2015: NASA’s Year of the Dwarf Planet

Two spacecraft, Dawn and New Horizon will reach their final objectives in 2015 - Dwarf Planets - Ceres and Pluto. (Credit: NASA, Illustration - T.Reyes)

Together, the space probes Dawn and New Horizons have been in flight for a collective 17 years. One remained close to home and the other departed to parts of the Solar System of which little is known. They now share a common destination in the same year: dwarf planets.

At the time of these NASA probes’ departures, Ceres had just lost its designation as the largest asteroid in our Solar System. Pluto was the ninth planet. Both probes now stand to deliver measures of new data and insight that could spearhead yet another revision of the definition of planet.

A comparison of the trajectories of New Horizon (left) and the Dawn missions (right). (Credit: NASA/JPL, SWRI, Composite- T.Reyes)
A comparison of the trajectories of New Horizons (left) and the Dawn missions (right). (Credit: NASA/JPL, SWRI, Composite- T.Reyes)

Certainly, NASA’s Year of the Dwarf Planet is an unofficial designation and NASA representatives would be quick to emphasize another dozen or more missions that are of importance during the year 2015. However, these two missions could determine the fate of billions or more small bodies just within our galaxy, the Milky Way.

If Ceres and Pluto are studied up close – mission success is never a sure thing – then what is observed could lead to a new, more certain and accepted definition of planet, dwarf planet, and possibly other new definitions.

The New Horizons mission became the first mission of NASA’s New Frontiers program, beginning development in 2001. The probe was launched on January 19, 2006, atop an Atlas V 551 (5 solid rocket boosters plus a third stage). Utilizing more compact and lightweight electronics than its predecessors to the outer planets – Pioneer 10 & 11, and Voyager 1 & 2 – the combination of reduced weight, a powerful launch vehicle, plus a gravity assist from Jupiter has lead to a nine year journey. On December 6, 2014, New Horizons was taken out of hibernation for the last time and now remains powered on until the Pluto encounter.

This "movie" of Pluto and its largest moon, Charon b yNASA's New Horizons spacecraft taken in July 2014 clearly shows that the barycenter -center of mass of the two bodies - resides outside (between) both bodies. The 12 images that make up the movie were taken by the spacecraft’s best telescopic camera – the Long Range Reconnaissance Imager (LORRI) – at distances ranging from about 267 million to 262 million miles (429 million to 422 million kilometers). Charon is orbiting approximately 11,200 miles (about 18,000 kilometers) above Pluto's surface. (Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute)
This “movie” of Pluto and its largest moon, Charon, by NASA’s New Horizons spacecraft taken in July 2014 clearly shows that the barycenter – the center of mass of the two bodies – resides outside (between) both bodies. The 12 images that make up the movie were taken by the spacecraft’s best telescopic camera – the Long Range Reconnaissance Imager (LORRI) – at distances ranging from about 267 million to 262 million miles (429 million to 422 million kilometers). Charon is orbiting approximately 11,200 miles (about 18,000 kilometers) above Pluto’s surface. (Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute)

The arrival date of New Horizon is July 14, 2015. A telescope called the Long Range Reconnaissance Imager (LORRI) has permitted the commencement of observations while still over 240 million kilometers (150 million miles) from Pluto. The first stellar-like images were taken while still in the Asteroid belt in 2006.

Pluto was once the ninth planet of the Solar System. From its discovery in 1930 by Clyde Tombaugh until 2006, it maintained this status. In that latter year, the International Astronomical Union undertook a debate and then a membership vote that redefined what a planet is. The change occurred 8 months after New Horizons’ launch. There were some upset mission scientists, foremost of which was the principal investigator, Dr. Alan Stern, from the Southwest Research Institute in San Antonio, Texas. In a sense, the rug had been pulled from under them.

A gentleman’s battle ensued between opposing protagonists Dr. Stern and Dr. Michael Brown from Caltech. In 2001, Dr. Brown’s research team began to discover Kuiper belt objects (Trans-Neptunian objects) that rivaled the size of Pluto. Pluto suddenly appeared to be one of many small bodies that could likely number in the trillions within just one galaxy – ours. According to Dr. Brown, there could be as many as 200 objects in our Solar System similar to Pluto that, under the old definition, could be defined as planets. Dr. Brown’s work was the straw that broke the camel’s back – that is, it led to the redefinition of planet, and the native of Huntsville, Alabama, went on to write a popular book, How I Killed Pluto and Why It Had It Coming.

Dr. Stern’s story involving Pluto and planetary research is a longer and more circuitous one. Stern was the Executive Director of the Southwest Research Institute’s Space Science and Engineering Division and then accepted the position of Associate Administrator of NASA’s Science Mission Directorate in 2007. Clearly, after a nine year journey, Stern is now fully committed to New Horizons’ close encounter. More descriptions of the two protagonists of the Pluto debate will be included in a follow on story.

Artist’s concept depicting the Dawn spacecraft thrusting with its ion propulsion system as it travels from Vesta (lower right) to Ceres (upper left). The galaxies in the background are part of the Virgo supercluster. Dawn, Vesta and Ceres are currently in the constellation Virgo from the perspective of viewers on Earth. (Image credit: NASA/JPL)
Artist’s concept depicting the Dawn spacecraft thrusting with its ion propulsion system as it travels from Vesta (lower right) to Ceres (upper left). The galaxies in the background are part of the Virgo supercluster. Dawn, Vesta, and Ceres are currently in the constellation Virgo from the perspective of viewers on Earth. (Image credit: NASA/JPL)

The JPL and Orbital Science Corporation developed Dawn space probe began its journey to the main asteroid belt on September 27, 2007. It has used gravity assists and flew by the planet Mars. Dawn spent 14 months surveying Vesta, the 4th largest asteroid of the main belt (assuming Ceres is still considered the largest). While New Horizons has traveled over 30 Astronomical Units (A.U.) – 30 times the distance from the Earth to the Sun – Dawn has remained closer and required reaching a little over 2 A.U. to reach Vesta and now 3 A.U. to reach Ceres.

The Dawn mission had the clear objective of rendezvous and achieving orbit with two asteroids in the main belt between Mars and Jupiter. Dawn was also sent packing the next generation of Ion Propulsion. It has proven its effectiveness very well, having used ion propulsion for the first time to achieve an orbit. Pretty simple, right? Not so fast.

As Dawn was passing critical design reviews during development, the redefinition of planet lofted its second objective – the asteroid 1 Ceres – to a new status. While Pluto was demoted, Ceres was promoted from its scrappy status of biggest of the asteroids – the debris, the leftovers of our solar system’s development – to dwarf planet. Even 4 Vesta is now designated a proto-planet.

Artist rendition of Dawn spacecraft orbiting Vesta(Credit: NASA/JPL-Caltech)
Artist rendition of Dawn spacecraft orbiting Vesta. (Credit: NASA/JPL-Caltech)

So now the stage is set. Dawn will arrive first at a dwarf planet – Ceres – in April. With a small, low gravity body and ion propulsion, the arrival is slow and cautious. If the two missions fair well and achieve their goals, 2015 is likely to become a pivotal year in the debate over the classification of non-stellar objects throughout the universe.

Just days ago, at the American Geophysical Union Conference in San Francisco, Dr. Stern and team described the status and more details of the goals of New Horizons. Since arriving, more moons of Pluto have been discovered. There is the potential that faint rings exist and Pluto may even harbor an interior ocean due to the tidal forces from its largest moon, Charon. And Dawn mission scientists have seen the prospects for Ceres’ change. Not just the status, the latest Hubble images of Ceres is showing bright spots which could be water ice deposits and could also harbor an internal ocean.

The Solar System is becoming a more crowded place. This picture shows the sizes of dwarf planets Pluto, Ceres, Eris, and Makemake as compared to Earth and Earth's Moon, here called "Luna." None of the distances between objects are to scale. (Credit: NASA)
The Solar System is becoming a more crowded place. This picture shows the sizes of dwarf planets Pluto, Ceres, Eris, and Makemake as compared to Earth and Earth’s Moon, here called “Luna.” None of the distances between objects are to scale. (Credit: NASA)

So other NASA missions notwithstanding, this is the year of the dwarf planet. NASA will provide Humanity with its first close encounters with the most numerous of small round – by their self-gravity – bodies in the Universe. They are now called dwarf planets but ask Dr. Stern and company, the public, and many other planetary scientists and you will discover that the jury is still out.

References:

JHU/APL New Horizons Mission Home Page

NASA Dawn Mission Home Page

Related Universe Today articles:

NASA’s New Horizons

NASA’s Dawn Mission

Meet the New Horizons Team in a Live Google+ Hangout

New Horizons Google Hangout
New Horizons Google Hangout

NASA’s New Horizons spacecraft just woke up from its long nap, and now it’s on final approach towards its next destination: Pluto. Over the next few months, Pluto will be getting bigger and bigger in the front window; we’ll finally get our first close-up look at this mysterious icy world on July 14, 2015.

In order to celebrate this momentous occasion, the New Horizons science team will be doing a live Google+ Hangout with Universe Today on Wednesday, December 10th at 1 pm PST / 4 pm EST.

Universe Today publisher Fraser Cain will moderate a discussion with New Horizons Principal Investigator Alan Stern, and other members of the science team: Jason Cook, Alex Parker, Simon Porter, Kelsi Singer, and Amanda Zangari.

We’ll be talking about the status of New Horizons, the science objectives of the mission, and answering questions from viewers.

Want to watch?

Click here to go to the Hangout page on Google+. Click “Yes” on the Event page and you’ll get a reminder in your calendar when we’re about to begin.

Recent Universe Today articles on New Horizon:
Pluto Spacecraft Wakes Up For An Exciting Close Encounter Next Year
Pluto’s Closeup Will Be Awesome Based On Jupiter Pics From New Horizons Spacecraft
New Horizons Sights Tiny Pluto Moon As Spacecraft Races Toward Dwarf Planet

Watch Pluto and Charon Engage in Their Orbital Dance

Animation of Pluto and Charon showing nearly a full rotation (NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute)

Now here’s something I guarantee you’ve never seen before: a video of the dwarf planet Pluto and its largest moon Charon showing the two distinctly separate worlds actually in motion around each other! Captured by the steadily-approaching New Horizons spacecraft from July 19–24, the 12 images that comprise this animation were acquired with the Long Range Reconnaissance Imager (LORRI) instrument from distances of 267 million to 262 million miles (429 million to 422 million km) and show nearly a full orbital rotation. Absolutely beautiful!

For a close-up video of the two worlds in motion, click below:

Pluto and Charon rotation movie from New Horizons (enlarged view)
Pluto and Charon rotation movie from New Horizons (enlarged view)

Pluto and Charon are seen circling a central gravitational point known as the barycenter, which accounts for the wobbling motion. Since Charon is 1/12th the mass of Pluto the center of mass between the two actually lies a bit outside Pluto’s radius, making their little gravitational “dance” readily apparent.

(The same effect happens with the Earth and Moon too, but since the barycenter lies 1,700 km below Earth’s surface it’s not nearly as obvious.)

“The image sequence showing Charon revolving around Pluto set a record for close range imaging of Pluto—they were taken from 10 times closer to the planet than the Earth is,” said New Horizons mission Principal Investigator Alan Stern, of the Southwest Research Institute. “But we’ll smash that record again and again, starting in January, as approach operations begin.”

Fastest Spacecraft
Artist concept of the New Horizons spacecraft. Credit: NASA

Launched January 19, 2006, New Horizons is now in the final year of its journey to the Pluto system. On August 25 it will pass the orbit of Neptune – which, coincidentally, is 25 years to the day after Voyager 2’s closest approach – and then it’s on to Pluto and Charon, which New Horizons will become the first spacecraft to fly by on July 14, 2015, at distances of 10,000 and 27,000 km respectively. Find out where New Horizons is right now here.

Source: New Horizons

Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

New Horizons Wakes Up for the Summer

New Horizons
Artist's impression of the New Horizons spacecraft. Image Credit: NASA

While many kids in the U.S. are starting their school summer vacations, New Horizons is about to get back to work! Speeding along on its way to Pluto the spacecraft has just woken up from hibernation, a nap it began five months (and 100 million miles) ago.

The next time New Horizons awakens from hibernation in December, it will be beginning its actual and long-awaited encounter with Pluto! But first the spacecraft and its team have a busy and exciting summer ahead.

New Horizons Tweeted about its Father's Day wakeup call
New Horizons tweeted about its Father’s Day wakeup call

After an in-depth checkout of its onboard systems and instruments, the New Horizons team will “track the spacecraft to refine its orbit, do a host of instrument calibrations needed before encounter, carry out a small but important course correction, and gather some cruise science,” according to principal investigator Alan Stern in his June 11 update, aptly titled “Childhood’s End.”

What’ll be particularly exciting for us space fans is an animation of Pluto and Charon in motion around each other, to be made from new observations to be acquired in July. Because of New Horizons’ position, the view will be from a perspective not possible from Earth.

New Horizons LOng Range Reconnaissance Imager (LORRI) composite image showing the detection of Pluto’s largest moon, Charon, cleanly separated from Pluto itself. (Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute)
New Horizons LOng Range Reconnaissance Imager (LORRI) image of Pluto and Charon from July 2013 (Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute)

The next major milestone for New Horizons will be its crossing of Neptune’s orbit on August 25. (This just happens to fall on the 25th anniversary of Voyager 2’s closest approach in 1989.) “After that,” Stern says, “we’ll be in ‘Pluto space!'”

Read more: An Ocean on Pluto’s Moon?

Launched on Jan. 19, 2006, New Horizons will make its closest approach to Pluto on July 14, 2015 at 11:49 UTC. Traveling nearly 35,000 mph (55,500 km/h) it’s one of the fastest vehicles ever built, moving almost 20 times faster than a bullet. 

Read more from Alan Stern in his latest “PI Perspective” article on the New Horizons web site here, and check out NASA’s mission page here for the latest news as well.

“There is a lot to tell you about over the next 12 weeks, and this is just the warm-up act. Showtime — the start of the encounter — begins in just six months. This is what New Horizons was built for, and what we came to do. In a very real sense, the mission is emerging into its prime.”

– Alan Stern, New Horizons principal investigator

Also, check out a video on Pluto and the New Horizons mission here.

Proposed Balloon Ride Would Let You See The Blackness Of Space

Artist's conception of World View's planned balloon mission some 19 miles (30 kilometers) up. Credit: World View Enterprises Inc.

Doesn’t that look fun? A startup company is proposing to send customers 19 miles (30 kilometers) into the air via balloon, where they can linger for two hours and look at the curvature of the Earth and experience a black sky. While it’s not high enough to qualify as a spaceflight, the listed ticket price may be a little more affordable for space enthusiasts: $75,000.

Don’t get too excited yet — the project appears to be in very early stages, and no “first flight” date is listed yet. But there are some interesting notes for those looking for space and science experience in the company.

  • Among the members of its executive is Alan Stern, the principal investigator for the New Horizons Pluto mission and NASA’s former associate administrator for the science mission directorate. (He’s also the CEO of the Golden Spike company that wants to offer commercial human missions to the moon.)
  • The executive also includes Jane Poynter and Taber MacCallum, who were both members of Biosphere 2. More recently, they also took on senior positions in Inspiration Mars, a Dennis Tito-led project that aims to send humans past Mars. (The target launch date for that is Jan. 5, 2018.)
  • The company proposing to build it is Paragon Space Development Corp. (which Poynter and MacCallum co-founded.) Paragon’s customers for thermal, environment and life support systems include a lot of name brands (including NASA). Paragon is also doing work for the Inspiration Mars project as well as Mars One, which aims to send colonists on a one-way trip to the Red Planet by 2023.
Artist's conception of World View's passenger capsule that will be carried aloft during a proposed balloon flight. Credit: World View Enterprises Inc.
Artist’s conception of World View’s passenger capsule that will be carried aloft during a proposed balloon flight. Credit: World View Enterprises Inc.

“Seeing the Earth hanging in the ink-black void of space will help people realize our connection to our home planet and to the universe around us, and will surely offer a transformative experience to our customers,” stated Poynter, who is CEO of World View. “It is also our goal to open up a whole new realm for exercising human curiosity, scientific research and education.”

World View’s announcement came after the Federal Aviation Administration “determined that World View’s spacecraft and its operations fall under the jurisdiction of the office of Commercial Space Flight,” the company added.

More information on their mission is available on the World View website. It’s a bit of a different track than Virgin Galactic and XCOR, who are offering rides into suborbital space for prices of $250,000 and $95,000, respectively. Neither company has an operational spacecraft yet, but they are in flight testing. Reports indicate they are hoping to get flights going next year.

Golden Spike Still Needs Your Help to Get to the Moon

Concept of a Golden Spike Co. lunar lander


Last December the Golden Spike Company announced its plans to enable private-sector lunar exploration missions which would be feasible, profitable, and possible — even without government funding. Comprised of veteran space program executives, managers, and engineers, Golden Spike intends to stand on the shoulders of current space technology to develop lunar transportation systems that can be used by agencies and private interests worldwide to get humans back to the Moon… but they still need your help getting the word out.

“We’re running an Indiegogo campaign as an experiment in public outreach and interest in human lunar expeditions,” Golden Spike CEO and planetary scientist Alan Stern explained to Universe Today in an email.

Recently Golden Spike started a crowdfunding campaign on Indiegogo with the goal of raising $240,000 for international outreach (that’s a dollar for every mile to the Moon!) but, with only 16 10 days left in the campaign, only $9,400 $12,134 has been contributed.* While dollar-for-mile that’s still farther than any humans have traveled into space since Apollo, it’s unfortunately quite short of their goal.

CEO and famed planetary scientist Alan Stern blames himself.

“Simply put, we didn’t put the right people and resources on this Indiegogo campaign,” Stern wrote in an announcement on the Indiegogo site on April 9.

But despite the small amount of time remaining, he’s not giving up.

“We’re going to take advantage of the press of time left — just 16 days — to reach out to the broader public about people they can be a part of a historic new era of human lunar exploration,” Stern writes.

“To do that, you’ll be seeing Golden Spike in the press quite a bit more the next two weeks.”

And he’s asking for your continued help to not just contribute, but also to get the word out.

“Speak to friends and colleagues. Message on sites like Twitter and Facebook, Google+, and LinkedIn. Send emails. Heck, put up signs and hand out flyers! We’re in the final phases of this campaign, ask people to join in. Let them know why you joined. Tell them their participation will make a huge difference… If we do this right, we can succeed.”

While contributions to the Golden Spike campaign won’t be used to launch rockets or build Moon bases, they will be used to reach out to potential international partners and show them that people are indeed interested in getting people back to the Moon… proven by the fact that they’ll even put some of their own money into the venture.

Small donations, large donations… each contribution no matter the size shows that people will invest in a future of lunar exploration. Put some “skin in the game,” if you will.

Click here to contribute to the Golden Spike campaign. And even if you can’t contribute financially, help get the word out. Share this article, tell people about the campaign, let them know that our future on the Moon doesn’t have to rely on fickle government funding or be subject to catastrophic budget cuts.

We got there before, we can get there again. The Moon awaits.

“Make the point that 40-plus years of waiting for governments to do this for us showed that the people who want humans to explore the Moon have to take personal action if we want it.”

– Alan Stern, planetary scientist and Golden Spike Company CEO

Read more about the Golden Spike Company mission here.

PS: Be sure to email [email protected] when you donate to the campaign and let them know your name, city, and state, and who referred you to donate (in this case, Universe Today.) They’re giving prizes for the top US state, top country, and top referrals!

(*Article updated on April 15.)

New Horizons’ Pluto Stamp is One Step Closer to Becoming a Reality

Concept art for a New Horizons postage stamp. Image Credit: Dan Durda/Southwest Research Institute

A little over a year ago Alan Stern, principal investigator on the New Horizons mission, announced the team’s plans to have a Forever Stamp issued by the US Postal Service commemorating the New Horizons spacecraft along with its targets, Pluto and Charon. Thousands signed the petition, and today the team announced a long-awaited update to all of its supporters: it’s definitely a maybe!

In an email sent out to petition signers as well as on its Facebook page, the New Horizons team noted that the stamp — conceptualized by planetary scientist and artist Dan Durda — has cleared its first major hurdle in the USPS approval process and will be submitted for review and consideration before their Advisory Committee.

Pending that approval, it will then be put on the agenda for the meeting of the Citizens’ Stamp Advisory Committee.

After that point, since no notification is made to the applicant about a stamp’s approval by the Postmaster General until a public announcement is issued it’s likely that we won’t know if there will actually be a New Horizons stamp until the spacecraft is on final approach to Pluto in July 2015. Hopefully the USPS will see the benefit to having a stamp actually ready for purchase by that time and plan accordingly, but one never knows. Until then, cross your fingers and keep an eye out for a Forever Stamp featuring the “First Spacecraft to Explore Pluto!”

“This is a chance for us all to celebrate what American space exploration can achieve though hard work, technical excellence, the spirit of scientific inquiry, and the uniquely human drive to explore.”

– Alan Stern, New Horizons Principal Investigator

USPS Forever Stamps can be used to mail a one-ounce letter regardless of when the stamps are purchased or used and no matter how prices may change in the future. Forever Stamps are always sold at the same price as a regular First-Class Mail stamp. Forever Stamps can be used for international mail, but since all international prices are higher than domestic US prices, additional postage is necessary.

New Horizons May Need to ‘Bail Out’ to Dodge Debris, Rings and Moons in the Pluto System

Artist’s concept shows the New Horizons spacecraft during its 2015 encounter with Pluto and its moon, Charon. Credit: JHUAPL/SwRI

Since the New Horizons spacecraft left Earth back in 2006, there are a few things we know about the Pluto system now that we didn’t know then. For instance, it was discovered Pluto has two additional small moons – P4 and P5 — and Alan Stern, New Horizons Principal Investigator, said Pluto may have a large system of moons to be discovered as the spacecraft gets closer. There are also comets, possibly more dwarf planets and other objects out in the Kuiper Belt region where Pluto orbits.

“That’s exciting,” Stern said, “but this is a mixed story.”

Stern told Universe Today that while the spacecraft possibly could come upon an undiscovered moon or Kuiper Belt Object and they would have to alter course, the biggest issue is tiny debris which may be coming from impacts on the smaller moons.

“We could have 100 moons the size of P4 and they would not be a significant hazard,” Stern said via email. “The hazard is from ejecta coming off these satellites when they are cratered, because the ejecta escapes their feeble gravity and gets into orbit around Pluto.”

At a press conference at the American Astronomical Society’s Division for Planetary Sciences meeting, Stern said that with all the debris in the Kuiper Belt, objects are definitely getting impacted. “If hits occur on Pluto and Charon, they have enough gravity that ejecta just flies across the planet and creates secondary craters. But the ejecta on smaller moons puts shards and debris into the Pluto system.”

Stern said the ejecta speeds from these moons would be comparable to orbital speeds. That means the debris can orbit at any inclination, and there could be a cloud of debris around the system, creating a hazard for the spacecraft.

This worries Stern and his team.

“My spacecraft is going very fast and even a strike from something as small as a BB would be fatal,” he said. “There’s almost no place the spacecraft could get hit and it would be OK.”

Stern said current knowledge of the density of debris of the system can’t prove the spacecraft won’t get hit, and they won’t be able to find out more until they get closer.

“We’re going somewhere new and have no direct evidence of debris that could pose an impact hazard,” he said. “We don’t know what we are going to find and we might have to change our course.”

Stern and his team are looking at some alternative plans, and developing them now is crucial.

“When we plan an encounter for a mission like this, it literally takes tens of thousands of man-hours by experts to put that sequence together and test it,” he said. “We have to plan them now in order to complete that planning. We can’t complete them in the last couple of months or weeks.”

The plans being considered are called SHBOT: Safe Haven Bail Out Trajectory. They currently have nine different possible trajectories, depending on what they find as they get closer.

Screenshot from Stern’s presentation, depicting the nine SHBOT trajectories.

The team is also using every available tool — including sophisticated computer simulations of the stability of debris orbiting Pluto, giant ground-based telescopes, stellar occultation probes of the Pluto system, and even the Hubble Space Telescope — to search for debris in orbit.

Stern told Universe Today that they use the cameras on New Horizons itself every summer when they “wake up” the spacecraft. “LORRI (Long Range Reconnaissance Imager) has already seen Pluto for about 6 years!” he said, “But we won’t pass HST resolution till we’re about 10 weeks out, in April 2015. That’s when we turn on the heavy effort to look for more moons, rings, etc.”

They are looking at the pluses and minuses for each of the plans so they can be tested and be just as “bullet-proof” as the original, nominal flight plan.

In addition to saving the spacecraft, these alternative trajectories also need to preserve the science mission as much as possible. Most of the alternate courses bring the spacecraft farther away from the Pluto system, but one actually brings it closer to Charon, as the path there may be clearer there because of Charon’s gravity and clearing effect.

The spacecraft will start science observations in January 2015, with closest approach to the system currently set for on July 14, 2015 (“Bastille Day,” Stern said, “when we storm the gates of the Pluto system!”)

During the final 50 days of approach, when the spacecraft is taking pictures and sending them back to Earth to be analyzed, the team may discover something and have to fire the spacecraft engines, putting them on one of the SHBOT trajectories. But the last opportunity to actually change course is 10 days before encounter.

“After that we are in too close and we would run out of fuel and not complete the maneuver,” Stern said.

So, while the Mars Science Laboratory team had “Seven minutes of terror” during the perilous landing on Mars, Stern said they have something similar. “We don’t have seven minutes of terror; we have seven weeks of suspense.”

What Has the Kuiper Belt Taught Us About The Solar System?

Over 4 billion miles (6.7 billion km) from the Sun, the Kuiper Belt is a vast zone of frozen worlds we still know very little about. Image: Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute (JHUAPL/SwRI)

Today marks the 20th anniversary of the discovery of the first Kuiper Belt Object, 1992QB1. KBOs are distant and mostly tiny worlds made up of ice and rock that orbit the Sun at incredible distances, yet are still very much members of our Solar System. Since 1992 over 1,300 KBOs have been found, and with NASA’s New Horizons spacecraft speeding along to its July 2015 rendezvous with Pluto and Charon (which one could argue are technically the first KBOs ever found) and then onwards into the Belt, we will soon know much more about these far-flung denizens of deep space.

But how has the discovery of the Kuiper Belt — first proposed by Gerard Kuiper in 1951 (and in a fashion even earlier by Kenneth Edgeworth) — impacted our current understanding of the Solar System? New Horizons Principal Investigator Alan Stern from the Southwest Research Institute recently discussed this on his mission blog, “The PI’s Perspective.”

First, Stern lists some of the surprisingly diverse physical aspects of KBOs that have been discovered so far:

  • Some are red and some are gray;
  • The surfaces of some are covered in water ice, but others (like Pluto) have exotic volatile ices like methane and nitrogen;
  • Many have moons, though none with more known moons than Pluto;
  • Some are highly reflective (like Pluto), others have much darker surfaces;
  • Some have much lower densities than Pluto, meaning they are primarily made of ice. Pluto’s density is so high that we know its interior is about 70% rock in its interior; a few known KBOs are more dense than Pluto, and even rockier!

But although these features are fascinating in themselves, just begging for further exploration, Stern notes that there are three very important lessons that the Kuiper Belt has taught us about the Solar System:

1. Our planetary system is much larger than we had ever thought.

“In fact, we were largely unaware of the Kuiper Belt — the largest structure in our solar system — until it was discovered 20 years ago,”  Stern writes. “It’s akin to not having maps of the Earth that included the Pacific Ocean as recently as 1992!”

2. Planetary locations and orbits can change over time.

“This even creates whole flocks of migration of planets in some cases. We have firm evidence that many KBOs (including some large ones like Pluto), were born much closer to the Sun, in the region where the giant planets now orbit.”

3. Our solar system, and likely others as well, was very good at making small planets.

“Today we know of more than a dozen dwarf planets in the solar system, and those dwarfs already outnumber the number of gas giants and terrestrial planets combined. But it is estimated that the ultimate number of dwarf planets we will discover in the Kuiper Belt and beyond may well exceed 10,000. Who knew?”

And with a little jab at the whole Pluto-isn’t-a-planet topic, Stern asks: “And which class of planet is the misfit now?”

Read: Was Pluto Ever REALLY a Planet?

The discovery of the Kuiper Belt has shown us that our solar system — and very likely planetary systems across the galaxy, even the Universe — aren’t neat and tidy things that can be easily summed up with grade-school models or chalkboard diagrams. Instead they are incredibly diverse and dynamic, continually evolving and consisting of countless, varied worlds spanning enormous distances… yet still connected through the ever-present effects of gravity (not to mention the occasional-yet-unavoidable collision.)

“What an amazing set of paradigm shifts in our knowledge the Kuiper Belt has brought so far. Our quaint 1990s and earlier view of the solar system missed its largest structure!”

– Alan Stern, New Horizons Principal Investigator

Read more about the New Horizons mission here.

 The first KBO identified, 1992 QB1 (European Southern Observatory)

Fifth Moon Found Around Pluto

This just in! Astronomers working with the Hubble Space Telescope have spotted a new moon around distant Pluto, bringing the known count up to 5. The image above was released by NASA just minutes ago, showing the Pluto system with its newest member, P5.

This news comes just a couple of weeks shy of the one-year anniversary of the announcement of Pluto’s 4th known moon, still currently named “P4”.

The news was shared this morning by an undoubtedly excited Alan Stern of the Southwest Research Institute (SwRI) on Twitter.

Astronomers estimate P5 to be between 6 and 15 miles (9.6 to 24 km) in diameter. It orbits Pluto in the same plane as the other moons — Charon, Nix, Hydra and P4.

“The moons form a series of neatly nested orbits, a bit like Russian dolls,” said team lead Mark Showalter of the SETI Institute.

A mini-abstract of an upcoming paper lists image sets acquired on 5 separate occasions in June and July. According to the abstract, P5 is 4% as bright as Nix and 50% as bright as P4.

The satellite’s mean magnitude is V = 27.0 +/- 0.3, making it 4 percent as bright as Pluto II (Nix) and half as bright as S/2011 (134340) 1. The diameter depends on the assumed geometric albedo: 10 km if p_v = 0.35, or 25 km if p_v =0.04. The motion is consistent with a body traveling on a near-circular orbit coplanar with the other satellites. The inferred mean motion is 17.8 +/- 0.1 degrees per day (P = 20.2 +/- 0.1 days), and the projected radial distance from Pluto is 42000 +/- 2000 km, placing P5 interior to Pluto II (Nix) and close to the 1:3 mean motion resonance with Pluto I (Charon).

The new detection will help scientists navigate NASA’s New Horizons spacecraft through the Pluto system in 2015, when it makes an historic and long-awaited high-speed flyby of the distant world.

See the news release from NASA here.

(H/T to Ray Sanders at DearAstronomer.com)

Top image: NASA, ESA and M. Showalter (SETI Institute)