The Canis Minor Constellation

View of the night sky in North Carolina, showing the constellations of Orion, Hyades, Canis Major and Canis Minor. Credit: NASA

Welcome back to Constellation Friday! Today, in honor of the late and great Tammy Plotner, we will be dealing with the “little dog” – the Canis Minor constellation!

In the 2nd century CE, Greek-Egyptian astronomer Claudius Ptolemaeus (aka. Ptolemy) compiled a list of all the then-known 48 constellations. This treatise, known as the Almagest, would be used by medieval European and Islamic scholars for over a thousand years to come, effectively becoming astrological and astronomical canon until the early Modern Age.

One of these constellations was Canis Minor, a small constellation in the northern hemisphere. As a relatively dim collection of stars, it contains only two particularly bright stars and only faint Deep Sky Objects. Today, it is one of the 88 constellations recognized by the International Astronomical Union, and is bordered by the Monoceros, Gemini, Cancer and Hydra constellation.

Name and Meaning:

Like most asterisms named by the Greeks and Romans, the first recorded mention of this constellation goes back to ancient Mesopotamia. Specifically, Canis Minor’s brightest stars – Procyon and Gomeisa – were mentioned in the Three Stars Each tablets (ca. 1100 BCE), where they were referred to as MASH.TAB.BA (or “twins”).

The Winter Hexagon, which contains parts of the Auriga, Canis Major, Canis Minor, Gemini, Monoceros, Orion, Taurus, Lepus and Eridanus constellations. Credit: constellation-guide.com
The Winter Hexagon, which contains parts of the Auriga, Canis Major, Canis Minor, Gemini, Monoceros, Orion, Taurus, Lepus and Eridanus constellations. Credit: constellation-guide.com

In the later texts that belong to the MUL.APIN, the constellation was given the name DAR.LUGAL (“the star which stands behind it”) and represented a rooster. According to ancient Greco-Roman mythology, Canis Minor represented the smaller of Orion’s two hunting dogs, though they did not recognize it as its own constellation.

In Greek mythology, Canis Minor is also connected with the Teumessian Fox, a beast turned into stone with its hunter (Laelaps) by Zeus. He then placed them in heaven as Canis Major (Laelaps) and Canis Minor (Teumessian Fox). According to English astronomer and biographer of constellation history Ian Ridpath:

“Canis Minor is usually identified as one of the dogs of Orion. But in a famous legend from Attica (the area around Athens), recounted by the mythographer Hyginus, the constellation represents Maera, dog of Icarius, the man whom the god Dionysus first taught to make wine. When Icarius gave his wine to some shepherds for tasting, they rapidly became drunk. Suspecting that Icarius had poisoned them, they killed him. Maera the dog ran howling to Icarius’s daughter Erigone, caught hold of her dress with his teeth and led her to her father’s body. Both Erigone and the dog took their own lives where Icarius lay.

“Zeus placed their images among the stars as a reminder of the unfortunate affair. To atone for their tragic mistake, the people of Athens instituted a yearly celebration in honour of Icarius and Erigone. In this story, Icarius is identified with the constellation Boötes, Erigone is Virgo and Maera is Canis Minor.”

Canis Minor, as depicted by Johann Bode in his 1801 work Uranographia. Credit: Wikipedia Commons/Alessio Govi
Canis Minor, as depicted by Johann Bode in his 1801 work Uranographia. Credit: Wikipedia Commons/Alessio Govi

To the ancient Egyptians, this constellation represented Anubis, the jackal god. To the ancient Aztecs, the stars of Canis Minor were incorporated along with stars from Orion and Gemini into as asterism known as “Water”, which was associated with the day. Procyon was also significant in the cultural traditions of the Polynesians, the Maori people of New Zealand, and the Aborigines of Australia.

In Chinese astronomy, the stars corresponding to Canis Minor were part of the The Vermilion Bird of the South. Along with stars from Cancer and Gemini, they formed the asterisms known as the Northern and Southern River, as well as the asterism Shuiwei (“water level”), which represented an official who managed floodwaters or a marker of the water level.

History of Observation:

Canis Minor was one of the original 48 constellations included by Ptolemy in his the Almagest. Though not recognized as its own asterism by the Ancient Greeks, it was added by the Romans as the smaller of Orion’s hunting dogs. Thanks to Ptolemy’s inclusion of it in his 2nd century treatise, it would go on to become part of astrological and astronomical traditions for a thousand years to come.

For medieval Arabic astronomers, Canis Minor continued to be depicted as a dog, and was known as “al-Kalb al-Asghar“. It was included in the Book of Fixed Stars by Abd al-Rahman al-Sufi, who assigned a canine figure to his stellar diagram. Procyon and Gomeisa were also named for their proximity to Sirius; Procyon being named the “Syrian Sirius (“ash-Shi’ra ash-Shamiya“) and Gomeisa the “Sirius with bleary eyes” (“ash-Shira al-Ghamisa“).

Monoceros and the obsolete constellation Atelier Typographique. Credit: Library of Congress
The constellation Canis Minor, shown alongside Monoceros and the obsolete constellation Atelier Typographique. Credit: Library of Congress

The constellation was included in Syndey Hall’s Urania’s Mirror (1825) alongside Monoceros and the now obsolete constellation Atelier Typographique. Many alternate names were suggested between the 17th and 19th centuries in an attempt to simplify celestial charts. However, Canis Minor has endured; and in 1922, it became one the 88 modern constellations to be recognized by the IAU.

Notable Features:

Canis Minor contains two primary stars and 14 Bayer/Flamsteed designated stars. It’s brightest star, Procyon (Alpha Canis Minoris), is also the seventh brightest star in the sky. With an apparent visual magnitude of 0.34, Procyon is not extraordinarily bright in itself. But it’s proximity to the Sun – 11.41 light years from Earth – ensures that it appears bright in the night sky.

The star’s name is derived from the Greek word which means “before the dog”, a reference to the fact that it appears to rise before Sirius (the “Dog Star”) when observed from northern latitudes. Procyon is a binary star system, composed of a white main sequence star (Procyon A) and Procyon B, a DA-type faint white dwarf as the companion.

Procyon is part of the Winter Triangle asterism, along with Sirius in Canis Major and Betelgeuse in the constellation Orion. It is also part of the Winter Hexagon, along with the stars Capella in Auriga, Aldebaran in Taurus, Castor and Pollux in Gemini, Rigel in Orion and Sirius in Canis Major.

The stars of the Winter Triangle and the Winter Hexagon. Credit: constellation-guide.com
The stars of the Winter Triangle and the Winter Hexagon. Credit: constellation-guide.com

Next up is Gomeisa, the second brightest star in Canis Minor. This hot, B8-type main sequence star is classified as a Gamma Cassiopeiae variable, which means that it rotates rapidly and exhibits irregular variations in luminosity because of the outflow of matter. Gomeisa is approximately 170 light years from Earth and the name is derived from the Arabic “al-ghumaisa” (the bleary-eyed woman”).

Canis Minor also has a number of Deep Sky Objects located within it, but all are very faint and difficult to observe. The brightest is the spiral galaxy NGC 2485 (apparent magnitude of 12.4), which is located 3.5 degrees northeast of Procyon. There is one meteor shower associated with this constellation, which are the Canis-Minorids.

Finding Canis Minor:

Though it is relatively faint, Canis Minor and its stars can be viewed using binoculars. Start with the brightest, Procyon – aka. Alpha Canis Minoris (Alpha CMi). If you’re unsure of which bright star is, you’ll find it in the center of the diamond shape grouping in the southwest area. Known to the ancients as Procyon – “The Little Dog Star” – it’s the seventh brightest star in the night sky and the 13th nearest to our solar system.

For over 100 years, astronomers have known this brilliant star had a companion. Being 15,000 times fainter than the parent star, Procyon B is an example of a white dwarf whose diameter is only about twice that of Earth. But its density exceeds two tons per cubic inch! (Or, a third of a metric ton per cubic centimeter). While only very large telescopes can resolve this second closest of the white dwarf stars, even the moonlight can’t dim its beauty.

The Winter Triangle. Credit: constellation-guide.com/Stellarium software
The Winter Triangle. Credit: constellation-guide.com/Stellarium software

Now hop over to Beta CMi. Known by the very strange name of Gomeisa (“bleary-eyed woman”), it refers to the weeping sister left behind when Sirius and Canopus ran to the south to save their lives. Located about 170 light years away from our Solar System, Beta is a blue-white class B main sequence dwarf star with around 3 times the mass of our Sun and a stellar luminosity over 250 times that of Sol.

Gomeisa is a fast rotator, spinning at its equator with a speed of at least 250 kilometers per second (125 times our  Sun’s rotation speed) giving the star a rotation period of about a day. Sunspots would appear to move very quickly there! According to Jim Kaler, Professor Emeritus of Astronomy at the University of Illinois:

“Since we may be looking more at the star’s pole than at its equator, it may be spinning much faster, and indeed is rotating so quickly that it is surrounded by a disk of matter that emits radiation, rendering Gomeisa a “B-emission” star rather like Gamma Cassiopeiae and Alcyone. Like these two, Gomeisa is distinguished by having the size of its disk directly measured, the disk’s diameter almost four times larger than the star. Like quite a number of hot stars (including Adhara, Nunki, and many others), Gomeisa is also surrounded by a thin cloud of dusty interstellar gas that it helps to heat.”

Now hop over to Gamma Canis Minoris, an orange K-type giant with an apparent magnitude of +4.33. It is a spectroscopic binary, has an unresolved companion which has an orbital period of 389 days, and is approximately 398 light years from Earth. And next is Epsilon Canis Minoris, a yellow G-type bright giant (apparent magnitude of +4.99) which is approximately 990 light years from Earth.

The location of Canis Minor in the northern hemisphere. Credit: IAU/Sky&Telescope magazine
The location of Canis Minor in the northern hemisphere. Credit: IAU/Sky&Telescope magazine

For smaller telescopes, the double star Struve 1149 is a lovely sight, consisting of a yellow primary star and a faintly blue companion. For larger telescopes and GoTo telescopes, try NGC 2485 (RA 07 56.7 Dec +07 29), a magnitude 13 spiral galaxy that has a small, round glow, sharp edges and a very bright, stellar nucleus. If you want one that’s even more challenging, try NGC 2508 (RA 08 02 0 Dec +08 34).

Canis Minor lies in the second quadrant of the northern hemisphere (NQ2) and can be seen at latitudes between +90° and -75°. The neighboring constellations are Cancer, Gemini, Hydra, and Monoceros, and it is best visible during the month of March.

We have written many interesting articles about the constellation here at Universe Today. Here is What Are The Constellations?What Is The Zodiac?, and Zodiac Signs And Their Dates.

Be sure to check out The Messier Catalog while you’re at it!

For more information, check out the IAUs list of Constellations, and the Students for the Exploration and Development of Space page on Canes Venatici and Constellation Families.

Sources:

The Canis Major Constellation

Welcome back to Constellation Friday! Today, in honor of the late and great Tammy Plotner, we will be dealing with the “big dog” itself – the Canis Major constellation!

In the 2nd century CE, Greek-Egyptian astronomer Claudius Ptolemaeus (aka. Ptolemy) compiled a list of all the then-known 48 constellations. This treatise, known as the Almagest, would be used by medieval European and Islamic scholars for over a thousand years to come, effectively becoming astrological and astronomical canon until the early Modern Age.

One of these constellations included in Ptolemy’s collection was Canis Major, an asterism located in the southern celestial hemisphere. As one of two constellations representing “the dogs” (which are associated with “the hunter” Orion) this constellation contains many notable stars and Deep Sky Objects. Today, it is one of the 88 constellations recognized by the IAU, and is bordered by Monoceros, Lepus, Columba and Puppis.

Name and Meaning:

The constellation of Canis Major literally translates to “large dog” in Latin. The first recorded mentions of any of the stars associated with this asterism are traced back to Ancient Mesopotamia, where the Babylonians recorded its existence in their Three Star Each tablets (ca. 1100 BCE). In this account, Sirus (KAK.SI.DI) was seen as the arrow aimed towards Orion, while Canis Major and part of Puppis were seen as a bow.

Artist's impression of a white dwarf star in orbit around Sirius (a white supergiant). Credit: NASA, ESA and G. Bacon (STScI)
Artist’s impression of a white dwarf star in orbit around Sirius (a white supergiant). Credit: NASA, ESA and G. Bacon (STScI)

To the ancient Greeks, Canis Major represented a dog following the great hunter Orion. Named Laelaps, or the hound of Prociris in some accounts, this dog was so swift that Zeus elevated it to the heavens. Its Alpha star, Sirius, is the brightest object in the sky (besides the Sun, the Moon and nearest planets). The star’s name means “glowing” or “scorching” in Greek, since the summer heat occurred just after Sirius’ helical rising.

The Ancient Greeks referred to such times in the summer as “dog days”, as only dogs would be mad enough to go out in the heat. This association is what led to Sirius coming to be known as the “Dog Star”. Depending on the faintness of stars considered, Canis Major resembles a dog facing either above or below the ecliptic. When facing below, since Sirius was considered a dog in its own right, early Greek mythology sometimes considered it to be two headed.

Together with the area of the sky that is deserted (now considered as the new and extremely faint constellations Camelopardalis and Lynx), and the other features of the area in the Zodiac sign of Gemini (i.e. the Milky Way, and the constellations Gemini, Orion, Auriga, and Canis Minor), this may be the origin of the myth of the cattle of Geryon, which forms one of The Twelve Lab ours of Heracles.

Sirius and the "Summer Triangle", . Credit: Greg Bacon/ STScI/ESA/NASA
Artist’s impression of Sirius and the “Summer Triangle”. Credit: G. Bacon (STScI)/ESA/NASA

Sirius has been an object of wonder and veneration to all ancient peoples throughout human history. In fact, the Arabic word Al Shi’ra resembles the Greek, Roman, and Egyptian names suggesting a common origin in Sanskrit, in which the name Surya (the Sun God) simply means the “shining one.” In the ancient Vedas this star was known as the Chieftain’s star; and in other Hindu writings, it is referred to as Sukra – the Rain God, or Rain Star.

Sirius was revered as the Nile Star, or Star of Isis, by the ancient Egyptians. Its annual appearance just before dawn at the Summer Solstice heralded the flooding of the Nile, upon which Egyptian agriculture depended. This helical rising is referred to in many temple inscriptions, where the star is known as the Divine Sepat, identified as the soul of Isis.

To the Chinese, the stars of Canis Major were associated with several different asterisms – including the Military Market, the Wild Cockerel, and the Bow and Arrow. All of these lay in the Vermilion Bird region of the zodiac, on of four symbols of the Chinese constellations, which is associated with the South and Summer.  In this tradition, Sirius was known Tianlang (which means “Celestial Wolf”) and denoted invasion and plunder.

This constellation and its most prominent stars were also featured in the astrological traditions of the Maori people of New Zealand, the Aborigines of Australia, and the Polynesians of the South Pacific.

Isis depicted with outstretched wings in an ancient wall painting (ca. 1360 BCE). Credit: Wikipedia Commons/Ägyptischer Maler
Isis depicted with outstretched wings in an ancient wall painting (ca. 1360 BCE). Credit: Wikipedia Commons/Ägyptischer Maler

History of Observation:

This constellation was one of the original 48 that Ptolemy included in his 2nd century BCE work the Amalgest. It would remain a part of the astrological traditions of Europe and the Near East for millennia. The Romans would later add Canis Minor, appearing as Orion’s second dog, using stars to the north-west of Canis Major.

In medieval Arab astronomy, the constellation became Al Kalb al Akbar, (“the Greater Dog”), which was transcribed as Alcheleb Alachbar by European astronomers by the 17th century. In 1862, Alvan Graham Clark, Jr. made an interesting discovery while testing an 18″ refractor telescope at the Dearborn Observatory at Northwestern University in Illinois.

In the course of observing Sirius, he discovered that the bright star had a faint companion – a white dwarf later named Sirius B (sometimes called “the Pup”). These observations confirmed what Friedrich Bessel proposed in 1844, based on measurements of Sirius A’s wobble. In 1922, the International Astronomical Union would include Canis Major as one of the 88 recognized constellations.

Canis Major as depicted in Urania's Mirror, a set of constellation cards published in London c.1825. Credit: Library of Congress
Canis Major as depicted in Urania’s Mirror, a set of constellation cards published in London c.1825. Credit: Library of Congress

Notable Features:

Canis Major has several notable stars, the brightest being Sirius A. It’s luminosity in the night sky is due to its proximity (8.6 light years from Earth), and the fact that it is a magnitude -1.6 star. Because of this, it produces so much light that it often appears to be flashing in vibrant colors, an effect caused by the interaction of its light with our atmosphere.

Then there’s Beta Canis Majoris, a variable magnitude blue-white giant star whose traditional name (Murzim) means the “The Heralder”. It is a Beta Cephei variable star and is currently in the final stages of using its hydrogen gas for fuel. It will eventually exhaust this supply and begin using helium for fuel instead. Beta Canis Majoris is located near the far end of the Local Bubble – a cavity in the local Interstellar medium though which the Sun is traveling.

Next up is Eta Canis Majoris, known by its traditional name as Aludra (in Arabic, “al-aora”, meaning “the virgin”). This star shines brightly in the skies in spite of its distance from Earth (approx. 2,000 light years from Earth) due to it being many times brighter (absolute magnitude) than the Sun. A blue supergiant, Aludra has only been around a fraction of the time of our Sun, yet is already in the last stages of its life.

Another “major” star in this constellation is VY Canis Majoris (VY CMa), a red hypergiant star located in the constellation Canis Major. In addition to being one of the largest known stars, it is also one of the most luminous ever observed. It is located about 3,900 light years (~1.2 kiloparsecs) away from Earth and is estimated to have 1,420 solar radii.

VY Canis Majoris. The biggest known star.
Size comparison between the Sun and VY Canis Majoris, which once held the title of the largest known star in the Universe. Credit: Wikipedia Commons/Oona Räisänen

Canis Major is also home to several Deep Sky Objects, the most notable being Messier 41 (NGC 2287). Containing about 100 stars, this impressive star cluster contains several red giant stars. The brightest of these is spectral type K3, and located near M41’s center. The cluster is estimated to be between 190 and 240 million years old, and its is believed to be 25 to 26 light years in diameter.

Then there’s the galactic star cluster NGC 2362. First seen by Giovanni Hodierna in 1654 and rediscovered William Herschel in 1783, this magnificent star cluster may be less than 5 million years old and show shows signs of nebulosity – the remains of the gas cloud from which it formed. What makes it even more special is the presence of Tau Canis Major.

Easily distinguished as the brightest star in the cluster, Tau is a luminous supergiant of spectral type O8. With a visual magnitude of 4.39, it is 280,000 times more luminous than Sol. Tau CMa is also brighter component of a spectroscopic binary and studies of NGC 2362 suggest that it will survive longer than the Pleiades cluster (which will break up before Tau does), but not as long as the Hyades cluster.

Then there’s NGC 2354, a magnitude 6.5 star cluster. While it will likely appear as a small, hazy patch to binoculars, NGC 2354 is actually a rich galactic cluster containing around 60 metal-poor members. As aperture and magnification increase, the cluster shows two delightful circle-like structures of stars.

The Canis Major Dwarf Galaxy - the Milky Way's current dinner. Image Credit: APOD
The Canis Major Dwarf Galaxy – currently recognized as being the closet neighbor to the Milky Way. Credit: APOD

For large telescopes and GoTo telescopes, there are several objects worth studying, like the Canis Major Dwarf Galaxy (RA 7 12 30 Dec -27 40 00). An irregular galaxy that is now thought to be the closest neighboring galaxy to our part of the Milky Way, it is located about 25,000 light-years away from our Solar System and 42,000 light-years from the Galactic Center.

It has a roughly elliptical shape and is thought to contain as many stars as the Sagittarius Dwarf Elliptical Galaxy, which was discovered in 2003 and thought to be the closest galaxy at the time. Although closer to the Earth than the center of the galaxy itself, it was difficult to detect because it is located behind the plane of the Milky Way, where concentrations of stars, gas and dust are densest.

Globular clusters thought to be associated with the Canis Major Dwarf galaxy include NGC 1851, NGC 1904, NGC 2298 and NGC 2808, all of which are likely to be a remnant of the galaxy’s globular cluster system before its accretion (or swallowing) into the Milky Way. NGC 1261 is another nearby cluster, but its velocity is different enough from that of the others to make its relation to the system unclear.

Finding Canis Major:

Finding Canis Major is quite easy, thanks to the presence of Sirius – the brightest star to grace the night sky. All you need to do is find Orion’s belt, discern the lower left edge of constellation (the star Kappa Orionis, or Saiph), and look south-west a few degrees. There, shining in all it glory, will be the “Dog Star”, with all the other stars stemming outwards from it.

The location of the Canis Major constellation in the southern sky. Credit: IAU
The location of the Canis Major constellation in the southern sky. Credit: IAU

Unfortunately, Sirius A’s luminosity means that the means that poor “Pup” hardly stands a chance of being seen. At magnitude 8.5 it could easily be caught in binoculars if it were on its own. To find it, you’ll need a mid-to-large telescope with a high power eyepiece and good viewing conditions – a stable evening (not night) when Sirius is as high in the sky as possible. It will still be quite faint, so spotting it will take time and patience.

Between Sirius at the northern tip, and Adhara at the south, you can also spot M41 residing almost about halfway. Using binoculars or telescopes, all one need do is aim about 4 degrees south of Sirius – about one standard field of view for binoculars, about one field of view for the average telescope finderscope, and about 6 fields of view for the average wide field, low power eyepiece.

Thousands of years later, Canis Major remains an important part of our astronomical heritage. Thanks largely to Sirius, for burning so brightly, it has always been seen as a significant cosmological marker. But as our understanding of the cosmos has improved (not to mention our instruments) we have come to find just how many impressive stars and stellar objects are located in this region of space.

We have written many interesting articles about the constellation here at Universe Today. Here is What Are The Constellations?What Is The Zodiac?, and Zodiac Signs And Their Dates.

Be sure to check out The Messier Catalog while you’re at it!

For more information, check out the IAUs list of Constellations, and the Students for the Exploration and Development of Space page on Canes Venatici and Constellation Families.

Sources:

 

The Canes Venatici Constellation

The canes venatici constellation, located in the northern skies in proximity to Bootes, Ursa Major and Coma Berenices. Credit: maps.seds.org

Welcome back to Constellation Friday! Today, in honor of the late and great Tammy Plotner, we will be dealing with Canes Venatici constellation.

In the 2nd century CE, Greek-Egyptian astronomer Claudius Ptolemaeus (aka. Ptolemy) compiled a list of the then-known 48 constellations. His treatise, known as the Almagest, would be used by medieval European and Islamic scholars for over a thousand years to come. Today, this list has been expanded to include the 88 constellations recognized by the IAU.

One of these is known as Canes Venatici, a small northern constellation that is bordered by Ursa Major to the north and west, Coma Berenices to the south, and Boötes to the east. Canes Venatici belongs to the Ursa Major family of constellations, along with Boötes, Camelopardalis, Coma Berenices, Corona Borealis, Draco, Leo Minor, Lynx, Ursa Major, and Ursa Minor.

Name and Meaning:

The small northern constellation of Canes Venatici represents the hunting dogs – Chara and Asterion – of Boötes. It is also one of three constellations that represent dogs, along with Canis Major and Canis Minor. Given its comparatively recent origin, there is no real mythology associated with this asterism. However, it does have an interesting history.

Canes Venatici depicted in Hevelius's star atlas. Note that, per the conventions of the time, the image is mirrored. Credit: Wikipedia Commons/Atlas Coelestis
Canes Venatici depicted in Hevelius’s star atlas. Note that, per the conventions of the time, the image is mirrored. Credit: Wikipedia Commons/Atlas Coelestis

History of Observation:

During Classic Antiquity, the stars of Canes Venatici did not appear very brightly in the night sky. As such, they were listed by Ptolemy as unfigured stars below the constellation Ursa Major in the Almagest, rather than as a distinct constellation. During the Middle Ages, the identification of these stars as being the dogs of Boötes arose due to a mistranslation.

Some of the component stars in the nearby constellation of Boötes (which was known as the “herdsman”) were traditionally described as representing his cudgel. When the Almagest was translated from Greek to Arabic, the translator – the Arab astronomer Hunayn ibn Ishaq – did not know the Arabic word for cudgel.

As such, he chose the closest translation in Arabic – “al-`asa dhat al-kullab” -which literally means “the spearshaft having a hook” (possibly in reference to a shepherd’s crook). When the Arabic text was later translated into Latin, the translator mistook the Arabic word “kullab” for “kilab” – which means “dogs” – and wrote the name as hastile habens canes (“spearshaft having dogs”).

This representation of Boötes having two dogs remained popular and became official when, in 1687, Johannes Hevelius decided to designate them as a separate constellation. The northern of the two hunting dogs was named Asterion (‘little star’) while the southern dog was named Chara – from the Greek word for ‘joy’,.

Canes Venatici can be seen in the orientation they appear to the eyes in this 1825 star chart from Urania's Mirror. Credit: Wikipedia Commons/Library of Congress
Canes Venatici can be seen in the orientation they appear to the eyes in this 1825 star chart from Urania’s Mirror. Credit: Wikipedia Commons/Library of Congress

Notable Features:

The constellation’s brightest star is Cor Caroli, which is perhaps one of the most splendid of all colorful double stars. The name literally means “Charles’ heart”, and was named by Sir Charles Scarborough in honor of Charles I – who was executed in the aftermath of the English Civil War. The star is also associated with Charles II of England, who was restored to the throne after the interregnum following his father’s death.

Cor Caroli is a binary star with a combined apparent magnitude of 2.81 which marks the northern vertex of the Diamond of Virgo asterism. The two stars are 19.6 arc seconds apart and are easily resolved in small telescopes and steady binoculars. The system lies approximately 110 light years from Earth. It’s main star, a² Canum Venaticorum, is the prototype of a class of Spectral Type A0 variable stars (the so-called a² Canum Venaticorum stars).

These stars have a strong stellar magnetic field, which is believed to produce starspots of enormous extent. Due to these starspots, the brightness of a² Canum Venaticorum stars varies considerably during their rotation. Their brightness also varies between magnitude +2.84 and +2.98 with a period of 5.47 days.  The companion, a¹ Canum Venaticorum (a spectral type F0 star), is considerably fainter at +5.5 magnitude.

Y CVn, and a simulation of what it would look like close-up, created using Celestia. Credit: Wikipedia Commons/Kirk39
Y CVn, “La Superba”, and a simulation of what it would look like close-up, created using Celestia. Credit: Wikipedia Commons/Kirk39

Next up is Y Canum Venaticorum (Y CVn), which was named “La Superba” by 19th century astronomer Angelo Secchi for its uncommonly beautiful red color. This name was certainly appropriate, since it is  one of the reddest stars in the sky, and one the brightest of the giant red “carbon stars”.

La Superba is the brightest J-star in the sky, a very rare category of carbon stars that contain large amounts of carbon-13. Its surface temperature is believed to be about 2800 K (~2526 °C; 4580 °F), making it one of the coldest  true stars known. Its appearance, temperature and composition are all indications that it is currently in the Red Giant phase of its life-cycle.

Y CVn is almost never visible to the naked eye since most of its output is outside the visible spectrum. Yet, when infrared radiation is considered, Y CVn has a luminosity 4400 times that of the Sun, and its radius is approximately 2 AU. If it were placed at the position of our sun, the star’s surface would extend beyond the orbit of Mars.

Canes Venatici is also home to several Deep Sky Objects. For starters, there’s the tremendous globular cluster known as Messier 3 (M3). Messier 3 has an apparent magnitude of 6.2, making it visible to the naked eye. It was first resolved into stars by William Herschel around 1784. This cluster is one of the largest and brightest, made up of around 500,000 stars, and is located about 33,900 light-years away from our solar system.

The 51st entry in Charles Messier's famous catalog is perhaps the original spiral nebula--a large galaxy with a well defined spiral structure also cataloged as NGC 5194. Over 60,000 light-years across, M51's spiral arms and dust lanes clearly sweep in front of its companion galaxy, NGC 5195. Image data from the Hubble's Advanced Camera for Surveys was reprocessed to produce this alternative portrait of the well-known interacting galaxy pair. The processing sharpened details and enhanced color and contrast in otherwise faint areas, bringing out dust lanes and extended streams that cross the small companion, along with features in the surroundings and core of M51 itself. The pair are about 31 million light-years distant. Not far on the sky from the handle of the Big Dipper, they officially lie within the boundaries of the small constellation Canes Venatici. Image Credit: NASA
Messier 51, aka. the Whirlpool Galaxy, is a spiral nebula – a large galaxy with a well defined spiral structure located over 60,000 light-years across. Credit: NASA

Then there’s the Whirlpool Galaxy, also known as Messier 51 or NGC 5194. This  interacting, grand-design spiral galaxy is located at a distance of approximately 23 million light-years from Earth. It is one of the most famous spiral galaxies in the night sky, for both its grace and beauty. The galaxy and its companion (NGC 5195) are easily observed by amateur telescopes, and the two galaxies may even be seen with larger binoculars.

Canes Venatici is also home of the Sunflower Galaxy (aka. Messier 63 and NGC 5055), an unbarred spiral galaxy consisting of a central galactic disc surrounded by many short spiral arm segments. It is part of the M51 galaxy group, which also includes the Whirlpool Galaxy (M51). In the mid-1800s, Lord Rosse identified the spiral structure within the galaxy, making this one of the first galaxies in which “spiral nebulae” were identified.

Now hop over to the barred spiral galaxy known as Messier 94 for some comparison. It was discovered by Pierre Méchain in 1781 and catalogued by Charles Messier two days later. Although some references describe M94 as a barred spiral galaxy, the “bar” structure appears to be more oval-shaped. The galaxy is also notable in that it has two ring structures, an inner ring with a diameter of 70″ and an outer ring with a diameter of 600″.

These rings appear to form at resonance locations within the disk of the galaxy. The inner ring is the site of strong star formation activity and is sometimes referred to as a starburst ring. This star formation is fueled by gas that is dynamically driven into the ring by the inner oval-shaped bar-like structure.

Messier 63, also known as the Sunflower Galaxy, seen here in a new image from the NASA/ESA Hubble Space Telescope. Credit: NASA/ESA/HST
Messier 63, also known as the Sunflower Galaxy, seen here in an image from the  Hubble Space Telescope. Credit: NASA/ESA/HST

For a completely different galaxy, try Messier 106 (NGC 4258). This spiral galaxy is about 22 to 25 million light-years away from Earth. It is also a Seyfert II galaxy, which means that due to x-rays and unusual emission lines detected, it is suspected that part of the galaxy is falling into a supermassive black hole in the center. Nearby NGC 4217 is a possible companion galaxy.

The constellation does not have any stars with known planets, and there is one meteor shower associated with the constellation – the Canes Venaticids.

Finding Canes Venatici:

While it basically consists of only two bright stars, the Canes Venatici constellation is still fairly easy to locate and is bordered by Ursa Major, Boötes and Coma Berenices. It can be spotted with the naked eye on a clear night where light conditions are favorable. However, for those using binoculars, finderscopes and small telescopes, the constellation has much to offer the amateur astronomer and stargazer.

The location of the Canes Venatici constellation. Credit: IAU and Sky&Telescope magazine
The location of the Canes Venatici constellation. Credit: IAU/Sky&Telescope magazine

It’s brightest star, Cor Calroli can be found at RA 12h 56m 01.6674s Dec +38° 19′ 06.167″, while beautiful Y Canum Venaticorum (aka. “La Superba”) can be seen at RA 12f 45m 07s Dec +45° 26′ 24″. And M51 is easy to find by following the easternmost star of the Big Dipper, Eta Ursae Majoris, and going 3.5° southeast. Its declination is +47°, so it is circumpolar for observers located above 43°N latitude.

We have written many interesting articles about the constellation here at Universe Today. Here is What Are The Constellations?What Is The Zodiac?, and Zodiac Signs And Their Dates.

Be sure to check out The Messier Catalog while you’re at it!

For more information, check out the IAUs list of Constellations, and the Students for the Exploration and Development of Space page on Canes Venatici and Constellation Families.

Sources:

The Constellation Caelum

the southern constellation Caelum. Credit: absoluteaxarquia.com

Welcome back to Constellation Friday! Today, in honor of our dear friend and contributor, Tammy Plotner, we examine the Caelum constellation. Enjoy!

In the 2nd century CE, Greek-Egyptian astronomer Claudius Ptolemaeus (aka. Ptolemy) compiled a list of the then-known 48 constellations. Until the development of modern astronomy, his treatise (known as the Almagest) would serve as the authoritative source on astronomy. This list has since come to be expanded to include the 88 constellation that are recognized by the International Astronomical Union (IAU) today.

One of these constellations is Caelum, which was discovered in in the 1750s by French astronomer Nicolas Louis de Lacaille, and is now counted among the 88 IAU-recognized constellations. It is the eight-smallest constellation, with an area just less than that of Corona Australis (another southern constellation), and is bordered by the Dorado, Pictor, Horologium, Eridanus, Lepus and Columba constellations.

Name and Meaning:

The name Caelum, in Latin, literally means “chisel”, though the word can also mean ‘the heavens’. According to an antiquated school of thought, the sky (caelum, ‘sky, heaven, the heavens’) is rounded, spinning, and burning; and the sky is called by its name because it has the figures of the constellations impressed into it – just like an engraved (caelare) vessel. In Lacaille’s imagination, he saw this constellation as therefore representing “les Burins”, or the tools of a sculptor.

IAU map showing the location of the southern Caelum Constellation. Credit: IAU and Sky&Telescope magazine
IAU map showing the location of the southern Caelum Constellation. Credit: IAU and Sky&Telescope magazine

Notable Features:

The constellation of Caelum has very little to offer observers using either binoculars or telescopes, with only four primary stars visible to the unaided eye and only eight stars with Bayer/Flamsteed designations. However, Gamma Caeli is a widely separated binary star system with a distance of 0.22°. It is composed of a magnitude 4.5 red giant and a magnitude 6.34 white giant.

For an extreme challenge, try locating Alpha Caeli. At an approximate distance of 65.7 light years from Earth, this yellow-white F-type main sequence dwarf with an apparent magnitude of +4.44 has an an extremely faint companion. It is magnitude 13, with a position angle of 121º and a separation 6.6″.

If you like long-term variable stars, you could always look for R Caeli, a long-term Mira-type that ranges from from 6.7 to 13.7 every 391 days. Or how about X Caeli, a Delta-Scuti type star? It’s changes are much faster – but far less noticeably. It changes by one tenth of a magnitude (6.3 to 6.4) every three hours and fourteen minutes.

For those looking for Deep Sky Objects, a big telescope is necessary. This is because NGC 1679 is about all there is to see, and it doesn’t appear lightly. Located about two degree south of Zeta Caeli, there’s not even a magnitude guess at this small spiral galaxy – but it does measure about 3.2 arc minutes, and appears to be an irregularly-shaped galaxy. There are indications that it may be a dwarf starburst galaxy.

Seen as “Cela Sculptoris” in the lower right of this 1825 star chart from Urania's Mirror. Credit: Sidney Hall/Library of Congress
The Caleum constellation, depicted as “Cela Sculptoris” in the lower right of this 1825 star chart from Urania’s Mirror. Credit: Sidney Hall/Library of Congress

History of Observation:

Caelum was introduced by Nicolas Louis de Lacaille in the 1750s to help chart the southern hemisphere skies. Lacaille gave the constellation the French name Burin, which was originally Latinized to Caelum Scalptorium (“The Engravers’ Chisel”). English astronomer Francis Baily would alter shorten this name to Caelem, as suggested by fellow astronomer John Herschel.

In Lacaille’s original chart, the constellation was shown both as two types of chisels – a burin (a steel-engraving chisl) and an échoppe (an etching chisel) – although it has come to be recognized simply as a chisel.

Finding Caelum:

Though it is quite small and faint, locating Caelum is not difficult if you know where to look. Using stellar coordinates, you can find it by looking to the first quadrant of the southern hemisphere (SQ1), and then tracing it to between latitudes +40° and -90°. Or, start by picking out Canopus (the brightest of Carina‘s stars), pan due east, and then spot the small chisel between its neighbors.

Caelum is bordered by Dorado and Pictor to the south, Horologium and Eridanus to the east, Lepus to the north, and Columba to the west. The Caelum constellation occupies an area of 125 square degrees, and can be seen during the month of January at around 9 pm.

We have written many interesting articles about the constellation here at Universe Today. Here is What Are The Constellations?What Is The Zodiac?, and Zodiac Signs And Their Dates.

Be sure to check out The Messier Catalog while you’re at it!

For more information, check out the IAUs list of Constellations.

Sources:

The Constellation Boötes

The northern constellation of Bootes, one of the 88 modern constellations recognized by the IAU. Credit: smokymtnastro.org

Welcome back to Constellation Friday! Today, in honor of our dear friend and contributor, Tammy Plotner, we examine the Bootes constellation. Enjoy!

In the 2nd century CE, Greek-Egyptian astronomer Claudius Ptolemaeus (aka. Ptolemy) compiled a list of the then-known 48 constellations. Until the development of modern astronomy, his treatise (known as the Almagest) would serve as the authoritative source of astronomy. This list has since come to be expanded to include the 88 constellation that are recognized by the International Astronomical Union (IAU) today.

The constellation Boötes (pronounced Bu-Oh-Tays) is one of these constellations, and was also among those listed in the Almagest. It is frequently called the “Watcher of the Bear”, guarding over the northern constellations of both Ursa Major and Ursa Minor (the Greater and Lesser Bears). It is bordered by Canes Venatici, Coma Berenices, Corona Borealis, Draco, Hercules, Serpens Caput, Virgo and Ursa Major.

Name and Meaning:

According to myth, Boötes is credited for inventing the plough, which prompted the goddess Ceres – a goddess of agriculture, grain crops, fertility and motherly love – to place him in the heavens. There are also versions where Bootes represents a form of Atlas, holding up the weight of the world as it turns on its axis (yet another of Hercules’ labors).

Most commonly, Boötes is taken to represent Arcas, the son of Zeus and Callisto. In this source, Arcas was brought up by Callisto father, the Arcadian king Lycaon. One day, Lycaon decided to test Zeus by serving him his own son for a meal. Zeus saw through Lycaon’s intentions and transformed the king into a wolf, killed his sons, and brought Arcas back to life.

Boötes as depicted in Urania's Mirror, a set of constellation cards published in London c.1825. In his left hand he holds his hunting dogs, Canes Venatici. Below them is the constellation Coma Berenices. Above the head of Boötes is Quadrans Muralis, now obsolete, but which lives on as the name of the early January Quadrantid meteor shower. Mons Mænalus can be seen at his feet. Credit: Wikipedia Commons/Sidney Hall
Boötes as depicted in Urania’s Mirror, a set of constellation cards published in London c.1825. Credit: Wikipedia Commons/Sidney

Having heard of her husband’s infidelity, Zeus’ wife Hera transformed Callisto into a bear. For years, she roamed the woods until she met her son, who was now grown up. Arcas didn’t recognize his mother and began to chase her. To avoid a tragic end, Zeus intervened by placing them both in the sky, where Callisto became Ursa Major (aka. The Big Dipper, or “Great Bear”) and Arcas became Boötes.

In another story, Boötes is taken to represent Icarius, a grape grower who was given the secret of wine-making by Dionysus. Icarius used this to create a wonderful wine that he shared with all his neighbors. After overindulging, they woke up the next day with terrible hangovers and believed Icarius had tried to poison them. They killed him in his sleep, and a saddened Dionysus placed his friend among the stars.

Notable Features:

Bootes contains the third brightest star in the night sky – Arcturus (aka. alpha Boötis) – whose Greek name “Arktos” also means “bear”, and is associated with all things northern (including the aurora). Arcturus is quite important, being a type K1.5 IIIpe red giant star. The letters “pe” stand for “peculiar emission,” which indicates the spectrum of the star is unusual and full of emission lines. This is not uncommon in red giants, but Arcturus is particularly strong.

The Bootes contellation. Credit: IAU/Sky and Telescope
The location of the Bootes contellation. Credit: IAU/Sky and Telescope

Arcturus is about 110 times more luminous than our nearest star, but the total power output is about 180 times that of the Sun (when infrared radiation is considered). Arcturus is also notable for its high proper motion, larger than any first magnitude star in the stellar neighborhood other than Alpha Centauri. It is now almost at its closest and is moving rapidly (122 km/s) relative to the Solar System.

Arcturus is also thought to be an old disk star, and appears to be moving with a group of 52 others of its type. Its mass is hard to determine exactly, but it may have the same mass as Sol, or perhaps 1.5 times as much. Arcturus may also be older than the Sun, and much like what the Sun will be in its Red Giant Phase.

Arcturus achieved fame when its light was used to open the 1933 Chicago World’s Fair. The star was chosen because it was thought that light from the star had started its journey at about the same time of the previous Chicago World’s Fair (1893). Technically the star is 36.7 light years away, so the light would have started its journey in 1896. Arcturus’ light was still focused onto a cell that powered the switch for the lights that eventually shined so bright that Arcturus was no longer visible.

Arcturus, along with its neighboring stars, also form the curious “Colonial Viper” formation, a triangular asterism invented by dedicated SkyWatcher, Ed Murray. It is so-named because it resembles a Colonial Viper being launched from a tube on the TV series Battlestar Galactica. The “Launch Tube” is formed by the intersection of Arcturus, Alphekka (Alpha Corona Borealis) and Gamma Bootis, while Izar (Epsilon Bootes) is the Viper.

A Colonial Viper leaving the Launch Tube aboard the Battlestar Galactica. Credit: battlestararies-bsr26.net
A Colonial Viper leaving the Launch Tube aboard the Battlestar Galactica. Credit: battlestararies-bsr26.net

Other notable stars include Nekkar (Beta Boötis), a yellow G-type giant that is 219 light years from Earth. It is a flare star, which is a type of variable star that shows dramatic increases in luminosity for a few minutes. The name Nekkar derives from the Arabic word for “cattle driver”. Then there’s Seginus (Gamma Boötis), a Delta-Scuti type variable star that is approximately 85 light years from Earth. It shows variations in its brightness due to both radial and non-radial pulsations on its surface.

Izar (Epislon Boötis) is a binary star located approximately 300 light years away which consists of a bright orange giant and a smaller and fainter main sequence star. Epsilon Boötis is also sometimes knows as Pulcherrima, which means “the lovieliest” in Latin. The name Izar comes from the Arabic word for “veil.” The star’s other traditional names are Mirak (“the loins” in Arabic) and Mizar.

Muphrid (Eta Boötis) is a spectroscopic binary star that is 37 light years from Earth and close to Arcturus in the sky. The star’s traditional name is Muphrid, derived from the Arabic phrase for “the single one of the lancer.” It belongs to the spectral class G0 IV and has a significant excess of elements heavier than hydrogen.

Boötes is also home to many Deep Sky Objects. This includes the Boötes void (aka. the Great Void, the Supervoid). This sphere-shaped region of the sky is almost 250 million light years in diameter and contains 60 galaxies. The void was originally discovered by Robert P. Kirshner – a Harvard College Professor of Astronomy – in 1981, as part of a survey of galactic redshifts.

The very loose globular cluster NGC 5466, Credit: NASA, ESA
The very loose globular cluster NGC 5466 located in the Boots consetllation, Credit: NASA, ESA/Wikisky

Then there is the Boötes Dwarf Galaxy (Boötes I), a dwarf spheroidal galaxy located approximately 197,000 light years from Earth that measures about 720 light years across. It was only discovered in 2006, owing to the fact that it is one of the faintest galaxies known (with an absolute magnitude of -5.8 and apparent magnitude of 13.1). Boötes I orbits the Milky Way and is believed to be tidally disrupted by its gravity, as evidenced by its shape.

And there’s also NGC 5466, a globular cluster approximately 51,800 light years from Earth and 52,800 light years from the Galactic center. The cluster was first discovered by the German-born British astronomer William Herschel in 1784. It is believed that this cluster is the source of a star stream called the 45 Degree Tidal Stream, which was discovered in 2006.

History of Observation:

The earliest recorded mentions of the stars associated with Boötes come from ancient Babylonia, where it was listed as SHU.PA. These stars were apparently depicted as the god Enlil, who was the leader of the Babylonian pantheon and special patron of farmers. It is likely that this is the source of mythological representations of Bootes as “the ploughman” in Greco-Roman astronomy.

The name Boötes was first used by Homer in The Odyssey as a celestial reference point for navigation. The name literally means “ox-driver” or “herdsman”, and the ancient Greeks saw the asterism now called the “Big Dipper” or “Plough” as a cart with oxen. His dogs, Chara and Asterion, were represented by the constellation of Canes Venatici (the Hunting Dogs) who drove the oxen on and kept the wheels of the sky turning.

Phecda
The Big Dipper, the asterism that neighbors the Bootes constellation. Credit: Jerry Lodriguss

In traditional Chinese astronomy, many of the stars in Boötes were associated with different Chinese constellations. Arcturus was one of the most prominent, variously designated as the celestial king’s throne (Tian Wang) or the Blue Dragon’s horn (Daijiao). Arcturus was also very important in Chinese celestial mythology because it is the brightest star in the northern sky, and marked the beginning of the lunar calendar.

Flanking Daijiao were the constellations of Yousheti on the right and Zuosheti on the left, which represented the companions that orchestrated the seasons. Dixi, the Emperor’s ceremonial banquet mat, was north of Arcturus. Another northern constellation was Qigong, the Seven Dukes, which was mostly across the Boötes-Hercules border.

The other Chinese constellations made up of the stars of Boötes existed in the modern constellation’s north. These are all representations of weapons –  Tianqiang, the spear; Genghe, variously representing a lance or shield; Xuange, the halberd; and Zhaoyao, either the sword or the spear.

Finding Bootes:

Bootes can be found south of Ursa Major, just off the handle of the Big Dipper. Because the Big Dipper is easy for most observers to find, the handle is used to point to other important stars. Bootes’ brightest star, Arcturus, is also part of a mnemonic device used to orient people, which goes: “Arc to Arcturus, speed on to Spica.” This means you follow the curve in the Dipper’s handle away from Ursa Major until you run into Arcturus. The other star – Spica – is part of the neighboring Virgo constellation.

Arcturus, the brightest star in the Boötes constellation. Credit: astropixels.com
Arcturus, the brightest star in the Boötes constellation. Credit: astropixels.com

For those using binoculars, check out Tau Bootis, a yellow-white dwarf approximately 51 light-years from Earth. It is a binary star system, with the secondary star being a red dwarf. In 1999, an extrasolar planet was confirmed to be orbiting the primary star by a team of astronomers led by Geoff Marcy and R. Paul Butler. Maybe you’d like to look at long term variable star R Boötis? It ranges from 6.2 to 13.1 every 223.4 days.

For those using telescopes, there are plenty of excellent binary star systems to be seen. Pi Boötis is located approximately 317 light years from our solar system and the primary component, P¹ Boötis, is a blue-white B-type main sequence dwarf with an apparent magnitude of +4.49. It’s companion, P² Boötis, is a white A-type main sequence dwarf with an apparent magnitude of +5.88.

Now try looking at Xi Boötis, a binary star system which lies 21.8 light years away. The primary star, Xi Boötis A, is a BY Draconis variable, yellow G-type main sequence dwarf with an apparent magnitude that varies from +4.52 to +4.67. with a period just over 10 days long. Small velocity changes in the orbit of the companion star, Xi Boötis B – an orange K-type main sequence dwarf – indicate the presence of a small companion with less than nine times the mass of Jupiter.

The AB binary can be resolved even through smaller telescopes. The primary star (A) has been identified as a candidate for possessing a Kuiper-like belt, based on infrared observations. The estimated minimum mass of this dust disk is 2.4 times the mass of the Earth’s Moon.

The location of Mu Bootis (Alkalurops) in the Bootes constllation. Credit: universeguide.com
The location of Mu Bootis (Alkalurops) in the Bootes constellation. Credit: universeguide.com

Then there’s the triple system, Mu Boötis. The primary component, Mu¹ Boötis, is a yellow-white F-type sub giant with an apparent magnitude of +4.31. Separated from the primary by 108 arc seconds is the binary star Mu² Boötis, which has a combined spectral type of G1V and a combined brightness of +6.51 magnitudes. The components of Mu² Boötis have apparent magnitudes of +7.2 and +7.8 and are separated by 2.2 arc seconds.

They complete one orbit about their common center of mass every 260 years. How about colorful yellow and blue Kappa Boötis? Kappa2 Boötis is classified as a Delta Scuti type variable star and its brightness varies from magnitude +4.50 to +4.58 with a period of 1.83 hours. The companion star, Kappa¹ Boötis, has magnitude +6.58 and spectral class F1V.

For deep sky observers with large telescopes, try checking out the globular cluster NGC 5466, which is about a fist’s width north of Arcturus. This class XII, 9th magnitude globular was discovered in 1784 by Sir William Herschel and presents an nice challenge for experienced stargazers and amateur astronomers.

Or try compact spiral galaxy NGC 5248. It’s about a fist width south of Arcturus and about a finger width southwest. It’s part of the Virgo cluster of galaxies and could be as far as 50 million light years away. It’s another great grand design spiral which shows spiral galaxy structure when viewed in long exposure photographs. You can mark it on your list as Caldwell 45.

The NGC 5248 spiral galaxy, as imaged with a 32-inch telescope. Credit and Copyright: Adam Block/Mount Lemmon SkyCenter/University of Arizona
The NGC 5248 spiral galaxy, as imaged with a 32-inch telescope. Credit and Copyright: Adam Block/Mount Lemmon SkyCenter/University of Arizona

But if you’d just like to have some fun, then why not try picking out the aforementioned “Colonial Viper and Launch Tube” asterism. If you’re a longstanding Battlestar Galactica fan, then you’ll recognize this ultra-cool spaceship as it sits in its triangular shaped launch tube. To find it, just draw a line between Arcturus, Alphekka (Alpha Corona Borealis) and Gamma Bootis which make up the “Launch Tube”, while Izar (Epsilon Bootes) is the Viper.

We have written many interesting articles about the constellation here at Universe Today. Here is What Are The Constellations?What Is The Zodiac?, and Zodiac Signs And Their Dates.

Be sure to check out The Messier Catalog while you’re at it!

For more information, check out the IAUs list of Constellations, and the Students for the Exploration and Development of Space page on Bootes and Constellation Families.

The Constellation Auriga

The northern constellation Auriga, showing the brightest stars of Capella, Menkalinan, and proximate Deep Sky Objects. Credit: stargazerslounge.com

Welcome back to Constellation Friday! Today, in honor of our dear friend and contributor, Tammy Plotner, we examine the Auriga constellation. Enjoy!

In the 2nd century CE, Greek-Egyptian astronomer Claudius Ptolemaeus (aka. Ptolemy) compiled a list of the then-known 48 constellations. His treatise, known as the Almagest, would serve as the authoritative source of astronomy for over a thousand years to come. Since the development of modern telescopes and astronomy, this list has come to be expanded to include the 88 constellation that are recognized by the International Astronomical Union (IAU) today.

One of these is the constellation of Auriga, a beautiful pentagon-shaped collection of stars that is situated just north of the celestial equator. Along with five other constellations that have stars in the Winter Hexagon asterism, Auriga is most prominent during winter evenings in the Northern Hemisphere. Auriga also belongs to the Perseus family of constellations, together with Andromeda, Cassiopeia, Cepheus, Cetus, Lacerta, Pegasus, Perseus, and Triangulum.

Continue reading “The Constellation Auriga”

What Are The Constellations?

milky way constellations
Full panoramic view of the constellations near the Milky Way by Matt Dieterich

What comes to mind when you look up at the night sky and spot the constellations? Is it a grand desire to explore deep into space? Is it the feeling of awe and wonder, that perhaps these shapes in the sky represent something? Or is the sense that, like countless generations of human beings who have come before you, you are staring into the heavens and seeing patterns? If the answer to any of the above is yes, then you are in good company!

While most people can name at least one constellation, very few know the story of where they came from. Who were the first people to spot them? Where do their names come from? And just how many constellations are there in the sky? Here are a few of the answers, followed by a list of every known constellation, and all the relevant information pertaining to them.

Definition:

A constellation is essentially a specific area of the celestial sphere, though the term is more often associated with a chance grouping of stars in the night sky. Technically, star groupings are known as asterisms, and the practice of locating and assigning names to them is known as asterism. This practice goes back thousands of years, possibly even to the Upper Paleolithic. In fact, archaeological studies have identified markings in the famous cave paintings at Lascaux in southern France (ca. 17,300 years old) that could be depictions of the Pleiades cluster and Orion’s Belt.

There are currently 88 officially recognized constellations in total, which together cover the entire sky. Hence, any given point in a celestial coordinate system can unambiguously be assigned to a constellation. It is also a common practice in modern astronomy, when locating objects in the sky, to indicate which constellation their coordinates place them in proximity to, thus conveying a rough idea of where they can be found.

Closeup of one section of the cave painting at the Lascaux cave complex, showing what could be Pleiades and Orion's Belt. Credit: ancient-wisdom.com
Closeup of the Lascaux cave paintings, showing a bull and what could be the Pleiades Cluster (over the right shoulder) and Orion’s Belt (far left). Credit: ancient-wisdom.com

The word constellation has its roots in the Late Latin term constellatio, which can be translated as “set of stars”. A more functional definition would be a recognizable pattern of stars whose appearance is associated with mythical characters, creatures, or certain characteristics. It’s also important to note that colloquial usage of the word “constellation” does not generally differentiate between an asterism and the area surrounding one.

Typically, stars in a constellation have only one thing in common – they appear near each other in the sky when viewed from Earth. In reality, these stars are often very distant from each other and only appear to line up based on their immense distance from Earth. Since stars also travel on their own orbits through the Milky Way, the star patterns of the constellations change slowly over time.

History of Observation:

It is believed that since the earliest humans walked the Earth, the tradition of looking up at the night sky and assigning names and characters to them existed. However, the earliest recorded evidence of asterism and constellation-naming comes to us from ancient Mesopotamia, and in the form of etchings on clay tablets that are dated to around ca. 3000 BCE.

However, the ancient Babylonians were the first to recognize that astronomical phenomena are periodic and can be calculated mathematically. It was during the middle Bronze Age (ca. 2100 – 1500 BCE) that the oldest Babylonian star catalogs were created, which would later come to be consulted by Greek, Roman and Hebrew scholars to create their own astronomical and astrological systems.

Star map showing the celestial globe of Su Song (1020-1101), a Chinese scientist and mechanical engineer of the Song Dynasty (960-1279). Credit: Wikipedia Commons
Star map showing the celestial globe of Su Song (1020-1101), a Chinese scientist and mechanical engineer of the Song Dynasty (960-1279). Credit: Wikipedia Commons

In ancient China, astronomical traditions can be traced back to the middle Shang Dynasty (ca. 13th century BCE), where oracle bones unearthed at Anyang were inscribed with the names of star. The parallels between these and earlier Sumerian star catalogs suggest they did no arise independently. Astronomical observations conducted in the Zhanguo period (5th century BCE) were later recorded by astronomers in the Han period (206 BCE – 220 CE), giving rise to the single system of classic Chinese astronomy.

In India, the earliest indications of an astronomical system being developed are attributed to the Indus Valley Civilization (3300–1300 BCE). However, the oldest recorded example of astronomy and astrology is the Vedanga Jyotisha, a study which is part of the wider Vedic literature (i.e. religious) of the time, and which is dated to 1400-1200 BCE.

By the 4th century BCE, the Greeks adopted the Babylonian system and added several more constellations to the mix. By the 2nd century CE, Claudius Ptolemaus (aka. Ptolemy) combined all 48 known constellations into a single system. His treatise, known as the Almagest, would be used by medieval European and Islamic scholars for over a thousand years to come.

Between the 8th and 15th centuries, the Islamic world experienced a burst of scientific development, reaching from the Al-Andus region (modern-day Spain and Portugal) to Central Asia and India. Advancements in astronomy and astrology closely paralleled those made in other fields, where ancient and classical knowledge was assimilated and expanded on.

The Northern Constellations. Credit: Bodel Nijenhuis Collection/Leiden University Library
The Northern Constellations. Credit: Bodel Nijenhuis Collection/Leiden University Library

In turn, Islamic astronomy later had a significant influence on Byzantine and European astronomy, as well as Chinese and West African astronomy (particularly in the Mali Empire). A significant number of stars in the sky, such as Aldebaran and Altair, and astronomical terms such as alidade, azimuth, and almucantar, are still referred to by their Arabic names.

From the end of the 16th century onward, the age of exploration gave rise to circumpolar navigation, which in turn led European astronomers to witness the constellations in the South Celestial Pole for the first time. Combined with expeditions that traveled to the Americas, Africa, Asia, and all other previously unexplored regions of the planet, modern star catalogs began to emerge.

IAU Constellations:

The International Astronomical Union (IAU) currently has a list of 88 accepted constellations. This is largely due to the work of Henry Norris Russell, who in 1922, aided the IAU in dividing the celestial sphere into 88 official sectors. In 1930, the boundaries between these constellations were devised by Eugène Delporte, along vertical and horizontal lines of right ascension and declination.

The IAU list is also based on the 48 constellations listed by Ptolemy in his Almagest, with early modern modifications and additions by subsequent astronomers – such as Petrus Plancius (1552 – 1622), Johannes Hevelius (1611 – 1687), and Nicolas Louis de Lacaille (1713 – 1762).

The modern constellations. color-coded by family, with a dotted line denoting the ecliptic. Credit: NASA/Scientific Visualization Studio
The modern constellations, color-coded by family, with a dotted line denoting the ecliptic. Credit: NASA/Scientific Visualization Studio

However, the data Delporte used was dated to the late 19th century, back when the suggestion was first made to designate boundaries in the celestial sphere. As a consequence, the precession of the equinoxes has already led the borders of the modern star map to become somewhat skewed, to the point that they are no longer vertical or horizontal. This effect will increase over the centuries and will require revision.

Not a single new constellation or constellation name has been postulated in centuries. When new stars are discovered, astronomers simply add them to the constellation they are closest to. So consider the information below, which lists all 88 constellations and provides information about each, to be up-to-date! We even threw in a few links about the zodiac, its meanings, and dates.

Enjoy your reading!

-A

-B

-C

-D

-E

-F

-G

-H

-I

-L

-M

-N

-O

-P

-R

-S

-T

-U

-V

The Coma Berenices Constellation

The northern constellation known as Coma Berenices. Credit and Copyright: © 2003 Torsten Bronger.

Welcome back to Constellation Friday! Today, in honor of the late and great Tammy Plotner, we will be dealing with “Berenice’s Hair” – the Coma Berenices constellation!

In the 2nd century CE, Greek-Egyptian astronomer Claudius Ptolemaeus (aka. Ptolemy) compiled a list of all the then-known 48 constellations. This treatise, known as the Almagest, would be used by medieval European and Islamic scholars for over a thousand years to come, effectively becoming astrological and astronomical canon until the early Modern Age.

One of these is the constellation Coma Berenices, an ancient constellation located in the norther skies. In the Almagest, Ptolemy considered the asterism to be part of the constellation Leo. Today, it is one of the 88 constellations recognized by the International Astronomical Union, and is bordered by the constellations of Canes Venatici, Ursa Major, Leo, Virgo and Boötes.

Name and Meaning:

In mythology, it is easy to see why this dim collection of stars was once associated with Leo and considered to be the tuft of hair at the end of the Lion’s tail. However, as the years passed, a charming legend grew around this sparkling group of stars. Since the time of Ptolemy, this grouping of stars was recognized and although he didn’t list it as one of his 88 constellations, he did refer to is as “Berenice’s Hair”.

Coma Berenices as seen by the naked eye. Credit: Till Credner/ AlltheSky.com

As legend would have it, the good Queen Berenice II of Egypt offered to sacrifice her beautiful long hair to Aphrodite for the safe return of her husband from battle. When she cut off her locks and placed it on the altar and returned the next day, her sacrifice was gone. To save his life, the court astronomer proclaimed Aphrodite had immortalized Berenice’s gift in the stars… and thus the Lion lost his tail and the astronomer saved his hide!

History of Observation:

Like many of the 48 constellations recognized by Ptolemy, Coma Berenices traces it routes back to ancient Mesopotamia. To Babylonian astronomers, it was known as Hegala, which translated to “which is before it”. However, the first recorded mention comes from Conon of Samos, the 3rd century BCE court astronomer to Ptolemy III Euergetes – the Greek-Egyptian king. It was named in honor of his consort, Berenice II, who is said to have cut off her long hair as a sacrifice to ensure the safety of the king.

The constellation was named “bostrukhon Berenikes” in Greek, which translates in Latin to “Coma Berenices” (or “Berenice’s hair”). Though it was previously designated as its own constellation, Ptolemy considered it part of Leo in his 2nd century CE tract the Almagest, where he called it “Plokamos” (Greek for “braid”). The constellation was also recognized by many non-western cultures.

In Chinese astronomy, the stars making up Coma Berenices belonged to two different areas – the Supreme Palace Enclosure and the Azure Dragon of the East. Eighteen of the constellation’s stars were in an area known as Lang wei (“seat of the general”). To Arabic astronomers, Coma Berenices was known as Al-Du’aba, Al Dafira and Al-Hulba, forming the tuft of the constellation Leo (consistent with Ptolemy’s designation).

Fragment of Mercator’s 1551 celestial globe, showing Coma Berenices. Credit: Harvard Map Collection

By the 16th century, the constellation began to be featured on globes and maps produced by famed cartographers and astronomers. In 1602, Tycho Brahe recognized it as its own constellation and included it in his star catalogue. In the following year, it was included in Johann Bayer’s famed celestial map, Uranometria. In 1920, it was included by the IAU in the list of the 88 modern constellations.

Notable Objects:

Despite being rather dim, Coma Berenices is significant because it contains the location of the North Galactic Pole. It is comprised of only 3 main stars, but contains 44 Bayer/Flamsteed designated members. Of its main stars, Alpha Comae Berenices (aka. Diadem) is the second-brightest in the constellation.

The name is derived from the Greek word diádema, which means “band” or “fillet”, and represents the gem in Queen Berenice’s crown. It is sometimes known by its other traditional name, Al-Zafirah, which is Arabic for “the braid”. It is a binary star composed of two main sequence F5V stars that are at a distance of 63 light years from Earth.

The Black Eye Galaxy (Messier 64). Credit: NASA/The Hubble Heritage Team (AURA, STScI)

It’s brightest star, Beta Comae Berenices, is located 29.78 light years from Earth and is a main sequence dwarf that is similar to our Sun (though larger and brighter). It’s third major star, Gamma Comae Berenices, is a giant star belonging to the spectral class K1II and located about 170 light years from Earth.

Coma Berenices is also home to several Deep Sky Objects, which include spiral galaxy Messier 64. Also known as the Black Eye Galaxy (Sleeping Beauty Galaxy and Evil Eye Galaxy), this galaxy is located approximately 24 million light years from Earth. This galaxy has a bright nucleus and a dark band of dust in front of it, hence the nicknames.

Then there is the Needle Galaxy, which lies directly above the North Galactic Pole and was discovered by Sir William Herschel in 1785. It is one of the most famous galaxies in the sky that can be viewed edge-on. It lies at a distance of about 42.7 million light years from Earth and is believed to be a barred spiral galaxy from its appearance.

Coma Berenices is also home to two prominent galaxy clusters. These includes the Coma Cluster, which is made up of about 1000 large galaxies and 30,000 smaller ones that are located between 230 and 300 million light years from Earth. South of the Coma Cluster is the northern part of the Virgo Cluster, which is located roughly 60 million light years from Earth.

The globular cluster Messier 53 (NGC 5024), located in the Coma Berenices constellation. Credit: NASA (Wikisky)

Other Messier Objects include M53, a globular cluster located approximately 58,000 light years away; Messier 100, a grand design spiral galaxy that is one of the brightest members of the Virgo cluster (located 55 million light years away); and Messier 88 and 99 – a spiral galaxy and unbarred spiral galaxy that are 47 million and 50.2 million light years distant, respectively.

Finding Coma Berenices:

Coma Berenices is best visible at latitudes between +90° and -70° during culmination in the month of May. There is one meteor shower associated with the constellation of Coma Berenices – the Coma Berenicid Meteor shower which peaks on or near January 18 of each year. Its fall rate is very slow – only one or two per hour on average, but these are among the fastest meteors known with speeds of up to 65 kilometers per second!

For both binoculars and telescopes, Coma Berenices is a wonderland of objects to be enjoyed. Turn your attention first to the brightest of all its stars – Beta Coma Berenices. Positioned about 30 light years from Earth and very similar to our own Sun, Beta is one of the few stars for which we have a measured solar activity period – 16.6 years – and may have a secondary activity cycle of 9.6 years.

Now look at slightly dimmer Alpha. Its name is Diadem – the Crown. Here we have a binary star of equal magnitudes located about 65 light years from our solar system, but it’s seen nearly “edge-on” from the Earth. This means the two stars appear to move back-and-forth in a straight line with a maximum separation of only 0.7 arcsec and will require a large aperture telescope with good resolving power to pull them apart. If you do manage, you’re separating two components that are about the distance of Saturn from the Sun!

The location of the northern constellation Coma Berenices. Credit: IAU/Sky&Telescope magazine

Another interesting aspect about singular stars in Coma Berenices is that there are over 200 variable stars in the constellation. While most of them are very obscure and don’t go through radical changes, there is one called FK Comae Berenices which is a prototype of its class. It is believed that the variability of FK Com stars is caused by large, cool spots on the rotating surfaces of the stars – mega sunspots! If you’d like to keep track of a variable star that has notable changes, try FS Comae Berenices (RA 13 3 56 Dec +22 53 2). It is a semi-regular variable that varies between 5.3m and 6.1 magnitude over a period of 58 days.

For your eyes, binoculars or a rich field telescope, be sure to take in the massive open cluster Melotte 111. This spangly cloud of stars is usually the asterism we refer to as the “Queen’s Hair” and the area is fascinating in binoculars. Covering almost 5 full degrees of sky, it’s larger than most binocular fields, but wasn’t recognized as a true physical stellar association until studied by R.J. Trumpler in 1938.

Located about 288 light years from our Earth, Melotte 111 is neither approaching nor receding… unusual – but true. At around 400 million years old, you won’t find any stars dimmer than 10.5 magnitude here. Why? Chances are the cluster’s low mass couldn’t prevent them from escaping long ago…

Now turn your attention towards rich globular cluster, Messier 53. Achievable in both binoculars and small telescopes, M53 is easily found about a degree northwest Alpha Comae. At 60,000 light years away from the galactic center, it’s one of the furthest globular clusters away from where it should be. It was first discovered by Johann Bode in 1755, and once you glimpse its compact core you’ll be anxious to try to resolve it.

The Needle Galaxy (NGC 4565). Credit: ESO

With a large telescope, you’ll notice about a degree further to the east another globular cluster – NGC 5053 – which is also about the same physical distance away. If you study this pair, you’ll notice a distinct difference in concentrations. The two are very much physically related to one another, yet the densities are radically different!

Staying with binoculars and small telescopes, try your hand at Messier 64 – the “Blackeye Galaxy”. You’ll find it located about one degree east/northeast of 35 Comae. While it will be nothing more than a hazy patch in binoculars, smaller telescopes will easily reveal the signature dustlane that makes M64 resemble its nickname. It is one of the brightest spiral galaxies visible from the Milky Way and the dark dust lane was first described by Sir William Herschel who compared it to a “Black Eye.”

Now put your telescope on Messier 100 – a beautiful example of a grand-design spiral galaxy, and one of the brightest galaxies in the Virgo Cluster. This one is very much like our own Milky Way galaxy and tilted face-on, so we may examine the spiral galaxy structure. Look for two well resolved spiral arms where young, hot and massive stars formed recently from density perturbations caused by interactions with neighboring galaxies. Under good observing conditions, inner spiral structure can even be seen!

Try lenticular galaxy Messier 85. In larger telescopes you will also see it accompanied by small barred spiral NGC 4394 as well. Both galaxies are receding at about 700 km/sec, and they may form a physical galaxy pair. How about Messier 88? It’s also one of the brighter spiral galaxies in the Virgo galaxy cluster and in a larger telescope it looks very similar to the Andromeda galaxy – only smaller.

How about barred spiral galaxy M91? It’s one of the faintest of the Messier Catalog Objects. Although it is difficult in a smaller telescope, its central bar is very strong in larger aperture. Care to try Messier 98? It is a grand edge-on galaxy and may or may not be a true member of the Virgo group. Perhaps spiral galaxy Messier 99 is more to your liking… It’s also another beautiful face-on presentation with grand spiral arms and a sweeping design that will keep you at the eyepiece all night!

There are other myriad open clusters and just as many galaxies waiting to be explored in Coma Berenices! It’s a fine region. Grab a good star chart and put a pot of coffee on to brew. Comb the Queen’s Hair for every last star. She’s worth it.

We have written many interesting articles about the constellation here at Universe Today. Here is What Are The Constellations?What Is The Zodiac?, and Zodiac Signs And Their Dates.

Be sure to check out The Messier Catalog while you’re at it!

For more information, check out the IAUs list of Constellations, and the Students for the Exploration and Development of Space page on Canes Venatici and Constellation Families.

Source: