenges, which are sponsored by the Space Technology Mission Directorate, this competition recently awarded $100,000 in prize money to five teams for their design concepts.

The NASA Centennial Challenges were initiated in 2005 to directly engage the public, and produce revolutionary applications for space exploration challenges. The program offers incentive prizes to stimulate innovation in basic and applied research, technology development, and prototype demonstration. To administer the competition, Bradley University also partnered with sponsors Caterpillar, Bechtel and Brick & Mortar Ventures.

For the competition, participants were tasked with creating digital representations of the physical and functional characteristics of a Martian habitat using specialized software tools. A panel of NASA, academic and industry experts awarded the team points based on various criteria, which determined how much prize money each winning team got. Out of 18 submissions from all over the world, 5 teams were selected.

In order of how much prize money they were awarded, the winning teams were:

  1. Team Zopherus of Rogers, Arkansas – $20,957.95
  2. AI. SpaceFactory of New York – $20,957.24
  3. Kahn-Yates of Jackson, Mississippi – $20,622.74
  4. SEArch+/Apis Cor of New York – $19,580.97
  5. Northwestern University of Evanston, Illinois – $17,881.10

The design competition emphasizes all the challenges that building a life-supporting habitat on Mars would entail, which includes the sheer distances involved and the differences in atmosphere and landscapes. In short, the teams needed to create habitats that would be insulated and air-tight and could also be built using local materials (aka. in-situ resource utilization).

The competition began in 2014 and has been structured in three phases. For Phase 1, the Design Competition (which was completed in 2015 with $50,000 prize purse), the teams were required to submit a rendering of their proposed habitat. Phase 2, the Structural Member Competition, focused on material technologies and required teams to create structural components. This phase was completed in 2017 with a $1.1 million prize purse.

For Phase 3, the On-Site Habitat Competition – which is the current phase of the competition – competitors were tasked with fabricated sub-scale versions of their habitats. This phase has five levels of competition, which consist of two virtual levels and three construction levels. For the former, the teams were tasked with using Building Information Modeling (BIM) software to design a habitat that combines all the structural requirements and systems it must contain.

For the construction levels, the teams will be required to autonomously fabricate 3D-printed elements of the habitat, culminating with a one-third-scale printed habitat for the final level. By the end of this phase, teams will be awarded prize money from a $2 million purse. As Monsi Roman, the program manager for NASA’s Centennial Challenges, said in a recent NASA press statement:

“We are thrilled to see the success of this diverse group of teams that have approached this competition in their own unique styles. They are not just designing structures, they are designing habitats that will allow our space explorers to live and work on other planets. We are excited to see their designs come to life as the competition moves forward.”

The winning entries included team Zorphues’ concept for a modular habitat that was inspired by biological structures here on Earth. The building-process begins with a lander (which is also a mobile print factory) reaching the surface and scanning the environment to find a good “print area”. It then walks over this area and deploys rovers to gather materials, then seals to the ground to provide a pressurized print environment.

The main module is then assembled using pre-fabricated components (like airlocks, windows, atmospheric control, toilets, sinks, etc), and the structure is printed around it. The printer then walks itself to an adjacent location, and prints another module using the same method. In time, a number of habitats are connected to the main module that provide spaces for living, recreation, food production, scientific studies, and other activities.

For their concept, the second place team (Team AI. SpaceFactory) selected a vertically-oriented cylinder as the most efficient shape for their Marsha habitat. According to the team, this design is not only the ideal pressure environment, but also maximizes the amount of usable space, allows for the structure to be vertically-divided based on activities, is well-suited to 3-D printing and takes up less surface space.

The team’s also designed their habitat to deal with temperature changes on Mars, which are significant. Their solution was to design the entire structure as a flanged shell that moves on sliding bearings at its foundation in response to temperature changes. The structure is also a double shell, with the outer (pressure) shell separate from the inner habitat entirely. This optimizes air flow and allows for light to filters in to the entire habitat.

Next up is the Khan-Yates habitat, which the team designed to be specifically-suited to withstand dust storms and harsh climates on the Red Planet. This coral-like dome consists of a lander that would set down in the equatorial region, then print a foundation and footing layer using local materials. The print arm would then transition vertically to begin printing the shell and the floors.

The outer shell is studded with windows that allow for a well-lit environment, the outer shell is separate from the core, and the shape of the structure is designed to ensure that dust storms flow around the structure. In fourth place was SEArch+/Apis Cor’s Mars X house, a habitat designed to provide maximum radiation protection while also ensuring natural light and connections to the Martian landscape.

The habitat is constructed by mobile robotic printers, which are deployed from a Hercules Single-Stage Reusable Lander. The design is inspired by Nordic architecture, and uses “light scoops” and floor-level viewing apertures to ensure that sunlight in the northern latitudes makes it into the interior. The two outer (and overlapping) shells house the living areas, which consist of two inflatable spaces with transparent CO2 inflated window pockets.

Fifth place went to the team from Northwestern University for their Martian 3Design habitat, which consists of an inner sphere closed-shell and an outer parabolic dome. According to the team, this habitat provides protection from the Martian elements through three design features. The first is the internal shape of the structure, which consists of a circular foundation, an inflatable pressure vessel that serves as the main living area, and the outer shell.

The second feature is the entryway system, which extend from opposite ends of the structure and serves as entrances and exits and could provide junctions with future pods. The third feature is the cross-beams that are the structural backbone of the dome and are optimized for pressure-loading under Martian gravity and atmospheric conditions, and provide continuous protection from radiation and the elements.

The interior layout is based on the NASA Hawai’i Space Exploration Analog and Simulation (HI-SEAS) habitat, and is divided between “wet areas” and “dry areas”. These areas are placed on opposite sides of the habitat to optimize the use of resources by concentrated in them on one side (rather than have them running throughout that habitat), and space is also divided by a central, retractable wall that separates the interior into public and private areas.

Together, these concepts embody the aims of the 3D-Printed Habitat Centennial Challenge, which is to harness the talents of citizen inventors to develop the technologies necessary to build sustainable shelters that will one-day allow humans to live on the Moon, Mars and beyond. As Lex Akers, dean of the Caterpillar College of Engineering and Technology at Bradley University, said of the competition:

“We are encouraging a wide range of people to come up with innovative designs for how they envision a habitat on Mars. The virtual levels allow teams from high schools, universities and businesses that might not have access to large 3D printers to still be a part of the competition because they can team up with those who do have access to such machinery for the final level of the competition.”

Carrying on in the tradition of the Centennial Prizes, NASA is seeking public engagement with this competition to promote interest in space exploration and address future challenges. It also seeks to leverage new technologies in order to solve the many engineering, technical and logistical problems presented by space travel. Someday, if and when human beings are living on the Moon, Mars, and other locations in the Solar System, the habitats they call home could very well be the work of students, citizen inventors and space enthusiasts.

For more information on the 3-D Pinrted Habitat Challenge, check out the competition web page.

Further Reading: NASA

Astronomy Cast Ep. 470: Best Modern Sci Fi for the Science Lover – Part 2: 3D Printing

Our journey through interesting science fiction, this time we talk about speculative fiction dealing with materials science, nanotechnology and 3D printing. It’s a staple in Star Trek, but what other stories deal with it?

We usually record Astronomy Cast every Friday at 3:00 pm EST / 12:00 pm PST / 20:00 PM UTC. You can watch us live on AstronomyCast.com, or the AstronomyCast YouTube page.

Visit the Astronomy Cast Page to subscribe to the audio podcast!

If you would like to support Astronomy Cast, please visit our page at Patreon here – https://www.patreon.com/astronomycast. We greatly appreciate your support!

If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!

Colonizing the Inner Solar System

Colonizing The Inner Solar System
Colonizing The Inner Solar System


Science fiction has told us again and again, we belong out there, among the stars. But before we can build that vast galactic empire, we’ve got to learn how to just survive in space. Fortunately, we happen to live in a Solar System with many worlds, large and small that we can use to become a spacefaring civilization.

This is half of an epic two-part article that I’m doing with Isaac Arthur, who runs an amazing YouTube channel all about futurism, often about the exploration and colonization of space. Make sure you subscribe to his channel.

This article is about colonizing the inner Solar System, from tiny Mercury, the smallest planet, out to Mars, the focus of so much attention by Elon Musk and SpaceX.  In the other article, Isaac will talk about what it’ll take to colonize the outer Solar System, and harness its icy riches. You can read these articles in either order, just read them both.

At the time I’m writing this, humanity’s colonization efforts of the Solar System are purely on Earth. We’ve exploited every part of the planet, from the South Pole to the North, from huge continents to the smallest islands. There are few places we haven’t fully colonized yet, and we’ll get to that.

But when it comes to space, we’ve only taken the shortest, most tentative steps. There have been a few temporarily inhabited space stations, like Mir, Skylab and the Chinese Tiangong Stations.

Our first and only true colonization of space is the International Space Station, built in collaboration with NASA, ESA, the Russian Space Agency and other countries. It has been permanently inhabited since November 2nd, 2000.  Needless to say, we’ve got our work cut out for us.

NASA astronaut Tracy Caldwell Dyson, an Expedition 24 flight engineer in 2010, took a moment during her space station mission to enjoy an unmatched view of home through a window in the Cupola of the International Space Station, the brilliant blue and white part of Earth glowing against the blackness of space. Credits: NASA
NASA astronaut Tracy Caldwell Dyson, an Expedition 24 flight engineer in 2010, took a moment during her space station mission to enjoy an unmatched view of home through a window in the Cupola of the International Space Station, the brilliant blue and white part of Earth glowing against the blackness of space. Credits: NASA

Before we talk about the places and ways humans could colonize the rest of the Solar System, it’s important to talk about what it takes to get from place to place.

Just to get from the surface of Earth into orbit around our planet, you need to be going about 10 km/s sideways. This is orbit, and the only way we can do it today is with rockets. Once you’ve gotten into Low Earth Orbit, or LEO, you can use more propellant to get to other worlds.

If you want to travel to Mars, you’ll need an additional 3.6 km/s in velocity to escape Earth gravity and travel to the Red Planet. If you want to go to Mercury, you’ll need another 5.5 km/s.

And if you wanted to escape the Solar System entirely, you’d need another 8.8 km/s. We’re always going to want a bigger rocket.

The most efficient way to transfer from world to world is via the Hohmann Transfer. This is where you raise your orbit and drift out until you cross paths with your destination. Then you need to slow down, somehow, to go into orbit.

One of our primary goals of exploring and colonizing the Solar System will be to gather together the resources that will make future colonization and travel easier. We need water for drinking, and to split it apart for oxygen to breathe. We can also turn this water into rocket fuel. Unfortunately, in the inner Solar System, water is a tough resource to get and will be highly valued.

We need solid ground. To build our bases, to mine our resources, to grow our food, and to protect us from the dangers of space radiation. The more gravity we can get the better, since low gravity softens our bones, weakens our muscles, and harms us in ways we don’t fully understand.

Each world and place we colonize will have advantages and disadvantages. Let’s be honest, Earth is the best place in the Solar System, it’s got everything we could ever want and need. Everywhere else is going to be brutally difficult to colonize and make self-sustaining.

We do have one huge advantage, though. Earth is still here, we can return whenever we like. The discoveries made on our home planet will continue to be useful to humanity in space through communications, and even 3D printing. Once manufacturing is sophisticated enough, a discovery made on one world could be mass produced half a solar system away with the right raw ingredients.

We will learn how to make what we need, wherever we are, and how to transport it from place to place, just like we’ve always done.

Mercury, as imaged by the MESSENGER spacecraft, revealing parts of the never seen by human eyes. Image Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
Mercury, as imaged by the MESSENGER spacecraft, revealing parts of the never seen by human eyes. Image Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Mercury is the closest planet from the Sun, and one of the most difficult places that we might attempt the colonize. Because it’s so close to the Sun, it receives an enormous amount of energy. During the day, temperatures can reach 427 C, but without an atmosphere to trap the heat, night time temperatures dip down to -173 C. There’s essentially no atmosphere, 38% the gravity of Earth, and a single solar day on Mercury lasts 176 Earth days.

Mercury does have some advantages, though. It has an average density almost as high as Earth, but because of its smaller size, it actually means it has a higher percentage of metal than Earth. Mercury will be incredibly rich in metals and minerals that future colonists will need across the Solar System.

With the lower gravity and no atmosphere, it’ll be far easier to get that material up into orbit and into transfer trajectories to other worlds.

But with the punishing conditions on the planet, how can we live there? Although the surface of Mercury is either scorching or freezing, NASA’s MESSENGER spacecraft turned up regions of the planet which are in eternal shadow near the poles. In fact, these areas seem to have water ice, which is amazing for anywhere this close to the Sun.

Images of Mercury's northern polar region, provided by MESSENGER. Credit: NASA/JPL
Images of Mercury’s northern polar region, provided by MESSENGER. Credit: NASA/JPL

You could imagine future habitats huddled into those craters, pulling in solar power from just over the crater rim, using the reservoirs of water ice for air, fuel and water.

High powered solar robots could scour the surface of Mercury, gathering rare metals and other minerals to be sent off world. Because it’s bathed in the solar winds, Mercury will have large deposits of Helium-3, useful for future fusion reactors.

Over time, more and more of the raw materials of Mercury will find their way to the resource hungry colonies spread across the Solar System.

It also appears there are lava tubes scattered across Mercury, hollows carved out by lava flows millions of years ago. With work, these could be turned into safe, underground habitats, protected from the radiation, high temperatures and hard vacuum on the surface.

With enough engineering ability, future colonists will be able to create habitats on the surface, wherever they like, using a mushroom-shaped heat shield to protect a colony built on stilts to keep it off the sun-baked surface.

Mercury is smaller than Mars, but is a good deal denser, so it has about the same gravity, 38% of Earth’s. Now that might turn out to be just fine, but if we need more, we have the option of using centrifugal force to increase it. Space Stations can generate artificial gravity by spinning, but you can combine normal gravity with spin-gravity to create a stronger field than either would have.

So our mushroom habitat’s stalk could have an interior spinning section with higher gravity for those living inside it. You get a big mirror over it, shielding you from solar radiation and heat, you have stilts holding it off the ground, like roots, that minimize heat transfer from the warmer areas of ground outside the shield, and if you need it you have got a spinning section inside the stalk. A mushroom habitat.

Venus as photographed by the Pioneer spacecraft in 1978. Some exoplanets may suffer the same fate as this scorched world. Credit: NASA/JPL/Caltech
Venus as photographed by the Pioneer spacecraft in 1978. Credit: NASA/JPL/Caltech

Venus is the second planet in the Solar System, and it’s the evil twin of Earth. Even though it has roughly the same size, mass and surface gravity of our planet, it’s way too close to the Sun. The thick atmosphere acts like a blanket, trapping the intense heat, pushing temperatures at the surface to 462 C.

Everywhere on the planet is 462 C, so there’s no place to go that’s cooler. The pure carbon dioxide atmosphere is 90 times thicker than Earth, which is equivalent to being a kilometer beneath the ocean on Earth.

In the beginning, colonizing the surface of Venus defies our ability. How do you survive and stay cool in a thick poisonous atmosphere, hot enough to melt lead? You get above it.

One of the most amazing qualities of Venus is that if you get into the high atmosphere, about 52.5 kilometers up, the air pressure and temperature are similar to Earth. Assuming you can get above the poisonous clouds of sulphuric acid, you could walk outside a floating colony in regular clothes, without a pressure suit. You’d need a source of breathable air, though.

Even better, breathable air is a lifting gas in the cloud tops of Venus. You could imagine a future colony, filled with breathable air, floating around Venus. Because the gravity on Venus is roughly the same as Earth, humans wouldn’t suffer any of the side effects of microgravity. In fact, it might be the only place in the entire Solar System other than Earth where we don’t need to account for low gravity.

Artist's concept of a Venus cloud city — a possible future outcome of the High Altitude Venus Operational Concept (HAVOC) plan. Credit: Advanced Concepts Lab at NASA Langley Research Center
Artist’s concept of a Venus cloud city — a possible future outcome of the High Altitude Venus Operational Concept (HAVOC) plan. Credit: Advanced Concepts Lab at NASA Langley Research Center

Now the day on Venus is incredibly long, 243 earth days, so if you stay over the same place the whole time it would be light for four months then dark for four months. Not ideal for solar power on a first glance, but Venus turns so slowly that even at the equator you could stay ahead of the sunset at a fast walk.

So if you have floating colonies it would take very little effort to stay constantly on the light side or dark side or near the twilight zone of the terminator. You are essentially living inside a blimp, so it may as well be mobile. And on the day side it would only take a few solar panels and some propellers to stay ahead. And since it is so close to the Sun, there’s plenty of solar power. What could you do with it?

The atmosphere itself would probably serve as a source of raw materials. Carbon is the basis for all life on Earth. We’ll need it for food and building materials in space. Floating factories could process the thick atmosphere of Venus, to extract carbon, oxygen, and other elements.

Heat resistant robots could be lowered down to the surface to gather minerals and then retrieved before they’re cooked to death.

Venus does have a high gravity, so launching rockets up into space back out of Venus’ gravity well will be expensive.

Over longer periods of time, future colonists might construct large solar shades to shield themselves from the scorching heat, and eventually, even start cooling the planet itself.

Earth as seen on July 6, 2015 from a distance of one million miles by a NASA scientific camera aboard the Deep Space Climate Observatory spacecraft. Credits: NASA
Earth as seen on July 6, 2015 from a distance of one million miles by a NASA scientific camera aboard the Deep Space Climate Observatory spacecraft. Credits: NASA

The next planet from the Sun is Earth, the best planet in the Solar System. One of the biggest advantages of our colonization efforts will be to get heavy industry off our planet and into space. Why pollute our atmosphere and rivers when there’s so much more space… in space.

Over time, more and more of the resource gathering will happen off world, with orbital power generation, asteroid mining, and zero gravity manufacturing. Earth’s huge gravity well means that it’s best to bring materials down to Earth, not carry them up to space.

However, the normal gravity, atmosphere and established industry of Earth will allow us to manufacture the lighter high tech goods that the rest of the Solar System will need for their own colonization efforts.

But we haven’t completely colonized Earth itself. Although we’ve spread across the land, we know very little about the deep ocean. Future colonies under the oceans will help us learn more about self-sufficient colonies, in extreme environments. The oceans on Earth will be similar to the oceans on Europa or Enceladus, and the lessons we learn here will teach us to live out there.

As we return to space, we’ll colonize the region around our planet. We’ll construct bigger orbital colonies in Low Earth Orbit, building on our lessons from the International Space Station.

One of the biggest steps we need to take, is understanding how to overcome the debilitating effects of microgravity: the softened bones, weakened muscles and more. We need to perfect techniques for generating artificial gravity where there is none.

A 1969 station concept. The station was to rotate on its central axis to produce artificial gravity. The majority of early space station concepts created artificial gravity one way or another in order to simulate a more natural or familiar environment for the health of the astronauts. Credit: NASA
A 1969 station concept. The station was to rotate on its central axis to produce artificial gravity. The majority of early space station concepts created artificial gravity one way or another in order to simulate a more natural or familiar environment for the health of the astronauts. Credit: NASA

The best technique we have is rotating spacecraft to generate artificial gravity. Just like we saw in 2001, and The Martian, by rotating all or a portion of a spacecraft, you can generated an outward centrifugal force that mimics the acceleration of gravity. The larger the radius of the space station, the more comfortable and natural the rotation feels.

Low Earth Orbit also keeps a space station within the Earth’s protective magnetosphere, limiting the amount of harmful radiation that future space colonists will experience.

Other orbits are useful too, including geostationary orbit, which is about 36,000 kilometers above the surface of the Earth. Here spacecraft orbit the Earth at exactly the same rate as the rotation of Earth, which means that stations appear in fixed positions above our planet, useful for communication.

Geostationary orbit is higher up in Earth’s gravity well, which means these stations will serve a low-velocity jumping off points to reach other places in the Solar System. They’re also outside the Earth’s atmospheric drag, and don’t require any orbital boosting to keep them in place.

By perfecting orbital colonies around Earth, we’ll develop technologies for surviving in deep space, anywhere in the Solar System. The same general technology will work anywhere, whether we’re in orbit around the Moon, or out past Pluto.

When the technology is advanced enough, we might learn to build space elevators to carry material and up down from Earth’s gravity well. We could also build launch loops, electromagnetic railguns that launch material into space. These launch systems would also be able to loft supplies into transfer trajectories from world to world throughout the Solar System.

Earth orbit, close to the homeworld gives us the perfect place to develop and perfect the technologies we need to become a true spacefaring civilization. Not only that, but we’ve got the Moon.

Sample collection on the surface of the Moon. Apollo 16 astronaut Charles M. Duke Jr. is shown collecting samples with the Lunar Roving Vehicle in the left background. Image: NASA
Sample collection on the surface of the Moon. Apollo 16 astronaut Charles M. Duke Jr. is shown collecting samples with the Lunar Roving Vehicle in the left background. Image: NASA

The Moon, of course, is the Earth’s only natural satellite, which orbits us at an average distance of about 400,000 kilometers. Almost ten times further than geostationary orbit.

The Moon takes a surprising amount of velocity to reach from Low Earth Orbit. It’s close, but expensive to reach, thrust speaking.

But that fact that it’s close makes the Moon an ideal place to colonize. It’s close to Earth, but it’s not Earth. It’s airless, bathed in harmful radiation and has very low gravity. It’s the place that humanity will learn to survive in the harsh environment of space.

But it still does have some resources we can exploit. The lunar regolith, the pulverized rocky surface of the Moon, can be used as concrete to make structures. Spacecraft have identified large deposits of water at the Moon’s poles, in its permanently shadowed craters. As with Mercury, these would make ideal locations for colonies.

Here, a surface exploration crew begins its investigation of a typical, small lava tunnel, to determine if it could serve as a natural shelter for the habitation modules of a Lunar Base. Credit: NASA's Johnson Space Center
Here, a surface exploration crew begins its investigation of a typical, small lava tunnel, to determine if it could serve as a natural shelter for the habitation modules of a Lunar Base. Credit: NASA’s Johnson Space Center

Our spacecraft have also captured images of openings to underground lava tubes on the surface of the Moon. Some of these could be gigantic, even kilometers high. You could fit massive cities inside some of these lava tubes, with room to spare.

Helium-3 from the Sun rains down on the surface of the Moon, deposited by the Sun’s solar wind, which could be mined from the surface and provide a source of fuel for lunar fusion reactors. This abundance of helium could be exported to other places in the Solar System.

The far side of the Moon is permanently shadowed from Earth-based radio signals, and would make an ideal location for a giant radio observatory. Telescopes of massive size could be built in the much lower lunar gravity.

We talked briefly about an Earth-based space elevator, but an elevator on the Moon makes even more sense. With the lower gravity, you can lift material off the surface and into lunar orbit using cables made of materials we can manufacture today, such as Zylon or Kevlar.

One of the greatest threats on the Moon is the dusty regolith itself. Without any kind of weathering on the surface, these dust particles are razor sharp, and they get into everything. Lunar colonists will need very strict protocols to keep the lunar dust out of their machinery, and especially out of their lungs and eyes, otherwise it could cause permanent damage.

Artist's impression of a Near-Earth Asteroid passing by Earth. Credit: ESA
Artist’s impression of a Near-Earth Asteroid passing by Earth. Credit: ESA

Although the vast majority of asteroids in the Solar System are located in the main asteroid belt, there are still many asteroids orbiting closer to Earth. These are known as the Near Earth Asteroids, and they’ve been the cause of many of Earth’s great extinction events.

These asteroids are dangerous to our planet, but they’re also an incredible resource, located close to our homeworld.

The amount of velocity it takes to get to some of these asteroids is very low, which means travel to and from these asteroids takes little energy. Their low gravity means that extracting resources from their surface won’t take a tremendous amount of energy.

And once the orbits of these asteroids are fully understood, future colonists will be able to change the orbits using thrusters. In fact, the same system they use to launch minerals off the surface would also push the asteroids into safer orbits.

These asteroids could be hollowed out, and set rotating to provide artificial gravity. Then they could be slowly moved into safe, useful orbits, to act as space stations, resupply points, and permanent colonies.

There are also gravitationally stable points at the Sun-Earth L4 and L5 Lagrange Points. These asteroid colonies could be parked there, giving us more locations to live in the Solar System.

Mosaic of the Valles Marineris hemisphere of Mars, similar to what one would see from orbital distance of 2500 km. Credit: NASA/JPL-Caltech
Mosaic of the Valles Marineris hemisphere of Mars, similar to what one would see from orbital distance of 2500 km. Credit: NASA/JPL-Caltech

The future of humanity will include the colonization of Mars, the fourth planet from the Sun. On the surface, Mars has a lot going for it. A day on Mars is only a little longer than a day on Earth. It receives sunlight, unfiltered through the thin Martian atmosphere. There are deposits of water ice at the poles, and under the surface across the planet.

Martian ice will be precious, harvested from the planet and used for breathable air, rocket fuel and water for the colonists to drink and grow their food. The Martian regolith can be used to grow food. It does have have toxic perchlorates in it, but that can just be washed out.

The lower gravity on Mars makes it another ideal place for a space elevator, ferrying goods up and down from the surface of the planet.

The area depicted is Noctis Labyrinthus in the Valles Marineris system of enormous canyons. The scene is just after sunrise, and on the canyon floor four miles below, early morning clouds can be seen. The frost on the surface will melt very quickly as the Sun climbs higher in the Martian sky. Credit: NASA
The area depicted is Noctis Labyrinthus in the Valles Marineris system of enormous canyons. The scene is just after sunrise, and on the canyon floor four miles below, early morning clouds can be seen. The frost on the surface will melt very quickly as the Sun climbs higher in the Martian sky. Credit: NASA

Unlike the Moon, Mars has a weathered surface. Although the planet’s red dust will get everywhere, it won’t be toxic and dangerous as it is on the Moon.

Like the Moon, Mars has lava tubes, and these could be used as pre-dug colony sites, where human Martians can live underground, protected from the hostile environment.

Mars has two big problems that must be overcome. First, the gravity on Mars is only a third that of Earth’s, and we don’t know the long term impact of this on the human body. It might be that humans just can’t mature properly in the womb in low gravity.

Researchers have proposed that Mars colonists might need to spend large parts of their day on rotating centrifuges, to simulate Earth gravity. Or maybe humans will only be allowed to spend a few years on the surface of Mars before they have to return to a high gravity environment.

The second big challenge is the radiation from the Sun and interstellar cosmic rays. Without a protective magnetosphere, Martian colonists will be vulnerable to a much higher dose of radiation. But then, this is the same challenge that colonists will face anywhere in the entire Solar System.

That radiation will cause an increased risk of cancer, and could cause mental health issues, with dementia-like symptoms. The best solution for dealing with radiation is to block it with rock, soil or water. And Martian colonists, like all Solar System colonists will need to spend much of their lives underground or in tunnels carved out of rock.

Two astronauts explore the rugged surface of Phobos. Mars, as it would appear to the human eye from Phobos, looms on the horizon. The mother ship, powered by solar energy, orbits Mars while two crew members inside remotely operate rovers on the Martian surface. The explorers have descended to the surface of Phobos in a small "excursion" vehicle, and they are navigating with the aid of a personal spacecraft, which fires a line into the soil to anchor the unit. The astronaut on the right is examining a large boulder; if the boulder weighed 1,000 pounds on Earth, it would weigh a mere pound in the nearly absent gravity field of Phobos. Credit: NASA/Pat Rawlings (SAIC)
Two astronauts explore the rugged surface of Phobos. Mars, as it would appear to the human eye from Phobos, looms on the horizon. The mother ship, powered by solar energy, orbits Mars while two crew members inside remotely operate rovers on the Martian surface. Credit: NASA/Pat Rawlings (SAIC)

In addition to Mars itself, the Red Planet has two small moons, Phobos and Deimos. These will serve as ideal places for small colonies. They’ll have the same low gravity as asteroid colonies, but they’ll be just above the gravity well of Mars. Ferries will travel to and from the Martian moons, delivering fresh supplies and sending Martian goods out to the rest of the Solar System.

We’re not certain yet, but there are good indicators these moons might have ice inside them, if so that is an excellent source of fuel and could make initial trips to Mars much easier by allowing us to send a first expedition to those moons, who then begin producing fuel to be used to land on Mars and to leave Mars and return home.

According to Elon Musk, if a Martian colony can reach a million inhabitants, it’ll be self-sufficient from Earth or any other world. At that point, we would have a true, Solar System civilization.

Now, continue on to the other half of this article, written by Isaac Arthur, where he talks about what it will take to colonize the outer Solar System. Where water ice is plentiful but solar power is feeble. Where travel times and energy require new technologies and techniques to survive and thrive.