Reborn Antares Raised at Virginia Launch Pad for Crucial May 31 Engine Test

First stage of Orbital ATK Antares rocket outfitted with new RD-181 engines stands erect at Launch Pad-0A on NASA Wallops Flight Facility on May 24, 2016 in preparation for the upcoming May 31 hot fire engine test. Credit: Ken Kremer/kenkremer.com
First stage of Orbital ATK Antares rocket outfitted with new RD-181 engines stands erect at Launch Pad-0A on NASA Wallops Flight Facility on May 24, 2016 in preparation for the upcoming May 31 hot fire engine test. Credit:  Ken Kremer/kenkremer.com
First stage of Orbital ATK Antares rocket outfitted with new RD-181 engines stands erect at Launch Pad-0A on NASA Wallops Flight Facility on May 24, 2016 in preparation for upcoming May 31 engine test. Credit: Ken Kremer/kenkremer.com

WALLOPS ISLAND, VA – The soon to be reborn Orbital ATK Antares commercial rocket sporting new first stage engines has been raised at its repaired launch pad on Virginia’s scenic eastern shore for a long awaited test firing of the powerplants. The static test firing is now slated to take place in less than 3 days on Tuesday evening, May 31.

The now revamped launch vehicle – dubbed Antares 230 – has been ‘re-engined’ and upgraded with a pair of modern and more powerful first stage engines – the Russian-built RD-181 fueled by LOX/kerosene.

The engine test will be conducted using only the first stage of Antares at the Mid-Atlantic Regional Spaceport’s Pad-0A at NASA’s Wallops Flight Facility.

The raised rocket with the first stage capped at the top is visible right now at the Wallops pad – as seen in my new photos taken this week.

NASA announced that the static test firing is slated for no earlier than May 31 during a test window that runs from 5 p.m. to 8:15 p.m. EDT. As a contingency, the Wallops range has been reserved for backup test dates that run through June 5 just in case issues crop up.

NASA will not be carrying a live webcast of the test. Rather they will note the completion of the test on the Wallops’ Facebook and Twitter sites.

Orbital ATK’s Antares first stage with the new RD-181 engines stands erect at Virginia Space’s Mid-Atlantic Regional Spaceport Pad-0A on NASA Wallops Flight Facility on May 24, 2016 in preparation for the upcoming stage test on May 31. Credit:  Ken Kremer/kenkremer.com
Orbital ATK’s Antares first stage with the new RD-181 engines stands erect at Virginia Space’s Mid-Atlantic Regional Spaceport Pad-0A on NASA Wallops Flight Facility on May 24, 2016 in preparation for the upcoming stage test on May 31. Credit: Ken Kremer/kenkremer.com

The test firing will be visible from various public viewing locations in the local Wallops area. However the NASA Wallops Visitor center will not be open.

NASA will not be carrying a live webcast of the test. Rather they will note the completion of the test on the Wallops’ Facebook and Twitter sites.

Bird takes flight over Orbital ATK Antares set to sail skyward again in summer 2016 from NASA Wallops Flight Facility, VA. Credit:  Ken Kremer/kenkremer.com
Bird takes flight over Orbital ATK Antares set to sail skyward again in summer 2016 from NASA Wallops Flight Facility, VA. Credit: Ken Kremer/kenkremer.com

The test firing will be visible from various public viewing locations in the local Wallops area. However the NASA Wallops Visitor center will not be open.

Orbital ATK’s Antares first stage with the new RD-181 engines stands erect at Virginia Space’s Mid-Atlantic Regional Spaceport Pad-0A on NASA Wallops Flight Facility on May 24, 2016 in preparation for the upcoming stage test on May 31. Credit:  Ken Kremer/kenkremer.com
Orbital ATK’s Antares first stage with the new RD-181 engines stands erect at Virginia Space’s Mid-Atlantic Regional Spaceport Pad-0A on NASA Wallops Flight Facility on May 24, 2016 in preparation for the upcoming stage test on May 31. Credit: Ken Kremer/kenkremer.com

The test involves firing up Antares dual first stage RD-181 engines at full 100% power (thrust) for a scheduled duration of approximately 30 seconds. Hold down restraints will keep the rocket firmly anchored at the pad during the test.

The new RD-181 engines are installed on the Orbital ATK Antares first stage core ready to support a full power hot fire test at the NASA Wallops Island launch pad in March 2016.  New thrust adapter structures, actuators, and propellant feed lines are incorporated between the engines and core stage.   Credit: Ken Kremer/kenkremer.com
The new RD-181 engines are installed on the Orbital ATK Antares first stage core ready to support a full power hot fire test at the NASA Wallops Island launch pad in May 2016. New thrust adapter structures, actuators, and propellant feed lines are incorporated between the engines and core stage. Credit: Ken Kremer/kenkremer.com

To prepare for the static hot fire test, Orbital ATK technicians rolled the vehicle on a dedicated multi-wheeled transporter erector launcher from the rockets processing hangar inside the Horizontal Integration Facility at NASA’s Wallops Flight Facility to Virginia Space’s Mid-Atlantic Regional Spaceport Pad-0A about a mile away.

A successful outcome is absolutely crucial for permitting Antares to carry out its ‘Return to Flight’ launch dubbed OA-5 and set for sometime this summer.

“The hot fire will demonstrate the readiness of the rocket’s first stage and the launch pad fueling systems to support upcoming flights,” said NASA officials.

Antares launches ground to a halt following a devastating launch failure 19 months ago which destroyed the rocket and its payload of space station science and supplies for NASA in a huge fireball.

The ‘Return to Flight’ blastoff – which could come as soon as July 2016 – will be the first for the private Antares rocket since that catastrophic launch failure on Oct. 28, 2014, just seconds after liftoff from Wallops. That flight was carrying Orbital ATK’s Cygnus cargo freighter on the critical Orb-3 resupply mission for NASA and the astronauts living and working on the International Space Station (ISS).

The launch mishap was traced to a failure in the AJ26 first stage engine turbopump and caused Antares launches to immediately grind to a halt.

The RD-181 replaces the AJ26. The flight engines are built by Energomash in Russia.

“They are a good drop in replacement for the AJ26. And they offer 13% higher thrust compared to the AJ26,” said Kurt Eberly, Orbital ATK Antares deputy program manager, in an interview with Universe Today.

As a result of switching to the new RD-181 engines, the first stage also had to be modified to incorporate new thrust adapter structures, actuators, and propellant feed lines between the engines and core stage structure.

“This stage test paradigm is a design verification test,” said Eberly.

“After the 30 second test is done we will shut it down and have a pile of data to look at,” Eberly told Universe Today.

“Hopefully it will confirm all our environments and all our models and give us the confidence so we can proceed with the return to flight.”

Technicians have been processing the rocket at the pad to ready it for the test. They also conducted a wet dress rehearsal (WDR) and loaded the propellants like during an actual launch campaign.

The full up engine test follows the WDR.

“After the WDR we will do the stage test,” Eberly explained.

“It is a 30 second test. We will fire up both engines and hit all 3 power levels that we plan to use in flight.”

“We will use the thrust vector controls. So we will move the nozzles and sweep them through sinusoidal sweeps at different frequencies and excite various resonances and look for any adverse interaction between fluid modes and structural modes.”

The test uses the first stage core planned to launch the OA-7 mission from Wallops late this year.

The new RD-181 engines are installed on the Orbital ATK Antares first stage core ready to support a full power hot fire test at the NASA Wallops Island launch pad in March 2016.  Credit: Ken Kremer/kenkremer.com
The new RD-181 engines are installed on the Orbital ATK Antares first stage core ready to support a full power hot fire test at the NASA Wallops Island launch pad in May 2016. Credit: Ken Kremer/kenkremer.com

After the engine test is completed, the stage will be rolled back to the HIF and a new stage fully integrated with the Cygnus cargo freighter will be rolled out to the pad for the OA-5 ‘Return to Flight’ mission as soon as July.

“Orbital ATK is building, testing and flying the Antares rocket and Cygnus cargo spacecraft under NASA’s Commercial Resupply Services contract. NASA initiatives like the cargo resupply contracts are helping develop a robust U.S. commercial space transportation industry with the goal of achieving safe, reliable and cost-effective transportation to and from the International Space Station and low-Earth orbit,” according to NASA.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS.  Photo taken by remote camera at launch pad. Credit: Ken Kremer - kenkremer.com
Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS. Photo taken by remote camera at launch pad. Credit: Ken Kremer – kenkremer.com

Orbital Sciences Announces Way Forward Plan to Fulfill NASA Space Station Commitments

Orbital Sciences Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

In the wake of last weeks disastrous failure of the Orbital Sciences commercial Antares rocket seconds after blastoff from NASA’s Wallops Flight Facility, VA, on a critical resupply mission to the space station, Orbital’s Chairman announced a comprehensive way forward involving a two pronged strategy to quickly fulfill their cargo commitments to NASA as well as upgrade the rockets’ first stage propulsion system.

“Orbital announced comprehensive plans to fulfill its contract commitments under NASA’s Commercial Resupply Services (CRS) program as well as to accelerate an upgrade of the Antares medium-class launcher’s main propulsion system, the company said in a statement and discussion by David Thompson, Orbital’s Chairman and Chief Executive Officer, during an investors conference call.

“Orbital is taking decisive action to fulfill our commitments to NASA in support of safe and productive operations of the Space Station,” said Thompson.

“While last week’s Antares failure was very disappointing to all of us, the company is already implementing a contingency plan to overcome this setback. We intend to move forward safely but also expeditiously to put our CRS cargo program back on track and to accelerate the introduction of our upgraded Antares rocket.”

The Orbital Sciences privately developed Antares rocket was doomed by a sudden mid-air explosion some 15 seconds after liftoff from NASA’s Wallops Flight Facility, VA, at 6:22 p.m. EDT on Tuesday, October 28.

A turbopump failure in one of the rockets two Aerojet Rocketdyne AJ26 engines that power the first stage has been identified by Orbital’s Accident Investigation Board (AIB) as the probable cause of the huge explosion that destroyed the booster and its NASA payload in a raging fireball after liftoff.

Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps.  These engines powered the successful Antares  liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS.  Credit: Ken Kremer - kenkremer.com
Soviet era NK-33 engines refurbished as the AJ26 exactly like pictured here probably caused Antares rocket failure on Oct. 28, 2014. Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS. Credit: Ken Kremer – kenkremer.com

The AJ26 engines were originally manufactured some 40 years ago in the then Soviet Union as the NK-33. They were refurbished and “Americanized” by Aerojet Rocketdyne.

“While still preliminary and subject to change, current evidence strongly suggests that one of the two AJ26 main engines that powered Antares first stage failed about 15 seconds after ignition. At this time, we believe the failure likely originated in or directly affected the turbopump machinery of this engine, but I want to stress that more analysis will be required to confirm that this finding is correct,” said Thompson.

Overall this was the 5th Antares launch using the AJ26 engines.

AJ26 engine failure was immediately suspected, though by no means certain, based on an inspection of numerous photos and videos from myself and many others that clearly showed a violent explosion emanating from the base of the two stage rocket.

First stage propulsion system at base of Orbital Sciences Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
First stage propulsion system at base of Orbital Sciences Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

The remainder of the first stage and Antares entire upper stage was clearly intact at the moment of the explosion in all the imagery.

Thompson said Orbital is accelerating contingency planning and is looking at several alternate rocket suppliers in the US and Europe to launch Orbital’s Cygnus cargo freighter to the station.

Cygnus has functioned perfectly to date and was designed to launch on other vehicles.

“Orbital will employ the inherent flexibility of our Cygnus cargo spacecraft that permits it to be launched on third party launch vehicles and to accommodate heavier cargo loads as allowed by more capable launchers. This option had already been contemplated in previous contingency plans and product improvement roadmaps and its implementation should be relatively straightforward.”

Thompson furthermore stated that the company would need to launch one or two Cygnus spacecraft on alternate providers and hope to do so during 2015 so as to keep their CRS resupply commitments to NASA on track and with minimal delay.

The next Antares/Cygnus launch from Wallops had been scheduled for no earlier than April 2015.

The April launch had been scheduled to introduce the enhanced, longer Cygnus with the capability to carry a significantly heavier cargo load to the ISS.

This Cygnus launched atop Antares on Jan. 9 and docked on Jan. 12   Cygnus pressurized cargo module – side view – during exclusive visit by  Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo.  Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com
This Cygnus launched atop Antares on Jan. 9 and docked on Jan. 12 Cygnus pressurized cargo module – side view – during exclusive visit by Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo. Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com

By employing the enhanced Cygnus, Orbital hopes to fulfill its entire CRS contract cargo up mass commitment to NASA in four flights instead of five by the end of 2016.

“Taking advantage of the spacecraft’s flexibility, we will purchase one or two non-Antares launch vehicles for Cygnus flights in 2015 and possibly in early 2016 and combine them with several upgraded Antares rocket launches of additional Cygnus spacecraft in 2016 to deliver all remaining CRS cargo,” said Thompson.

“By consolidating the cargo of five previously-planned CRS missions into four more capable ones, we believe we can maintain a similar or perhaps even a somewhat better delivery schedule than we were on before last week’s launch failure, completing all current CRS program cargo deliveries by the end of 2016.”

The possible launch providers include a United Launch Alliance Atlas V, a SpaceX Falcon 9 or a rocket from the European Space Agency at the Guiana Space Center.

Orbital had previously announced and managers told Universe Today that the company already had decided on plans to integrate a new first stage engine in a new and upgraded second generation version of Antares.

But no one at Orbital will confirm the identity of the chosen first stage engines.

“We will accelerate the introduction of Antares’ upgraded propulsion system, advancing its initial launch date from the previously planned 2017 into 2016,” said Thompson.

Thompson also said the AJ26 engine are unlikely to be used again without complete assurances.

“Consequently, we will likely discontinue the use of the AJ26 rocket engines that had been used on the first five Antares vehicles unless and until those engines can be conclusively shown to be flight worthy,” Thompson stated.

See my exclusive photos herein showing the AJ26 engines with their original NK-33 stencil, during prelaunch processing and mating to the first stage inside Orbital’s Horizontal Integration Facility (HIF) at NASA Wallops.

The NK-33 was originally designed and manufactured in the 1960s by the Kuznetsov Design Bureau for the Soviet Union’s planned N1 rocket to propel cosmonauts to the moon during the space race with NASA’s hugely successful Apollo Moon Landing program.

The 14 story Antares rocket is a two stage vehicle.

The liquid fueled first stage is filled with about 550,000 pounds (250,000 kg) of Liquid Oxygen and Refined Petroleum (LOX/RP) and powered by a pair of AJ26 engines that generate a combined 734,000 pounds (3,265kN) of sea level thrust.

The Oct. 28 launch disaster was just the latest in a string of serious problems with the AJ-26/NK-33 engines.

Earlier this year an AJ26 engine failed and exploded during pre launch acceptance testing on a test stand on May 22, 2014 at NASA’s Stennis Space Center in Mississippi.

Besides completely destroying the AJ26 engine, the explosion during engine testing also severely damaged the Stennis test stand. It has taken months of hard work to rebuild and restore the test stand and place it back into service.

Orbital Sciences Antares rocket explodes violently and is consumed in a gigantic aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m.  Credit: Ken Kremer – kenkremer.com
Orbital Sciences Antares rocket explodes violently and is consumed in a gigantic aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

The doomed mission was bound for the International Space Station (ISS) on a flight to bring up some 5000 pounds of (2200 kg) of science experiments, research instruments, crew provisions, spare parts, spacewalk and computer equipment and gear on a critical resupply mission in the Cygnus resupply ship bound for the International Space Station (ISS).

The Orbital-3, or Orb-3, mission was to be the third of eight cargo resupply missions to the ISS through 2016 under the NASA Commercial Resupply Services (CRS) contract award valued at $1.9 Billion.

Orbital Sciences is under contract to deliver 20,000 kilograms of research experiments, crew provisions, spare parts and hardware for the eight ISS flights.

I was an eyewitness to the awful devastation suffered by the Orb-3 mission from the press viewing site at NASA Wallops located at a distance of about 1.8 miles away from the launch complex.

I was interviewed by NBC News and you can watch the entire story and see my Antares explosion photos featured at NBC Nightly News on Oct. 29 here.

Watch the Antares launch disaster unfold into a raging inferno in this dramatic sequence of my photos shot on site – here.

Check out my raw video of the launch – here.

Read my firsthand account of the disaster as viewed from the press site, with photos – here.

Watch my interview at Universe Today Weekly Space Hangout on Oct 31, 2014 -here.

Watch here for Ken’s onsite reporting direct from NASA Wallops.

Damage is visible to Launch Pad 0A following catastrophic failure of Orbital Sciences Antares rocket moments after liftoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Damage is visible to Launch Pad 0A following catastrophic failure of Orbital Sciences Antares rocket moments after liftoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Antares rocket stand erect, reflecting off the calm waters the night before their first night launch from NASA’s Wallops Flight Facility, VA, targeted for Oct. 27 at 6:45 p.m.  Credit: Ken Kremer – kenkremer.com
Antares rocket stand erect, reflecting off the calm waters the night before their first night launch from NASA’s Wallops Flight Facility, VA, targeted for Oct. 28. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Soviet Era Engines Likely Caused Antares Catastrophic Rocket Failure

Soviet era NK-33 engines refurbished as the AJ26 exactly like pictured here probably caused Antares’ rocket failure on Oct. 28, 2014. Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS. Credit: Ken Kremer – kenkremer.com

NASA WALLOPS FLIGHT FACILITY, VA – Investigators probing last week’s catastrophic failure of an Antares commercial rocket moments after liftoff, are pointing the finger at the rocket’s Soviet-era built engines as the probable cause of the huge explosion that destroyed the booster and its NASA payload in a raging fireball after liftoff from NASA’s Wallops Flight Facility, VA, according to Orbital Sciences managers.

The Orbital Sciences privately developed Antares rocket was doomed by a sudden mid-air explosion some 15 seconds after liftoff from NASA’s Wallops Flight Facility, VA, at 6:22 p.m. EDT on Tuesday, October 28.

Antares’ first stage is powered by a pair of refurbished Aerojet Rocketdyne AJ26 engines originally manufactured some 40 years ago in the then Soviet Union and originally designated as the NK-33. Overall this was the 5th Antares launch using the AJ26 engines.

See my exclusive photos above and below showing the AJ26 engines with their original NK-33 stencil, during prelaunch processing and mating to the first stage inside Orbital’s Horizontal Integration Facility (HIF) at NASA Wallops.

The NK-33 was originally designed and manufactured in the 1960s by the Kuznetsov Design Bureau for the Soviet Union’s planned N1 rocket to propel cosmonauts to the moon during the space race with NASA’s hugely successful Apollo Moon Landing program.

First stage propulsion system at base of Orbital Sciences Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
First stage propulsion system at base of Orbital Sciences’ Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

Rocket developer Orbital Sciences Corp. said today, Nov. 5, that the launch mishap was probably due to “a failure in one of the two Aerojet Rocketdyne AJ26 stage one main engines.”

Engineers assisting Orbital’s Accident Investigation Board (AIB) say that failure in the AJ26 turbopump is the likely cause. The AIB is chaired by David Steffy, Chief Engineer of Orbital’s Advanced Programs Group.

“While the work of the AIB continues, preliminary evidence and analysis conducted to date points to a probable turbopump-related failure in one of the two Aerojet Rocketdyne AJ26 stage one main engines,” Orbital said in a statement.

“As a result, the use of these engines for the Antares vehicle likely will be discontinued,” said Orbital.

“We will likely discontinue the use of AJ26 rocket engines that had been used on the first five Antares launch vehicles unless and until those engines can be conclusively shown to be flight worthy,” noted David Thompson, Orbital’s Chairman and Chief Executive Officer, during an investor conference call.

Orbital’s options for the way forward will be outlined in a separate story.

Side view of two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today.  These engines powered the successful Antares  liftoff on Jan. 9, 2014 at NASA Wallops, Virginia.  Credit: Ken Kremer - kenkremer.com
Side view of two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today. These engines powered the successful Antares liftoff on Jan. 9, 2014, at NASA Wallops, Virginia. Credit: Ken Kremer – kenkremer.com

The Oct. 28 launch disaster was just the latest in a string of serious problems with the AJ-26/NK-33 engines.

Earlier this year an AJ26 engine failed and exploded during pre launch acceptance testing on a test stand on May 22, 2014, at NASA’s Stennis Space Center in Mississippi.

Besides completely destroying the AJ26 engine, the explosion during engine testing also severely damaged the Stennis test stand. It has taken months of hard work to rebuild and restore the test stand and place it back into service.

An extensive engine analysis, recheck and test stand firings by Aerojet Rocketdyne and Orbital Sciences engineers was conducted to clear this new pair of engines for flight.

Aerojet Rocketdyne purchased approximately 40 NK-33 engines in the mid-1990s and ‘Americanized’ them with multiple modifications including a gimbal steering mechanism.

AJ26 engine failure was immediately suspected, though by no means certain, based on an inspection of numerous photos and videos from myself and many others that clearly showed a violent explosion emanating from the base of the two stage rocket.

Up close view of two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Universe Today.  These engines powered the successful Antares  liftoff on Jan. 9, 2014 at NASA Wallops, Virginia.  Credit: Ken Kremer - kenkremer.com
Up close view of two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Universe Today. These engines powered the successful Antares liftoff on Jan. 9, 2014, at NASA Wallops, Virginia. Credit: Ken Kremer – kenkremer.com

The remainder of the first stage and Antares entire upper stage was clearly intact at the moment of the explosion in all the imagery.

Antares was carrying the unmanned Cygnus cargo freighter on a mission dubbed Orb-3 to resupply the six person crew living aboard the International Space Station (ISS) with science experiments and needed equipment.

The AIB is making rapid progress in assessing the accident’s cause based on an analysis of the rocket’s telemetry as well as the substantial amounts of debris collected from the rocket and the Cygnus cargo freighter at the Wallops launch site.

A preliminary review of telemetry and video data has been conducted and substantial debris from the Antares rocket and its Cygnus payload has been collected and examined.

Antares rocket begins rollout atop transporter erector to Launch Pad 0A at NASA Wallops Island Facility, VA., on Sept. 13, 2013.  Credit: Ken Kremer (kenkremer.com)
Antares rocket begins rollout atop transporter erector to Launch Pad 0A at NASA Wallops Island Facility, VA., on Sept. 13, 2013. Credit: Ken Kremer (kenkremer.com)

The 14 story Antares rocket is a two stage vehicle.

The liquid fueled first stage is filled with about 550,000 pounds (250,000 kg) of Liquid Oxygen and Refined Petroleum (LOX/RP) and powered by a pair of AJ26 engines that generate a combined 734,000 pounds (3,265kN) of sea level thrust.

The doomed mission was bound for the International Space Station (ISS) on a flight to bring up some 5000 pounds of (2200 kg) of science experiments, research instruments, crew provisions, spare parts, spacewalk and computer equipment and gear on a critical resupply mission in the Cygnus resupply ship.

Antares rocket stand erect, reflecting off the calm waters the night before their first night launch from NASA’s Wallops Flight Facility, VA, targeted for Oct. 27 at 6:45 p.m.  Credit: Ken Kremer – kenkremer.com
Antares rocket stands erect, reflecting off the calm waters the night before the first night launch planned from NASA’s Wallops Flight Facility, VA, on Oct. 28, which ended in disaster. Credit: Ken Kremer – kenkremer.com

The Orbital-3, or Orb-3, mission was to be the third of eight cargo resupply missions to the ISS through 2016 under the NASA Commercial Resupply Services (CRS) contract award valued at $1.9 Billion.

Orbital Sciences is under contract to deliver 20,000 kilograms of research experiments, crew provisions, spare parts, and hardware for the eight ISS flights.

I was an eyewitness to the awful devastation suffered by the Orb-3 mission from the press viewing site at NASA Wallops located at a distance of about 1.8 miles away from the launch complex.

I was interviewed by NBC News and you can watch the entire story and see my Antares explosion photos featured at NBC Nightly News on Oct. 29 here.

Watch the Antares launch disaster unfold into a raging inferno in this dramatic sequence of my photos shot on site here.

Check out my raw video of the launch here.

Read my first hand account here.

Watch my interview at Universe Today’s Weekly Space Hangout on Oct 31, 2014, here.

Watch here for Ken’s onsite reporting direct from NASA Wallops.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Orbital Sciences Antares rocket explodes violently and is consumed in a gigantic aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m.  Credit: Ken Kremer – kenkremer.com
Orbital Sciences’ Antares rocket explodes violently and is consumed in a gigantic aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

Antares Launch Calamity Unfolds – Dramatic Photo Sequence

Orbital Sciences Antares rocket explodes violently and is consumed in a gigantic aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

Orbital Sciences’ Antares rocket explodes violently and is consumed in a gigantic aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Story updated with link to Ken Kremer interview with NBC Nightly News[/caption]

NASA WALLOPS FLIGHT FACILITY, VA – The first night launch of Orbital Sciences’ commercial Antares rocket suddenly ended in total calamity some 10 seconds or so after liftoff when the base of the first stage exploded without warning over the launch pad at NASA’s Wallops Flight Facility, Va, at 6:22 p.m. EDT on Tuesday, October 28.

Watch the Antares launch disaster unfold into a raging inferno in this dramatic sequence of my photos shot on site.Check out my raw video of the launch – here. Read my first hand account- here.

I was interviewed by NBC News and you can watch the entire story and see my Antares explosion photos featured at NBC Nightly News on Oct. 29 here.

I was an eyewitness to the awful devastation suffered by the Orb-3 mission from the press viewing site at NASA Wallops located at a distance of about 1.8 miles away with a completely clear view to the launch complex.

A prime suspect in the disaster could be the pair Soviet-era built and US modified AJ26 engines that power the rocket’s first stage.

Another AJ26 engine failed and exploded during acceptance testing on May 22, 2014 at NASA’s Stennis Space Center in Mississippi. An extensive analysis and recheck by Orbital Scoences was conducted to clear this pair for flight.

See my exclusive photo of the AJ-26 engines below and a follow up story shortly.

Ignition of Orbital Sciences Antares rocket appears nominal at first until it explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Ignition of Orbital Sciences’ Antares rocket appears nominal at first until it explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

It was a picture perfect evening.

Blastoff of the 14 story Antares rocket took place from the beachside Launch Pad 0A at the Mid-Atlantic Regional Spaceport (MARS) at NASA Wallops situated on the eastern shore of Virginia.

Base of Orbital Sciences Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Base of Orbital Sciences’ Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Base of Orbital Sciences Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Base of Orbital Sciences’ Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Antares loses thrust after rocket explosion and begins falling back  after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Antares loses thrust after rocket explosion and begins falling back after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Orbital Sciences Antares rocket explodes intoan aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m.  Credit: Ken Kremer – kenkremer.com
Orbital Sciences’ Antares rocket explodes into an aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Antares falls back to the ground and being consumed shortly after blastoff and first stage explosion at NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Antares falls back to the ground and being consumed shortly after blastoff and first stage explosion at NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Orbital Sciences Antares rocket explodes violently and is consumed in a gigantic aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m.  Credit: Ken Kremer – kenkremer.com
Orbital Sciences’ Antares rocket explodes violently and is consumed in a gigantic aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Orbital Sciences Antares rocket explodes into an aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m.  Credit: Ken Kremer – kenkremer.com
Orbital Sciences’ Antares rocket explodes into an aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

The highly anticipated 1st night launch of Antares would have wowed tens of millions of spectators up and down the eastern seaboard from South Carolina to Maine. Overall it was the 5th Antares launch.

The doomed Orb-3 mission was bound for the International Space Station (ISS) on a flight to bring up some 5000 pounds of (2200 kg) of science experiments, research instruments, crew provisions, spare parts, spacewalk and computer equipment and gear on a critical resupply mission in the Cygnus resupply flight dubbed Orb-3 bound for the International Space Station (ISS).

Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps.  These engines powered the successful Antares  liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS.  Credit: Ken Kremer - kenkremer.com
Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS. Credit: Ken Kremer – kenkremer.com

The investigation into the launch failure will be led by Orbital Sciences.

“The root cause will be determined and corrective actions taken,” Frank Culbertson, Orbital’s Executive Vice President and General Manager of its Advanced Programs Group, said at a post launch briefing.

Watch here for Ken’s onsite reporting direct from NASA Wallops.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Catastrophic Failure Dooms Antares Launch to Space Station – Gallery

Orbital Sciences Antares rocket explodes into an aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

NASA WALLOPS FLIGHT FACILITY, VA – Moments after a seemingly glorious liftoff, an Orbital Sciences Corp. commercial Antares rocket suffered a catastrophic failure and exploded into a spectacular aerial fireball over the launch pad at NASA’s Wallops Flight Facility on the eastern shore of Virginia that doomed the mission bound for the International Space Station on Tuesday, October 28.

The 14 story tall Antares rocket blasted off at 6:22 p.m. EDT from the beachside Launch Pad 0A at the Mid-Atlantic Regional Spaceport (MARS) at NASA Wallops on only its 5th launch overall.

I witnessed and photographed the launch from the media viewing area on site at NASA Wallops from a distance of about 1.8 miles away.

This story is being updated. See a gallery of photos herein.

Antares was carrying Orbital’s privately developed Cygnus pressurized cargo freighter loaded with nearly 5000 pounds (2200 kg) of science experiments, research instruments, crew provisions, spare parts, spacewalk and computer equipment and gear on a critical resupply mission dubbed Orb-3 bound for the International Space Station (ISS).

Orbital Sciences Antares rocket explodes intoan aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m.  Credit: Ken Kremer – kenkremer.com
Orbital Sciences Antares rocket explodes into an aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

It was the heaviest cargo load yet lofted by a Cygnus. Some 800 pounds additional cargo was loaded on board compared to earlier flights. That was enabled by using the more powerful ATK CASTOR 30XL engine to power the second stage for the first time.

Everything appeared normal at first. But within about five seconds or so there was obviously a serious mishap as the rocket was no longer ascending. It was just frozen in time. And I was looking directly at the launch, not through the viewfinder of my cameras.

Something was noticeably amiss almost instantly as the rocket climbed only very slowly, barely clearing the tower it seemed to me. The rocket failed to emerge from the normal huge plume of smoke and ash that’s purposely deflected away by the flame trench at the base of the pad.

I was stunned trying to comprehend what was happening because it was all so wrong.

It was absolutely nothing like the other Antares launches I’ve witnessed from the media site.

Orbital Sciences Antares rocket explodes into an aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m.  Credit: Ken Kremer – kenkremer.com
Orbital Sciences Antares rocket explodes into an aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

I knew as a scientist and journalist that I was watching a mounting disaster unfolding before my eyes.

Instead of ascending on an accelerating arc, a mammoth ball of fire, smoke and ash blew up the entire sky in front of us like a scene out of hell or war. Literally the sky was set on fire unlike anything I’ve ever witnessed.

A series of mid air explosions rocked the area. I could feel a slight pressure wave followed by a mild but noticeable heat wave passing by.

Then the rocket began to fall back to Earth. Then the ground blew up too as the rocket pieces hit the ground and exploded into a hail of smithereens in every direction.

By this time our NASA escorts starting yelling to abandon everything in place and head immediately for the buses and evacuate the area. The ground fire spread mostly to the northern portion of the pad and the expanding air borne plume also blew northwards. The ground fire was still burning over a half hour later.

Thankfully, everyone got out safe and there were no injuries due to the excellent effort by our NASA escorts trained for exactly these types of unexpected circumstances.

It’s heartbreaking for everyone’s painstaking efforts to get to the point of liftoff after years of effort to fulfill the critical need to resupply that station with the science equipment and experiments for which it was built.

More later

Antares rocket stand erect, reflecting off the calm waters the night before their first night launch from NASA’s Wallops Flight Facility, VA, targeted for Oct. 27 at 6:45 p.m.  Credit: Ken Kremer – kenkremer.com
Antares rocket stands erect, reflecting off the calm waters the night before the first night launch planned from NASA’s Wallops Flight Facility, VA, on Oct. 28, which ended in disaster. Credit: Ken Kremer – kenkremer.com

Watch here for Ken’s onsite reporting direct from NASA Wallops.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Antares Rocket Engine Suffers Significant Failure During Testing

Hotfire test of Aerojet Rocketdyne AJ26 engines on the E-1 Test Stand at NASA’s Stennis Space Center on Jan 17, 2014. Credit: NASA

Hotfire test of Aerojet Rocketdyne AJ26 engines on the E-1 Test Stand at NASA’s Stennis Space Center on Jan 17, 2014. Credit: NASA
See up close AJ26 photos below[/caption]

A Russian built rocket engine planned for future use in the first stage of Orbital Sciences Corp. commercial Antares rocket launching to the International Space Station failed during pre-launch acceptance testing on Thursday afternoon, May 22, at NASA’s Stennis Space Center in Mississippi.

“There was a test failure at Stennis yesterday afternoon (May 22),” Orbital Sciences spokesman Barry Beneski told Universe Today.

The Aerojet Rocketdyne AJ26 rocket engine failed with extensive damage about halfway through the planned test aimed at qualifying the engine for an Antares flight scheduled for early next year.

“Engineers are examining data to determine the cause of the failure,” Beneski told me.

The test was initiated at about 3:00 p.m. EDT on Thursday and the anomaly occurred approximately 30 seconds into the planned 54-second test.

“It terminated prematurely, resulting in extensive damage to the engine,” Orbital said in a statement.

An investigation into the incident by Aerojet and NASA has begun. The cause of the failure is not known.

“During hot-fire testing on May 22 at NASA’s Stennis Space Center, Aerojet Rocketdyne’s AJ26 engine experienced a test anomaly. The company is leading an investigation to determine the cause,” Aerojet spokesperson Jessica Pieczonka told Universe Today.

Up close view of two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today.  These engines powered the successful Antares  liftoff on Jan. 9, 2014 at NASA Wallops, Virginia.  Credit: Ken Kremer - kenkremer.com
Up close view of two AJ26 first stage engines at the base of an Antares rocket at NASA Wallops during exclusive visit by Ken Kremer/Universe Today. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia. Credit: Ken Kremer – kenkremer.com

Fortunately no one was hurt.

“There were no injuries,” Pieczonka confirmed to me.

A team of NASA, Orbital Sciences Corporation, Aerojet Rocketdyne and Lockheed Martin engineers tests all of the AJ26 engines on the E-1 Test Stand at NASA’s Stennis Space Center before delivering them to the launch site at NASA’s Wallops Flight Facility in Virginia.

The testing program began in November 2010.

“Stennis will perform checkouts to the facility to ensure its operational integrity,” NASA Stennis spokesperson Rebecca Strecker told me.

Antares first stage is powered by a pair of liquid oxygen and kerosene fueled AJ26-62 engines that deliver a combined 734,000 pounds (3265 kilonewtons) of sea level thrust.

To date, the AJ26 engines have performed flawlessly through a total of three Antares launches from NASA’s Wallops Flight Facility in Virginia.

They measure 3.3 meters (10.9 feet) in height and weigh 1590 kg (3,500 lb.).

Side view of two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today.  These engines powered the successful Antares  liftoff on Jan. 9, 2014 at NASA Wallops, Virginia.  Credit: Ken Kremer - kenkremer.com
Side view of two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia. Credit: Ken Kremer – kenkremer.com

The next Antares rocket is slated to blastoff on June 10 with the Cygnus cargo freighter on the Orb-2 resupply mission to the ISS.

As of today, it’s not known whether the June flight will have to be postponed.

“It is too early to tell if upcoming Antares flights will be affected,” Beneski said.

The most recent launch of the two stage rocket took place this past winter on Jan. 9, 2014 on the Orb-1 resupply mission.

Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps.  These engines powered the successful Antares  liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS.  Credit: Ken Kremer - kenkremer.com
Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS. Credit: Ken Kremer – kenkremer.com

The AJ26 engines were originally known as the NK-33 and built in the Soviet Union for their manned moon landing program.

Aerojet extensively modified, checked and tested the NK-33 engines now designated as the AJ26-62 to qualify them for use in the first stage Antares core, which is manufactured in Ukraine by the Yuznoye Design Bureau and based on the Zenit launch vehicle.

“Each test of an AJ26 engine is exciting and affirming because it is in direct support of NASA’s commercial space flight efforts, as well as a continuation of a very successful Stennis partnership with Orbital and Aerojet Rocketdyne,” Stennis Director Rick Gilbrech said in an earlier statement.

Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS.  Photo taken by remote camera at launch pad. Credit: Ken Kremer - kenkremer.com
Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS. Photo taken by remote camera at launch pad. Credit: Ken Kremer – kenkremer.com

Orbital Sciences was awarded a $1.9 Billion supply contract by NASA to deliver 20,000 kilograms of research experiments, crew provisions, spare parts and hardware for 8 flights to the ISS through 2016 under the Commercial Resupply Services (CRS) initiative.

The June mission would be the second operational Antares/Cygnus flight.

SpaceX has a similar resupply contract using their Falcon 9 rocket and Dragon cargo carrier and just completed their 3rd operational mission to the ISS.

Ken Kremer

Antares rocket powered by AJ26 1st stage engines successfully launched on Jan. 9, 2014. Here it undergoes processing at the Horizontal Integration Facility at NASA Wallops, Virginia, during exclusive visit by  Ken Kremer/Universe Today.   Credit: Ken Kremer - kenkremer.com
Antares rocket powered by AJ26 1st stage engines successfully launched on Jan. 9, 2014. Here it undergoes processing at the Horizontal Integration Facility at NASA Wallops, Virginia, during exclusive visit by Ken Kremer/Universe Today. Credit: Ken Kremer – kenkremer.com