ALMA Eyes Most Distant Star-forming Galaxy

This schematic image represents how light from a distant galaxy is distorted by the gravitational effects of a nearer foreground galaxy, which acts like a lens and makes the distant source appear distorted, but brighter, forming characteristic rings of light, known as Einstein rings. An analysis of the distortion has revealed that some of the distant star-forming galaxies are as bright as 40 trillion Suns, and have been magnified by the gravitational lens by up to 22 times. Credit: ALMA (ESO/NRAO/NAOJ), L. Calçada (ESO), Y. Hezaveh et al.

Let’s turn down the lights and set the stage… We’re moving off through space, looking not only at distant galaxies, but the incredibly distant past. Once upon a time astronomers assumed that star formation began in massive, bright galaxies as a concentrated surge. Now, new observations taken with the Atacama Large Millimeter/submillimeter Array (ALMA) are showing us that these deluges of stellar creation may have begun much earlier than they thought.

According to the latest research published in today’s edition of the journal, Nature, and in the Astrophysical Journal, researchers have revealed fascinating discoveries taken with the new international ALMA observatory – which celebrates its inauguration today. Among its many achievements, ALMA has given us a look even deeper into space – showing us ancient galaxies which may be billions of light years distant. The observations of these starburst galaxies show us that stars were created in a frenzy out of huge deposits of cosmic gas and dust.

Loading player…

“The more distant the galaxy, the further back in time one is looking, so by measuring their distances we can piece together a timeline of how vigorously the Universe was making new stars at different stages of its 13.7 billion year history,” said Joaquin Vieira (California Institute of Technology, USA), who led the team and is lead author of the paper in the journal Nature.

Just how did these observations come about? Before ALMA, an international team of researchers employed the US National Science Foundation’s 10-metre South Pole Telescope (SPT ) to locate these distant denizens and then homed in on them to take a closer look at the “stellar baby boom” during the Universe’s beginning epoch. What they found surprised them. Apparently star forming galaxies are even more distant than previously suspected… their onslaught of stellar creation beginning some 12 billion years ago. This time frame places the Universe at just under 2 billion years old and the star formation explosion occurring some billion years sooner than astronomers assumed. The ALMA observations included two galaxies – the “most distant of their kind ever seen” – that contained an additional revelation. Not only did their distance break astronomical records, but water molecules have been detected within them.

However, two galaxies aren’t the only score for ALMA. The research team took on 26 galaxies at wavelengths of around three millimetres. The extreme sensitivity of this cutting edge technology utilizes the measurement of light wavelengths – wavelengths produced by the galaxy’s gas molecules and stretched by the expansion of the Universe. By carefully measuring the “stretch”, astronomers are able to gauge the amount of time the light has taken to reach us and refine its point in time.

“ALMA’s sensitivity and wide wavelength range mean we could make our measurements in just a few minutes per galaxy – about one hundred times faster than before,” said Axel Weiss (Max-Planck-Institut für Radioastronomie in Bonn, Germany), who led the work to measure the distances to the galaxies. “Previously, a measurement like this would have been a laborious process of combining data from both visible-light and radio telescopes.”

For the most part, ALMA’s observations would be sufficient to determine the distance, but the team also included ALMA’s data with the Atacama Pathfinder Experiment (APEX) and ESO’s Very Large Telescope for a select few galaxies. At the present time, astronomers are only employing a small segment of ALMA’s capabilities – just 16 of the 66 massive antennae – and focusing on brighter galaxies. When ALMA is fully functional, it will be able to zero in on even fainter targets. However, the researchers weren’t about to miss any opportunities and utilized gravitational lensing to aid in their findings.

This montage combines data from ALMA with images from the NASA/ESA Hubble Space Telescope, for five distant galaxies. The ALMA images, represented in red, show the distant, background galaxies, being distorted by the gravitational lens effect produced by the galaxies in the foreground, depicted in the Hubble data in blue. The background galaxies appear warped into rings of light known as Einstein rings, which encircle the foreground galaxies. Credit:ALMA (ESO/NRAO/NAOJ), J. Vieira et al.
This montage combines data from ALMA with images from the NASA/ESA Hubble Space Telescope, for five distant galaxies. The ALMA images, represented in red, show the distant, background galaxies, being distorted by the gravitational lens effect produced by the galaxies in the foreground, depicted in the Hubble data in blue. The background galaxies appear warped into rings of light known as Einstein rings, which encircle the foreground galaxies. Credit:ALMA (ESO/NRAO/NAOJ), J. Vieira et al.

“These beautiful pictures from ALMA show the background galaxies warped into multiple arcs of light known as Einstein rings, which encircle the foreground galaxies,” said Yashar Hezaveh (McGill University, Montreal, Canada), who led the study of the gravitational lensing. “We are using the massive amounts of dark matter surrounding galaxies half-way across the Universe as cosmic telescopes to make even more distant galaxies appear bigger and brighter.”

Just how bright is bright? According to the news release, the analysis of the distortion has shown that a portion of these far-flung, star-forming galaxies could be as bright as 40 trillion Suns… then magnified up to 22 times more through the aid of gravitational lensing.

“Only a few gravitationally lensed galaxies have been found before at these submillimetre wavelengths, but now SPT and ALMA have uncovered dozens of them.” said Carlos De Breuck (ESO), a member of the team. “This kind of science was previously done mostly at visible-light wavelengths with the Hubble Space Telescope, but our results show that ALMA is a very powerful new player in the field.”

“This is an great example of astronomers from around the world collaborating to make an amazing discovery with a state-of-the-art facility,” said team member Daniel Marrone (University of Arizona, USA). “This is just the beginning for ALMA and for the study of these starburst galaxies. Our next step is to study these objects in greater detail and figure out exactly how and why they are forming stars at such prodigious rates.”

Bring the house lights back up, please. As ALMA peers ever further into the past, maybe one day we’ll catch our own selves… looking back.

Dying Star Blows Surprising Spiral Bubble

Using the Atacama Large Millimeter/submillimeter Array, or ALMA, astronomers found an unexpected spiral structure surrounding the red giant star R Sculptoris shown here in this visualization. Credit: ALMA (ESO/NAOJ/NRAO)

Sometimes what we can’t see is just as surprising as what lies directly in front of us. This especially holds true in a new finding from the astronomers using the Atacama Large Millimeter/sumbillimeter Array, or ALMA, in Chile. A surprising and strange spiral structure surrounding the old star R Sculptoris is likely being created by an unseen companion, say astronomers.

The team using ALMA, the most powerful millimeter/submillimeter telescope in the world, mapped the spiral structure in three-dimensions. The astronomers say this is the first time a spiral of material, with a surrounding shell, has been observed. They report their findings in the journal Nature this week.

“We’ve seen shells around this kind of star before,” says lead author Matthias Maercker of the European Southern Observatory and Argelander Institute for Astronomy, University of Bonn, Germany in a press release. “But this is the first time we’ve ever seen a spiral of material coming out from a star, together with a surrounding shell.”

Scientists, using the NASA/ESA Hubble Space Telescope found a similar spiral, but without a surrounding shell, while observing the star LL Pegasi. Unlike the new ALMA observations, however, the astronomers could not create a three-dimensional map of the structure. Hubble observations saw the dust while ALMA detected the molecular emission.

ALMA detects the warm glow of carbon monoxide molecules in the far infrared through the multimeter wavelengths allowing astronomers to map the gas emissions surrounding the star in high-resolution. The team believes the strangely shaped bubble of material was probably created by an invisible companion star orbiting the red giant.

As stars like our Sun reach the ends of their lives, they become red giants. Swollen and cool, the stars begin a short-lived helium burning phase. During this time, the stars slough off large amounts of their mass in a dense stellar wind forming an expanding glowing shell around the stellar core. The pulses occur about every 10,000 to 50,000 years and last just a few hundred years. New observations of R Sculptoris show a pulse event rocked the star about 1,800 years ago and lasted for about 200 years. Computer simulations following the evolution of a binary system fit the new ALMA observations, according to the astronomers.

“It’s a real challenge to describe theoretically all the observed details coming from ALMA,” says co-author Shazrene Mohamed, of Argelander Institute for Astronomy in Bonn, Germany and South African Astronomical Observatory. “But our computer models show that we really are on the right track. ALMA is giving us new insight into what’s happening in these stars and what might happen to the Sun in a few billion years from now.”

A wide field view of the red giant variable star R Sculptoris. Credit: ESO/Digitized Sky Survey 2. Acknowledgement: Davide De Martin

R Sculptoris is considered by astronomers to be an asymptotic giant branch, or AGB, star. With masses between 0.8 and 8 solar masses, they are cool red giants with a tiny central core of carbon and oxygen surrounded by a burning shell of helium and hydrogen burning. Eventually, our Sun will evolve into an AGB star. The glowing shell is made up of gas and dust, material that will be used for making future stars with their retinue of planets and moons and even the building blocks of life.

“In the near future, observations of stars like R Sculptoris with ALMA will help us to understand how the elements we are made up of reached places like the Earth. They also give us a hint of what our own star’s far future might be like,” says Maercker.

This new video shows a series of slices through the data, each taken at a slightly different frequency. These reveal the shell around the star, appearing as a circular ring, that seems to gets bigger and then smaller, as well as a clear spiral structure in the inner material that it best seen about half-way through the video sequence.

Source: European Southern Observatory

Small image caption: What appears to be a thin spiral pattern winding away from a star is shown in this remarkable picture from the Advanced Camera for Surveys on the NASA/ESA Hubble Space Telescope shows one of the most perfect geometrical forms created in space. It captures the formation of an unusual pre-planetary nebula, known as IRAS 23166+1655, around the star LL Pegasi (also known as AFGL 3068) in the constellation of Pegasus (the Winged Horse). Credit: NASA/ESA Hubble

Early “Elemental” Galaxy Found 12.4 Billion Light Years Away

This is definitely a story about a galaxy long ago and far away. An international team of researchers using the Atacama Large Millimeter/submillimeter Array (ALMA) has observed a “submillimeter galaxy” located about 12.4 billion light-years away. Their observations have revealed that the elemental composition of this galaxy in the early universe, at only 1.3 billion years after the Big Bang, was already close to the current elemental composition of the Universe. This means that intense star formation was taking place at that early point in the Universe’s history.

A submillimeter galaxy is a type of galaxy which has intense star formation activity and is covered by large amounts of dust. Since dust blocks observations in visible light, using ALMA’s millimeter wavelength capabilities can penetrate and see though dust clouds. In addition, ALMA also has extraordinary sensitivity, which is capable of catching even extremely faint radio signals. This is one of the most distant galaxies ALMA has ever observed.

The team was able to examine the chemical composition of the galaxy, called LESS J0332, and detected an emission line that contained nitrogen. To do this, they compared the brightness ratio of the observed emission lines from nitrogen and carbon with theoretical calculations. Their results showed that the elemental composition of LESS J0332, especially the abundance of nitrogen, is significantly different from that of the Universe immediately after the Big Bang – which consisted of almost only hydrogen and helium — but was much more similar to that of our Sun today, where a variety of elements exist abundantly.

It took 12.4 billion years for the emission lines from LESS J0332 to reach us, which means that the team was able to observe the galaxy located in the young universe at 1.3 billion years after the Big Bang.

“Submillimeter galaxies are thought to be relatively massive galaxies in the growth phase. Our research, revealing that LESS J0332 already has an elemental composition similar to the sun, shows us that the chemical evolution of these massive galaxies occurred rapidly made in the early universe, that is to say, in the early universe active star formation occurred for a short period of time,” said Tohru Nagao from Kyoto University, co-author of the paper.

The observations were made with ALMA, even though construction is not yet completed; only 18 antennas were used in this observation, while ALMA will be equipped with 66 antennas when completed.

This research was published in the “Letters” section of the journal, “Astronomy & Astrophysics.”

Lead image caption: Artist impression of the submillimeter galaxy LESS J0332 observed the ALMA at the 5000-meter altitude plateau. [Credit: NAOJ]

Source: ALMA