Where on Earth did life originate, and where else could it occur? A comprehensive answer is most likely a long way off. But it might depend on how many suitable sites for abiogenesis there are on different worlds.
Continue reading “Asking the Big Question: Where Did Life Originate?”If Earth is Average, We Should Find Extraterrestrial Life Within 60 Light-Years
In 1960, while preparing for the first meeting on the Search for Extraterrestrial Intelligence (SETI), legendary astronomer and SETI pioneer Dr. Frank Drake unveiled his probabilistic equation for estimating the number of possible civilizations in our galaxy – aka. The Drake Equation. A key parameter in this equation was ne, the number of planets in our galaxy capable of supporting life – aka. “habitable.” At the time, astronomers were not yet certain other stars had systems of planets. But thanks to missions like Kepler, 5523 exoplanets have been confirmed, and another 9,867 await confirmation!
Based on this data, astronomers have produced various estimates for the number of habitable planets in our galaxy – at least 100 billion, according to one estimate! In a recent study, Professor Piero Madau introduced a mathematical framework for calculating the population of habitable planets within 100 parsecs (326 light-years) of our Sun. Assuming Earth and the Solar System are representative of the norm, Madau calculated that this volume of space could contain as much as 11,000 Earth-sized terrestrial (aka. rocky) exoplanets that orbit within their stars’ habitable zones (HZs).
Continue reading “If Earth is Average, We Should Find Extraterrestrial Life Within 60 Light-Years”Life Might Have Gotten Started Just 300 Million Years After the Earth Formed
On an outcrop of exposed volcanic and sedimentary rock on the eastern shores of Hudson Bay in northern Quebec, researchers have discovered what may be the earliest fossilized lifeforms ever discovered. These microbial ancestors lived between 3.75 and 4.28 billion years ago, only 300 million years after the Earth itself formed – a blink of an eye in geologic timescales. If life developed this rapidly on Earth, it suggests that abiogenesis – the process by which non-living matter becomes a living organism – is potentially ‘easy’ to achieve, and life in the Universe may be more common than we thought.
Continue reading “Life Might Have Gotten Started Just 300 Million Years After the Earth Formed”Lightning Strikes Helped Life get an Early Start on Earth
So, you want to create life? You’re going to need some ingredients first. On Earth four billion years ago, you might find some of those ingredients in the impact craters of asteroid strikes (as long as you don’t get blown up in the blast yourself). A safer place to look, according to new research from the University of Leeds, might be in the sites of lightning strikes. Lightning is less destructive, more common, and creates equally useful minerals out of which you can build your early, single cellular life forms.
Continue reading “Lightning Strikes Helped Life get an Early Start on Earth”What are the Odds of Life Emerging on Another Planet?
In 1961, famed astronomer and astrophysicist Frank Drake formulated an equation for estimating the number of extraterrestrial civilizations in our galaxy at any given time. Known as the “Drake Equation“, this formula was a probabilistic argument meant to establish some context for the Search for Extraterrestrial Intelligence (SETI). Of course, the equation was theoretical in nature and most of its variables are still not well-constrained.
For instance, while astronomers today can speak with confidence about the rate at which new stars form, and the likely number of stars that have exoplanets, they can’t begin to say how many of these planets are likely to support life. Luckily, Professor David Kipping of Columbia University recently performed a statistical analysis that indicates that a Universe teeming with life is “the favored bet.”
Continue reading “What are the Odds of Life Emerging on Another Planet?”Life Could be Common Across the Universe, Just Not in Our Region
The building blocks of life can, and did, spontaneously assemble under the right conditions. That’s called spontaneous generation, or abiogenesis. Of course, many of the details remain hidden to us, and we just don’t know exactly how it all happened. Or how frequently it could happen.
Continue reading “Life Could be Common Across the Universe, Just Not in Our Region”All Life on Earth is Made up of the Same 20 Amino Acids. Scientist Now Think They Know Why
The question of how life on Earth first emerged is one that humans have been asking themselves since time immemorial. While scientists are relatively confident about when it happened, there has been no definitive answer as to why it did. How did amino acids, the chemical building blocks of life, come together roughly four billion years ago to create the first protein molecules?
While that question is still unanswered, scientists are making new discoveries that could help narrow it down. For instance, a team of researchers from the Georgia Institute of Technology’s Center for Chemical Evolution (CCT) recently conducted a study that showed how some of the earliest predecessors of the protein molecule may have spontaneously linked up to form a chain.
Continue reading “All Life on Earth is Made up of the Same 20 Amino Acids. Scientist Now Think They Know Why”Researchers May Have Found the Missing Piece of Evidence that Explains the Origins of Life
The question of how life first emerged here on Earth is a mystery that continues to
One of the more daunting aspects of the mystery has to do with peptides and enzymes, which fall into something of a “chicken and egg” situation. Addressing this, a team of researchers from the University College London (UCL) recently conducted a study that effectively demonstrated that peptides could have formed in conditions
Estimating When Life Could Have Arisen on Earth
The question how life began on Earth has always been a matter of profound interest to scientists. But just as important as how life emerged is the question of when it emerged. In addition to discerning how non-living elements came together to form the first living organisms (a process known as abiogenesis), scientists have also sought to determine when the first living organisms appeared on Earth.
Continue reading “Estimating When Life Could Have Arisen on Earth”
Bayesian Analysis Rains On Exoplanet Life Parade
Is there life on other planets, somewhere in this enormous Universe? That’s probably the most compelling question we can ask. A lot of space science and space missions are pointed directly at that question.
The Kepler mission is designed to find exoplanets, which are planets orbiting other stars. More specifically, its aim is to find planets situated in the habitable zone around their star. And it’s done so. The Kepler mission has found 297 confirmed and candidate planets that are likely in the habitable zone of their star, and it’s only looked at a tiny patch of the sky.
But we don’t know if any of them harbour life, or if Mars ever did, or if anywhere ever did. We just don’t know. But since the question of life elsewhere in the Universe is so compelling, it’s driven people with intellectual curiosity to try and compute the likelihood of life on other planets.
One of the main ways people have tried to understand if life is prevalent in the Universe is through the Drake Equation, named after Dr. Frank Drake. He tried to come up with a way to compute the probability of the existence of other civilizations. The Drake Equation is a mainstay of the conversation around the existence of life in the Universe.
The Drake Equation is a way to calculate the probability of extraterrestrial civilizations in the Milky Way that were technologically advanced to communicate. When it was created in 1961, Drake himself explained that it was really just a way of starting a conversation about extraterrestrial civilizations, rather than a definitive calculation. Still, the equation is the starting point for a lot of conversations.
But the problem with the Drake equation, and with all of our attempts to understand the likelihood of life starting on other planets, is that we only have the Earth to go by. It seems like life on Earth started pretty early, and has been around for a long time. With that in mind, people have looked out into the Universe, estimated the number of planets in habitable zones, and concluded that life must be present, and even plentiful, in the Universe.
But we really only know two things: First, life on Earth began a few hundred million years after the planet was formed, when it was sufficiently cool and when there was liquid water. The second thing that we know is that a few billions of years after life started, creatures appeared which were sufficiently intelligent enough to wonder about life.
In 2012, two scientists published a paper which reminded us of this fact. David Spiegel, from Princeton University, and Edwin Turner, from the University of Tokyo, conducted what’s called a Bayesian analysis on how our understanding of the early emergence of life on Earth affects our understanding of the existence of life elsewhere.
A Bayesian analysis is a complicated matter for non-specialists, but in this paper it’s used to separate out the influence of data, and the influence of our prior beliefs, when estimating the probability of life on other worlds. What the two researchers concluded is that our prior beliefs about the existence of life elsewhere have a large effect on any probabilistic conclusions we make about life elsewhere. As the authors say in the paper, “Life arose on Earth sometime in the first few hundred million years after the young planet had cooled to the point that it could support water-based organisms on its surface. The early emergence of life on Earth has been taken as evidence that the probability of abiogenesis is high, if starting from young-Earth-like conditions.”
A key part of all this is that life may have had a head start on Earth. Since then, it’s taken about 3.5 billion years for creatures to evolve to the point where they can think about such things. So this is where we find ourselves; looking out into the Universe and searching and wondering. But it’s possible that life may take a lot longer to get going on other worlds. We just don’t know, but many of the guesses have assumed that abiogenesis on Earth is standard for other planets.
What it all boils down to, is that we only have one data point, which is life on Earth. And from that point, we have extrapolated outward, concluding hopefully that life is plentiful, and we will eventually find it. We’re certainly getting better at finding locations that should be suitable for life to arise.
What’s maddening about it all is that we just don’t know. We keep looking and searching, and developing technology to find habitable planets and identify bio-markers for life, but until we actually find life elsewhere, we still only have one data point: Earth. But Earth might be exceptional.
As Spiegel and Turner say in the conclusion of their paper, ” In short, if we should find evidence of life that arose wholly idependently of us – either via astronomical searches that reveal life on another planet or via geological and biological studies that find evidence of life on Earth with a different origin from us – we would have considerably stronger grounds to conclude that life is probably common in our galaxy.”
With our growing understanding of Mars, and with missions like the James Webb Space Telescope, we may one day soon have one more data point with which we can refine our probabilistic understanding of other life in the Universe.
Or, there could be a sadder outcome. Maybe life on Earth will perish before we ever find another living microbe on any other world.