Planets Can Form in Even the Harshest Conditions

Artist concept of planet formation occuring in harsh stellar environments. Credit: NSF/AUI/NSF NRAO/S.Dagnello.

According to the most widely held astronomical model (the Nebular Hypothesis), new stars are born from massive clouds of dust and gas (aka. a nebula) that experience gravitational collapse. The remaining dust and gas form a protoplanetary disk that encircles the new star, which slowly accretes to form systems of planets. For the past decade, astronomers have relied on the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile to study young stars and their disks and learn more about how this process occurs.

In a recent study, an international team of astronomers used ALMA to capture high-resolution images of eight protoplanetary disks in the Sigma Orionis cluster, a group of stars located in the constellation Orion. During their observations, the team found evidence of gaps and rings in most of the disks, which are potential indications that giant planets are forming. This was surprising, seeing as how these disks are irradiated by intense ultraviolet (UV) radiation from a massive star in the cluster. Their findings suggest that planet formation can occur in conditions that were previously thought to be inhospitable.

Continue reading “Planets Can Form in Even the Harshest Conditions”

We Might Finally Know How Galaxies Grow So Large

Spiral galaxies and elliptical galaxies both contain bulges, also called spheroids. How these spheroids form and evolve is a puzzling question, but new research brings us closer to an answer. Image Credit: ESA

Astronomers have spent decades trying to understand how galaxies grow so large. One piece of the puzzle is spheroids, also known as galactic bulges. Spiral galaxies and elliptical galaxies have different morphologies, but they both have spheroids. This is where most of their stars are and, in fact, where most stars in the Universe reside. Since most stars reside in spheroids, understanding them is critical to understanding how galaxies grow and evolve.

New research focused on spheroids has brought them closer than ever to understanding how galaxies become so massive.

Continue reading “We Might Finally Know How Galaxies Grow So Large”

This Ancient Galaxy Merger Will Produce a very Luminous Quasar

This illustration depicts two quasars in the process of merging. There are many unanswered questions around galaxy mergers and the quasars that can result. Image Credit: NOIRLab/NSF/AURA/M. Garlick)

In the contemporary Universe, massive galaxies are plentiful. But the Universe wasn’t always like this. Astronomers think that galaxies grew large through mergers, so what we see in space is the result of billions of years of galaxies merging. When galaxies merge, the merger can feed large quantities of gas into their centers, sometimes creating a quasar.

Much of this is theoretical and shrouded in mystery, but astronomers might have found evidence of a galaxy merger creating a quasar.

Continue reading “This Ancient Galaxy Merger Will Produce a very Luminous Quasar”

Astronomers See Planets Forming Around Binary Stars

Artist's illustration of binary star planet formation. Credit: S. Dagnello, NSF/AUI/NRAO

Over 5,000 exoplanets have been discovered around distant star systems. Protoplanetary disks have been discovered too and it’s these, out of which all planetary systems form. Such disks have recently been found in two binary star systems. The stellar components in one have a separation of 14 astronomical units (the average distance between the Earth and Sun is one astronomical unit) and the other system has a separation of 22 astronomical units. Studying systems like these allow us to see how the stars of a binary system interact and how they can distort protoplanetary disks.

Continue reading “Astronomers See Planets Forming Around Binary Stars”

A New Model Explains How Gas and Ice Giant Planets Can Form Rapidly

Artist's impression of a young star surrounded by a protoplanetary disc made of gas and dust. According to new research, ring-shaped, turbulent disturbances (substructures) in the disk lead to the rapid formation of several gas and ice giants. Credit: LMU / Thomas Zankl, crushed eyes media

The most widely recognized explanation for planet formation is the accretion theory. It states that small particles in a protoplanetary disk accumulate gravitationally and, over time, form larger and larger bodies called planetesimals. Eventually, many planetesimals collide and combine to form even larger bodies. For gas giants, these become the cores that then attract massive amounts of gas over millions of years.

But the accretion theory struggles to explain gas giants that form far from their stars, or the existence of ice giants like Uranus and Neptune.

Continue reading “A New Model Explains How Gas and Ice Giant Planets Can Form Rapidly”

No Merger Needed: A Rotating Ring of Gas Creates A Hyperluminous Galaxy

This is a distant Hyper Luminous Infrared Galaxy named PJ0116-24. These galaxies experience rapid star formation that astronomers think is triggered by mergers. But this one suggests otherwise. Warm gas is shown in red and cold gas is shown in blue. Image Credit: PJ0116-24

Some galaxies experience rapid star formation hundreds or even thousands of times greater than the Milky Way. Astronomers think that mergers are behind these special galaxies, which were more abundant in the earlier Universe. But new results suggest no mergers are needed.

Continue reading “No Merger Needed: A Rotating Ring of Gas Creates A Hyperluminous Galaxy”

A Star Became 1,000 Times Brighter, and Now Astronomers Know Why

Artist’s impression of one of the two stars in the FU Orionis binary system, surrounded by an accreting disk of material. What has caused this star — and others like it — to dramatically brighten? [NASA/JPL-Caltech]
Artist’s impression of one of the two stars in the FU Orionis binary system, surrounded by an accreting disk of material. Credit: NASA/JPL-Caltech

Astronomers were surprised in 1937 when a star in a binary pair suddenly brightened by 1,000 times. The pair is called FU Orionis (FU Ori), and it’s in the constellation Orion. The sudden and extreme variability of one of the stars has resisted a complete explanation, and since then, FU Orionis has become the name for other stars that exhibit similar powerful variability.

Continue reading “A Star Became 1,000 Times Brighter, and Now Astronomers Know Why”

If Europa has Geysers, They’re Very Faint

Jupiter's second Galilean moon, Europa. Its smooth surface has fewer craters than other moons, but they help us understand its icy shell. (Credit: NASA/JPL/Galileo spacecraft)
The Hubble spotted evidence of geysers coming from Jupiter's moon Europa, but nobody's been able to find them again. (Credit: NASA/JPL/Galileo spacecraft)

In 2013, the Hubble Space Telescope spotted water vapour on Jupiter’s moon Europa. The vapour was evidence of plumes similar to the ones on Saturn’s moon Enceladus. That, and other compelling evidence, showed that the moon has an ocean. That led to speculation that the ocean could harbour life.

But the ocean is obscured under a thick, global layer of ice, making the plumes our only way of examining the ocean. The plumes are so difficult to detect they haven’t been confirmed.

Continue reading “If Europa has Geysers, They’re Very Faint”

Astronomers Propose a 50-Meter Submillimeter Telescope

The Atacama Large Millimeter/submillimeter Array (ALMA) in northern Chile is our most powerful radio telescope. But astronomers are hungering for a new radio telescope made of one massive dish. Image Credit: A. Marinkovic/X-Cam/ALMA (ESO/NAOJ/NRAO)

Some parts of the Universe only reveal important details when observed in radio waves. That explains why we have ALMA, the Atacama Large Millimetre-submillimetre Array, a collection of 7-meter and 12-meter radio telescopes that work together as an interferometer. But, ALMA-type arrays have their limitations, and astronomers know what they need to overcome those limitations.

They need a radio telescope that’s just one single, massive dish.

Continue reading “Astronomers Propose a 50-Meter Submillimeter Telescope”

Astronomers Image 62 Newly-Forming Planetary Systems

Planet-forming discs in three clouds of the Milky Way. Credit: ESO.

Astronomers using the Very Large Telescope in Chile have now completed one of the largest surveys ever to hunt for planet-forming discs. They were able to find dozens of dusty regions around young stars, directly imaging the swirling gas and dust which hints at the locations of these new worlds.

Just like the wide variety in the types of exoplanets that have been discovered, these new data and stunning images show how protoplanetary systems are surprisingly diverse, with different sizes and shapes of disks.

In research presented in three new papers, researchers imaged 86 young stars and found 62 of them had a wide range of star-forming regions surrounding them. The astronomers say this study provides a wealth of data and unique insights into how planets arise in different regions of our galaxy.

Continue reading “Astronomers Image 62 Newly-Forming Planetary Systems”