A History of Launch Failures: “Not Because They are Easy, but Because They are Hard”

The Rice Speech words hold especially true when the NASA's goals seem challenged and suddenly not so close at hand. (Photo Credit: NASA)

Over the 50-plus years since President John F. Kennedy’s Rice University speech, spaceflight has proven to be hard. It doesn’t take much to wreck a good day to fly.

Befitting a Halloween story, rocket launches, orbital insertions, and landings are what make for sleepless nights. These make-or-break events of space missions can be things that go bump in the night: sometimes you get second chances and sometimes not. Here’s a look at some of the past mission failures that occurred at launch. Consider this a first installment in an ongoing series of articles – “Not Because They Are Easy.”

A still image from one of several videos of the ill-fated Antares launch of October 28, 2014, taken by engineers at the Mid-Atlantic Regional Spaceport, Wallops, VA. (Credit: NASA)
A still image from one of several videos of the ill-fated Antares launch of October 28, 2014, taken by engineers at the Mid-Atlantic Regional Spaceport, Wallops, VA. (Credit: NASA)

The evening of October 28, 2014, was another of those hard moments in the quest to explore and expand humanity’s presence in space. Ten years ago, Orbital Sciences Corporation sought an engine to fit performance requirements for a new launch vehicle. Their choice was a Soviet-era liquid fuel engine, one considered cost-effective, meeting requirements, and proving good margins for performance and safety. The failure of the Antares rocket this week could be due to a flaw in the AJ-26 or it could be from a myriad of other rocket parts. Was it decisions inside NASA that cancelled or delayed engine development programs and led OSC and Lockheed-Martin to choose “made in Russia” rather than America?

Here are other unmanned launch failures of the past 25 years:

Falcon 1, Flight 2, March 21, 2007. Fairings are hard. There are fairings that surround the upper stage engines and a fairing covering payloads.  Fairings must not only separate but also not cause collateral damage. The second flight of the Falcon 1 is an example of a 1st stage separation and fairing that swiped the second stage nozzle. Later, overcompensation by the control system traceable to the staging led to loss of attitude control; however, the launch achieved most of its goals and the mission was considered a success. (View: 3:35)

Proton M Launch, Baikonur Aerodrome, July 2, 2013. The Proton M is the Russian Space program’s workhorse for unmanned payloads. On this day, the Navigation, Guidance, and Control System failed moments after launch. Angular velocity sensors of the guidance control system were installed backwards. Fortunately, the Proton M veered away from its launch pad sparing it damage.

Ariane V Maiden Flight, June 4, 1996. The Ariane V was carrying an ambitious ESA mission called Cluster – a set of four satellites to fly in tetrahedral formation to study dynamic phenomena in the Earth’s magnetosphere. The ESA launch vehicle reused flight software from the successful Ariane IV. Due to differences in the flight path of the Ariane V, data processing led to a data overflow – a 64 floating point variable overflowing a 16 bit integer. The fault remained undetected and flight control reacted in error. The vehicle veered off-course, the structure was stressed and disintegrated 37 seconds into flight. Fallout from the explosion caused scientists and engineers to don protective gas masks. (View: 0:50)

Delta II, January 17, 1997. The Delta II is one of the most successful rockets in the history of space flight, but not on this day. Varied configurations change up the number of solid rocket motors strapped to the first stage. The US Air Force satellite GPS IIR-1 was to be lifted to Earth orbit, but a Castor 4A solid rocket booster failed seconds after launch. A hairline fracture in the rocket casing was the fault. Both unspent liquid and solid fuel rained down on the Cape, destroying launch equipment, buildings, and even parked automobiles. This is one of the most well documented launch failures in history.

Compilation of Early Launch Failures. Beginning with several of the early failures of Von Braun’s V2, this video compiles many failures over a 70 year period. The early US space program endured multiple launch failures as they worked at a breakneck speed to catch up with the Soviets after Sputnik. NASA did not yet exist. The Air Force and Army had competing designs, and it was the Army with the German rocket scientists, including Von Braun, that launched the Juno 1 rocket carrying Explorer 1 on January 31, 1958.

One must always realize that while spectacular to launch viewers, a rocket launch has involved years of development, lessons learned, and multiple revisions. The payloads carried involve many hundreds of thousands of work-hours. Launch vehicle and payloads become quite personal. NASA and ESA have offered grief counseling to their engineers after failures.

We choose to go to the moon in this decade and do the other things, not because they are easy, but because they are hard, because that goal will serve to organize and measure the best of our energies and skills, because that challenge is one that we are willing to accept, one we are unwilling to postpone, and one which we intend to win, and the others, too.

Kennedy’s Rice University Speech, September 12, 1962

NASA Releases Photos of Aftermath of Launchpad Explosion

An aerial view of the Wallops Island launch facilities taken by the Wallops Incident Response Team Oct. 29 following the failed launch attempt of Orbital Science Corp.'s Antares rocket Oct. 28. Credit: NASA/Terry Zaperach

NASA released images of the Mid-Atlantic Regional Spaceport at NASA’s Wallops Flight Facility in Virginia following the catastrophic failure of Orbital Science’s Antares rocket shortly after liftoff on Tuesday, Oct. 28. Visible is damage to the transporter erector launcher and lightning suppression rods, as well as debris around the pad. But given the spectacular secondary explosion when the rocket fell back to the pad, the damage – as viewed from the air – looks relatively minor.

Another aerial view of the Wallops Island launch facilities taken by the Wallops Incident Response Team Wednesday, Oct. 29, 2014 following the failed launch attempt of Orbital Science Corp.'s Antares rocket Oct. 28, Wallops Island, VA. Photo Credit: (NASA/Terry Zaperach)
Another aerial view of the Wallops Island launch facilities taken by the Wallops Incident Response Team Wednesday, Oct. 29, 2014, following the failed launch attempt of Orbital Science Corp.’s Antares rocket Oct. 28, Wallops Island, VA. Photo Credit: (NASA/Terry Zaperach)

NASA and Orbital have begun and initial assessment of the accident, but they said it will “take many more weeks to further understand and analyze the full extent of the effects of the event.”

NASA added that a number of support buildings in the immediate area have broken windows and imploded doors. What suffered the most damage were buildings nearest to pad 0A, where the launch took place, as well as a sounding rocket launcher adjacent to pad 0A.

“I want to praise the launch team, range safety, all of our emergency responders and those who provided mutual aid and support on a highly-professional response that ensured the safety of our most important resource — our people,” said Bill Wrobel, Wallops director. “In the coming days and weeks ahead, we’ll continue to assess the damage on the island and begin the process of moving forward to restore our space launch capabilities. There’s no doubt in my mind that we will rebound stronger than ever.”

NASA also said that environmental effects of the launch failure were largely contained within the southern third of Wallops Island, in the area immediately adjacent to the pad. Air sample were taken in the area and of nearby Chincoteague Island, and no hazardous substances were detected at the sampled locations.

You can see more imagery at NASA’s Flickr page.

Universe Today’s Ken Kremer was interviewed for NBC News, and you can view the feature below:

Source: NASA

Antares Commercial Rocket Destroyed in Devastating Fireball – Video

Orbital Sciences Antares rocket explodes violently and is consumed in a gigantic aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m. Credit: Alex Polimeni

NASA WALLOPS FLIGHT FACILITY, VA – Barely a day ago I witnessed the sudden and utter destruction of an Orbital Sciences Antares rocket being consumed in a totally unexpected devastating fireball moments after blastoff from NASA’s Wallops Flight Facility on the eastern shore of Virginia at 6:22 p.m. EDT on Tuesday, October 28.

See above my raw video footage of the catastrophic Orb-3 launch taken from the media viewing site at NASA Wallops located about 1.8 miles away from the beachside Launch Pad 0A at the Mid-Atlantic Regional Spaceport (MARS) at Wallops.

I was interviewed by NBC News and you can watch the entire story and see my Antares explosion photos featured at NBC Nightly News on Oct. 29 here.

The highly anticipated 1st night launch of Antares would have been visible to tens of millions up and down the eastern seaboard from South Carolina to Maine. Overall it was the 5th Antares launch.

The doomed mission was bound for the International Space Station (ISS) on a flight to bring up some 5000 pounds of (2200 kg) of science experiments, research instruments, crew provisions, spare parts, spacewalk and computer equipment and gear on the critical resupply mission dubbed Orb-3 bound for the International Space Station (ISS).

Listen closely as the sound gradually builds with Antares slowly lifting off from the pad to a deafening crescendo as it explodes violently and without warning followed by multiple blasts and detonations as the rockets breaks apart in a hail of dangerous debris.

You can clearly here the shocked voices of spectators disbelief, including my own, at was has just transpired.

Then you’ll see the see the ‘shock and awe’ as the sky lights on fire with the rockets catastrophic destruction and the camera shakes as the blasts shock wave zooms past us at the media site followed by a quick blast of noticeable heat.

Rapidly thereafter our NASA escorts ordered an immediate evacuation to protect everyone lives. There were no injuries.

Read my inside account of the days terrible events – here.

Orbital Sciences Antares rocket explodes intoan aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m.  Credit: Ken Kremer – kenkremer.com
Orbital Sciences Antares rocket explodes intoan aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

It was the heaviest cargo load yet lofted by a Cygnus. Some 800 pounds additional cargo was loaded on board compared to earlier flights. That was enabled by using the more powerful ATK CASTOR 30XL engine to power the second stage for the first time.

A steady train of science experiments and supplies are required to continue operating the massive orbiting outpost and its six person crew.

Watch here for Ken’s onsite reporting direct from NASA Wallops.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Orbital Sciences Antares rocket explodes into an aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m.  Credit: Ken Kremer – kenkremer.com
Orbital Sciences Antares rocket explodes into an aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

BREAKING: Antares Rocket Explodes at Liftoff

Seconds after liftoff, Orbital Science’s Antares rocket exploded as it rose from the Mid-Atlantic Regional Spaceport at Wallops Island, Virginia. In video, the explosion appeared to come at the base of the rocket. The entire stack then fell back to the ground, with a second larger explosion.

According to NASA TV, there were no injuries reported at the launch site but there appears to be damage to the launch pad.

We’ll provide more information and updates as they become available. NASA and Orbital said they would be scheduling a news conference. Our Ken Kremer is on location at Wallops.

This is the first launch failure for NASA’s commercial space companies. Antares has had five successful launches. The launch was originally scheduled for Oct. 27 but was scrubbed when a boat entered restricted waters off the coast from the launch site.

The mission, was the third of eight Commercial Resupply Services missions that Orbital Sciences is under contract to NASA. The Cygnus capsule, named by Orbital the “SS Deke Slayton” after the late astronaut, was carrying 2,290 kilograms of cargo for the International Space Station.

This video was shot by journalist Matthew Travis at the press site at Wallops:

Commercial Antares Resupply Freighter Thunders Aloft to Space Station from Virginia Packed with Science

Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13 2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station. Credit: Ken Kremer - kenkremer.com

Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13 2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station. Credit: Ken Kremer – kenkremer.com
Story updated[/caption]

NASA WALLOPS FLIGHT FACILITY, VA – A commercial Antares rocket carrying the private Cygnus cargo freighter thundered aloft from a beachside launch pad in Virginia today, July 13, bound for the space station and packed with a wide range of science experiments and essential supplies for the six person crew.

The flawless blastoff of the Orbital Sciences Corp. Antares rocket occurred precisely as planned today at 12:52 p.m. (EDT) from Pad 0A at the Mid-Atlantic Regional Spaceport on NASA’s Wallops Flight Facility on the Eastern shore of Virginia.

After a 10 minute ascent, Antares placed the Cygnus resupply spacecraft into an initial orbit of 120 x 180 miles (190 x 290 kilometers) above the Earth, inclined at 51.6 degrees to the equator.

“The Antares rocket first and second stages performed flawlessly,” said Frank Culbertson, Orbital’s executive vice president of the advanced programs group, at a post launch briefing at NASA Wallops. Culberston was a NASA shuttle commander and also flew aboard the International Space Station (ISS).

“The solar arrays deployed as planned,” Culbertson reported. The arrays provide Cygnus with life giving power to command and operate the spacecraft.

Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13  2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station. Credit: Ken Kremer - kenkremer.com
Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13 2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station. Credit: Ken Kremer – kenkremer.com

The Orb-2 launch was postponed about a month from June 9 to conduct a thorough re-inspection of the two Russian built and US modified Aerojet AJ26 engines that power the rocket’s first stage after a test failure of a different engine on May 22 at NASA’s Stennis Space Center in Mississippi resulted in extensive damage.

After a nearly three day orbital chase, the Cygnus cargo logistics spacecraft will rendezvous with the ISS on July 16 at approximately 6:39 a.m. (EDT).

ISS Expedition 40 crew members Commander Steve Swanson of NASA and Alexander Gerst of the European Space Agency, will then grapple Cygnus with the stations 57 foot long robotic arm and berth it at the Earth facing port on the Harmony module on July 16 at approximately 6:39 a.m. (EDT).

Today’s liftoff marked the fourth successful launch of the 132 foot tall Antares in the past Antares in the past 15 months, Culbertson noted.

The first Antares was launched from NASA Wallops in April 2013. And the Orb-2 mission also marks the third deployment of Cygnus in less than a year.

Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13  2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the Expedition 40 crew aboard the International Space Station. Credit: Ken Kremer - kenkremer.com
Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13 2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the Expedition 40 crew aboard the International Space Station. Credit: Ken Kremer – kenkremer.com

The Antares/Cygnus Orbital-2 (Orb-2) mission is the second of eight cargo resupply missions to the ISS under Orbital’s Commercial Resupply Services (CRS) contract with NASA.

The pressurized Cygnus cargo freighter will deliver 1,657 kg (3653 lbs) of cargo to the ISS Expedition 40 crew including over 700 pounds (300 kg) of science experiments and instruments, crew supplies, food, water, computer equipment, spacewalk tools and student research experiments.

Antares zooms to orbit after launch on July 13  2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the Expedition 40 crew aboard the International Space Station. Credit: Ken Kremer - kenkremer.com
Antares zooms to orbit after launch on July 13 2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the Expedition 40 crew aboard the International Space Station. Credit: Ken Kremer – kenkremer.com

The wide ranging science cargo and experiments includes a flock of nanosatellites and deployers, student science experiments and small cubesat prototypes that may one day fly to Mars.

The Flock 1B group of 28 nanosatellites from Planet Labs of San Francisco are aboard to take pictures of Earth that will be combined into a mosaic view of nearly the entire Earth.

They will be deployed into orbit from the Japanese JEM module.

TechEdSat-4 is a small cubesat built by NASA’s Ames Research Center in California that will investigate technology to return small samples to Earth from the space station. Researchers hope to send a future variant to Mars by 2018 or 2020, the team told Universe Today.

15 student experiments on the “Charlie Brown” mission are aboard and hosted by the Student Spaceflight Experiment Program, an initiative of the National Center for Earth and Space Science Education (NCESSE) and NanoRacks.

Student Space Flight teams at NASA Wallops Science experiments from these students representing 15 middle and high schools across  America were selected to fly aboard the Orbital Sciences Cygnus Orb-2 spacecraft which launched to the ISS from NASA Wallops, VA, on July 13, 2014, as part of the Student Spaceflight Experiments Program (SSEP).  Credit: Ken Kremer - kenkremer.com
Student Space Flight teams at NASA Wallops
Science experiments from these students representing 15 middle and high schools across America were selected to fly aboard the Orbital Sciences Cygnus Orb-2 spacecraft which launched to the ISS from NASA Wallops, VA, on July 13, 2014, as part of the Student Spaceflight Experiments Program (SSEP). Credit: Ken Kremer – kenkremer.com

They will investigate plant, lettuce, raddish and mold growth and seed germination in zero-G, penecilium growth, corrosion inhibitors, oxidation in space and microencapsulation experiments.

Cygnus will remain attached to the station approximately 30 days until about August 15.

For the destructive and fiery return to Earth, Cygnus will be loaded with approximately 1,340 kg (2950 lbs) of trash for disposal upon atmospheric reentry over the Pacific Ocean approximately five days later.

Orbital Sciences was awarded a $1.9 Billion supply contract by NASA to deliver 20,000 kilograms of research experiments, crew provisions, spare parts and hardware for 8 flight to the ISS through 2016 under the Commercial Resupply Services (CRS) initiative.

The Orb-2 mission launch today marks the second operational Antares/Cygnus flight.

The two stage Antares rocket stands 132 feet tall. It takes about 10 minutes from launch until separation of Cygnus from the Antares vehicle.

SpaceX has a similar resupply contract using their Falcon 9 rocket and Dragon cargo carrier and just completed their 3rd operational mission to the ISS in May.

Watch for Ken’s continuing onsite Antares Orb-2 mission reports from NASA Wallops, VA.

Antares rocket and Cygnus spacecraft await launch on Orb 2 mission on July 13, 2014 from Launch Pad 0A at NASA Wallops Flight Facility Facility, VA. LADEE lunar mission launch pad 0B stands adjacent to right of Antares. Credit: Ken Kremer - kenkremer.com
Antares rocket and Cygnus spacecraft await launch on Orb 2 mission on July 13, 2014 from Launch Pad 0A at NASA Wallops Flight Facility Facility, VA. LADEE lunar mission launch pad 0B stands adjacent to right of Antares. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing ISS, OCO-2, GPM, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more Earth & Planetary science and human spaceflight news.

Ken Kremer

Commercial Antares/Cygnus Rocket Loaded with Science for July 13 Virginia Launch – Watch Live

Antares rocket and Cygnus spacecraft await launch on Orb 2 mission on July 13, 2014 from Launch Pad 0A at NASA Wallops Flight Facility Facility, VA. LADEE lunar mission launch pad 0B stands adjacent to right of Antares. Credit: Ken Kremer - kenkremer.com

NASA WALLOPS FLIGHT FACILITY, VA – Following further weather delays this week Orbital Sciences Corp. commercial Antares rocket is at last set to soar to space at lunchtime Sunday, July 13, from a beachside launch pad in Virginia carrying a private Cygnus cargo freighter loaded with a diverse array of science experiments including a flock of nanosatellites and deployers, student science experiments and small cubesat prototypes that may one day fly to Mars.

The privately developed Antares rocket is on a critical cargo resupply mission – named Orb-2 – bound for the International Space Station (ISS) and now targeting liftoff at 12:52 p.m. on July 13 from Launch Pad 0A at the Mid-Atlantic Regional Spaceport (MARS) at NASA Wallops Island on Virginia’s Eastern shore.

Read my complete Antares launch viewing guide here – “How to See the Antares/Cygnus July 13 Blastoff”

Severe thunderstorms up and down the US East coast forced two consecutive postponements this week from the Atlantic Ocean region launch pad at NASA’s Wallops Flight Facility, VA, from July 11 to July 13.

Antares rocket and Cygnus spacecraft await launch on Orb 2 mission on July 13, 2014 from Launch Pad 0A at NASA Wallops Flight Facility Facility, VA. Credit: Ken Kremer - kenkremer.com
Antares rocket and Cygnus spacecraft await launch on Orb 2 mission on July 13, 2014 from Launch Pad 0A at NASA Wallops Flight Facility Facility, VA. Credit: Ken Kremer – kenkremer.com

“Orbital’s launch team has made great progress in preparing the rocket for the Orb-2 mission, which will be the fourth flight of Antares in the past 15 months,” Orbital said in a statement.

“However, severe weather in the Wallops area has repeatedly interrupted the team’s normal operational schedule leading up to the launch. As a result, these activities have taken longer than expected. Orbital has decided to postpone the Orb-2 mission by an additional day in order to maintain normal launch operations processing.”

The pressurized Cygnus cargo freighter will deliver 1,657 kg (3653 lbs) of cargo to the ISS Expedition 40 crew including over 700 pounds (300 kg) of science experiments and instruments, crew supplies, food, water, computer equipment, spacewalk tools and student research experiments.

A flock of 28 nanosatellites from Planet Labs of San Francisco are aboard to take pictures of Earth.

Close-up view of Cygnus spacecraft atop Antares rocket on Orb 2 mission launching on July 13, 2014 from Launch Pad 0A at NASA Wallops Flight Facility Facility, VA. Credit: Ken Kremer - kenkremer.com
Close-up view of Cygnus spacecraft atop Antares rocket on Orb 2 mission launching on July 13, 2014 from Launch Pad 0A at NASA Wallops Flight Facility Facility, VA. Credit: Ken Kremer – kenkremer.com

After deployment from the Japanese JEM module they will form “the largest constellation of imaging satellites in Earth orbit,” said Robbie Schingler, Co-Founder of PlanetLabs.

“The individual satellites will take images that will be combined into a whole Earth mosaic,” Schingler told me in an interview at Wallops.

15 student experiments on the “Charlie Brown” mission are aboard and hosted by the Student Spaceflight Experiment Program, an initiative of the National Center for Earth and Space Science Education (NCESSE) and NanoRacks.

“The student experiments were chosen from over 1000 proposals from Grades 5 to 12,” said Jeff Goldstein, NCESSE director.

They will investigate plant, lettuce, raddish and mold growth and seed germination in zero-G, penecilium growth, corrosion inhibitors, oxidation in space and microencapsulation experiments.

The TechEdSat-4 is a small cubesat built by NASA’s Ames Research Center in California that will investigate technology to return small samples to Earth from the space station.

NASA will broadcast the Antares launch live on NASA TV starting at 12 Noon – http://www.nasa.gov/nasatv

The weather prognosis is very favorable with a 90% chance of acceptable weather at launch time during the 5 minute window.

The Antares/Cygnus Orbital-2 (Orb-2) mission is the second of eight cargo resupply missions to the ISS under Orbital’s Commercial Resupply Services (CRS) contract with NASA.

NASA will broadcast the Antares launch live on NASA TV starting at 12 Noon – http://www.nasa.gov/nasatv

Depending on local weather conditions, portions of the daylight liftoff could be visible to millions of spectators along the US Eastern seaboard stretching from South Carolina to Massachusetts.

Here’s a viewing map:

Orbital 2 Launch from NASA Wallops Island, VA on July 12, 2014- Time of First Sighting Map   This map shows the rough time at which you can first expect to see Antares after it is launched on July 12, 2014. It represents the time at which the rocket will reach 5 degrees above the horizon and varies depending on your location . We have selected 5 degrees as it is unlikely that you'll be able to view the rocket when it is below 5 degrees due to buildings, vegetation, and other terrain features. As an example, using this map when observing from Washington, DC shows that Antares will reach 5 degrees above the horizon more than a minute.   Credit: Orbital Sciences
Orbital 2 Launch from NASA Wallops Island, VA on July 13, 2014- Time of First Sighting Map This map shows the rough time at which you can first expect to see Antares after it is launched on July 13, 2014. It represents the time at which the rocket will reach 5 degrees above the horizon and varies depending on your location . We have selected 5 degrees as it is unlikely that you’ll be able to view the rocket when it is below 5 degrees due to buildings, vegetation, and other terrain features. As an example, using this map when observing from Washington, DC shows that Antares will reach 5 degrees above the horizon more than a minute. Credit: Orbital Sciences

The best viewing will be in the mid-Atlantic region closest to Wallops Island.

Locally at Wallops you’ll get a magnificent view and hear the rockets thunder at either the NASA Wallops Visitor Center or the Chincoteague National Wildlife Refuge/Assateague National Seashore.

For more information about the Wallops Visitors Center, including directions, see: http://www.nasa.gov/centers/wallops/visitorcenter

NASA will have special “countdown speakers” set up at the NASA Wallops Visitor Center, Chincoteague National Wildlife Refuge/Assateague National Seashore and Ocean City inlet.

ATK built 2nd stage integrated onto 1st stage of Orbital Sciences Antares rocket slated for July 11, 2014 launch on the Orb-2 mission from NASA’s Wallops Flight Facility in Virginia, bound for the ISS.  The rocket undergoes processing at the Horizontal Integration Facility at NASA Wallops during visit by Universe Today/Ken Kremer.  Credit: Ken Kremer - kenkremer.com
ATK built 2nd stage integrated onto 1st stage of Orbital Sciences Antares rocket slated for July 11, 2014 launch on the Orb-2 mission from NASA’s Wallops Flight Facility in Virginia, bound for the ISS. The rocket undergoes processing at the Horizontal Integration Facility at NASA Wallops during visit by Universe Today/Ken Kremer. Credit: Ken Kremer – kenkremer.com

Orbital Sciences was awarded a $1.9 Billion supply contract by NASA to deliver 20,000 kilograms of research experiments, crew provisions, spare parts and hardware for 8 flight to the ISS through 2016 under the Commercial Resupply Services (CRS) initiative.

The July mission marks the second operational Antares/Cygnus flight.

The two stage Antares rocket stands 132 feet tall. It takes about 10 minutes from launch until separation of Cygnus from the Antares vehicle.

Antares rocket and Cygnus spacecraft await launch on Orb 2 mission on July 13, 2014 from Launch Pad 0A at NASA Wallops Flight Facility Facility, VA. LADEE lunar mission launch pad 0B stands adjacent to right of Antares. Credit: Ken Kremer - kenkremer.com
Antares rocket and Cygnus spacecraft await launch on Orb 2 mission on July 13, 2014 from Launch Pad 0A at NASA Wallops Flight Facility Facility, VA. LADEE lunar mission launch pad 0B stands adjacent to right of Antares. Credit: Ken Kremer – kenkremer.com

SpaceX has a similar resupply contract using their Falcon 9 rocket and Dragon cargo carrier and just completed their 3rd operational mission to the ISS in May.

Watch for Ken’s onsite Antares Orb-2 mission reports from NASA Wallops, VA.

Stay tuned here for Ken’s continuing ISS, OCO-2, GPM, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more Earth & Planetary science and human spaceflight news.

Ken Kremer

…………….

Learn more about NASA’s Mars missions and Orbital Sciences Antares ISS launch on July 13 from NASA Wallops, VA in July and more about SpaceX, Boeing and commercial space and more at Ken’s upcoming presentations.

July 11/12/13: “Antares/Cygnus ISS Launch from Virginia” & “Space mission updates”; Rodeway Inn, Chincoteague, VA, evening

Timelapse: Watch the Antares Rocket Go Vertical on the Launch Pad

The Orbital Sciences Corporation Antares rocket, with the Cygnus spacecraft aboard, stands vertically at Launch Pad-0A after successfully being raised into position Thursday, July 10, 2014, at NASA’s Wallops Flight Facility in Virginia. Credit: NASA/Aubrey Gemignani.

Now standing at attention, ready for duty! At about 3:30 p.m. on July 10, Orbital Sciences’ Antares rocket was raised to its vertical position at the Mid-Atlantic Regional Spaceport’s Launch Pad 0A at NASA’s Wallops Flight Facility in Virginia.

Antares is carrying the Cygnus spacecraft loaded with 3,293 pounds (1,494 kg) of supplies for the International Space Station. The craft is scheduled to launch Saturday, July 12 at 1:14 p.m. EDT. UPDATE: Orbital Sciences Corp. has postponed the launch of its Cygnus cargo spacecraft to the International Space Station until 12:52 p.m. EDT on Sunday, July 13, from the Mid-Atlantic Regional Spaceport’s Pad 0A at NASA’s Wallops Flight Facility in Virginia. Severe weather in the Wallops area has repeatedly interrupted Orbital’s operations schedule leading up to the launch.

If you live in the Eastern seaboard area, you might be able to see the launch. Find out how in our detailed article about the launch. This is the second flight to the ISS for the Antares/Cygnus duo.

Weekly Space Hangout – January 10, 2014: Wake Up, Rosetta! & Top Stories from AAS

Host: Fraser Cain
Guests: David Dickinson, Amy Shira Teitel, Scott Lewis, Brian Koberlein, special guest Ruth McAvinia from the ESA

This week’s stories:
Ruth:
Wake up, Rosetta!
Facebook link to contest

David:
AAS-Gamma Ray Gravitational Lens
AAS-Death by Black Hole
Antares Launch
Remote Deployment of Cubesats
Venus at Inferior Conjunction

Scott:
Learning tools for visually impaired:
More information on the 3-D Hubble images can be found here
Here’s the press release for the iBook being released
Frontier Fields

Brian:
New Triple Star System

Amy:
ISS Life extension

Fraser:
Space Ship 2’s first Supersonic Flight

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Google+, Universe Today, or the Universe Today YouTube page.

How to See Spectacular Antares Commercial Rocket Launch to Space Station on Jan. 8 – Complete Viewing Guide

Orbital 1 Launch from NASA Wallops Island, VA on Jan. 8, 2014- Time of First Sighting Map This map shows the rough time at which you can first expect to see Antares after it is launched on Jan. 8, 2014. It represents the time at which the rocket will reach 5 degrees above the horizon and varies depending on your location . We have selected 5 degrees as it is unlikely that you'll be able to view the rocket when it is below 5 degrees due to buildings, vegetation, and other terrain features. As an example, using this map when observing from Washington, DC shows that Antares will reach 5 degrees above the horizon approximately 100 seconds after launch (L + 100 sec). Credit: Orbital Sciences/NASA

Orbital 1 Launch from NASA Wallops Island, VA on Jan. 8, 2014- Time of First Sighting Map
This map shows the rough time at which you can first expect to see Antares after it is launched on Jan. 8, 2014. It represents the time at which the rocket will reach 5 degrees above the horizon and varies depending on your location . We have selected 5 degrees as it is unlikely that you’ll be able to view the rocket when it is below 5 degrees due to buildings, vegetation, and other terrain features. As an example, using this map when observing from Washington, DC shows that Antares will reach 5 degrees above the horizon approximately 100 seconds after launch (L + 100 sec). Credit: Orbital Sciences/NASA [/caption]

WALLOPS ISLAND, VA – Catching a slim weather break amidst the monster blizzard and unprecedented arctic air low temperatures afflicting the central and northern United States, Orbital Sciences Corp. is marching forward with plans for a spectacular daylight blastoff of the firms privately developed Antares rocket and Cygnus cargo spacecraft on Wednesday, Jan. 8 from a beachside pad at NASA Wallops Island, VA – on a critical mission for NASA bound for the Space Station carrying a huge cargo of vital science experiments.

Here’s our complete guide on “How to See the Antares/Cygnus Jan. 8 Blastoff” – chock full of viewing maps and trajectory graphics (above and below) from a variety of prime viewing locations; including historic landmarks in Washington, DC., NYC, Baltimore, Philadelphia, Virginia and more.

The cold weather, daytime Antares liftoff is currently scheduled for 1:32 p.m. EST from Launch Pad 0A at the Mid-Atlantic Regional Spaceport (MARS) at NASA Wallops, Virginia.

Antares will be the 2nd of two private rockets soaring to space this week. And the path up is clear following today’s successful blastoff of the SpaceX upgraded Falcon 9 with the Thaicom-6 commercial telecom satellite.

National Mall, Washington, DC
National Mall, Washington, DC

Due to continuing extremely cold weather conditions forecast for mid week, the launch could slip a day to Thursday, Jan. 9 when slightly warmer temperatures are expected, but it looks acceptable at this time.

This flight was originally due to blastoff at night in mid-December 2013 but was postponed due to the unexpected need for urgent repairs to get the stations critical cooling system restored to full operation following a malfunction. The fixes were accomplished during a pair of pre-Christmas spacewalks by American astronauts Rick Mastracchio and Mike Hopkins, paving the way for the Antares/Cygnus rescheduled liftoff.

Antares rocket and Cygnus spacecraft at Launch Pad 0A at NASA Wallops Flight Facility Facility, VA. LADEE lunar mission launch pad 0B stands adjacent to right of Antares. Credit: Ken Kremer - kenkremer.com
Antares rocket and Cygnus spacecraft at Launch Pad 0A at NASA Wallops Flight Facility Facility, VA. LADEE lunar mission launch pad 0B stands adjacent to right of Antares. Credit: Ken Kremer – kenkremer.com

And although it’s now moved to daylight due to orbital mechanics, the two stage Antares rockets exhaust plume should easily be visible to many millions of residents up and down the US East Coast spanning from South Carolina to Massachusetts – weather permitting.

Antares will be able to be seen by spectators inland as well, reaching potentially into portions of West Virginia, western Pennsylvania and New England depending on cloud cover.

For example; Here’s the expected view from the US Capitol – for all the politicians who decide NASA’s budget as well as myriads of tourists visiting from all across the globe.

Capitol-East-Front-Steps
US Capitol- East Front Steps

The viewing maps are courtesy of Orbital Sciences, the private company that developed both the Antares rocket and Cygnus resupply vessel aimed at keeping the International Space Station (ISS) fully stocked and operational for science research.

Up top is the time of first sighting map showing when the rocket reaches 5 degrees of elevation in the eastern United States.

If you want to imitate Rocky’s famous workout on the steps of the Philadelphia Art Museum, here’s what you’ll see:

Philadelphia
Philadelphia

And with yet another cold arctic air mass gushing towards eastwards, its certain to be frigid in many regions – so be sure to dress warmly.

The flight is designated the Orbital-1, or Orb-1 mission.

Orb-1 is the first of eight commercial cargo resupply missions to the ISS by Orbital under its Commercial Resupply Services (CRS) contract with NASA.

Battery Park, NYC
Battery Park, NYC

This launch follows a pair of successful launches in 2013, including the initial test launch in April and the 1st demonstration launch to the ISS in September.

So here’s your chance to witness a mighty rocket launch – from the comfort of your home from locations along the east coast.

Naval Station Norfolk, Virginia
Naval Station Norfolk, Virginia

Best viewing of all will be in the mid-Atlantic region closest to Wallops Island.

If you have the opportunity to observe the launch locally, you’ll get a magnificent view and hear the rockets thunder at either the NASA Wallops Visitor Center or the Chincoteague National Wildlife Refuge/Assateague National Seashore.

For more information about the Wallops Visitors Center, including directions, see: http://www.nasa.gov/centers/wallops/visitorcenter

The rocket was rolled out to the Wallops launch pad on Sunday by Orbital’s technicians.

Cygnus is loaded with approximately 2,780 pounds / 1,261 kilograms of cargo for the ISS crew for NASA including science experiments, computer supplies, spacewalk tools, food, water, clothing and experimental hardware.

Cygnus pressurized cargo module - side view - during prelaunch processing by Orbital Sciences at NASA Wallops, VA.  Credit: Ken Kremer - kenkremer.com
Cygnus pressurized cargo module – side view – during prelaunch processing by Orbital Sciences at NASA Wallops, VA. Docking mechanism to ISS at right. Credit: Ken Kremer – kenkremer.com

Among the research items packed aboard the Antares/Cygnus flight are an experiment to study the effectiveness of antibiotics in space and a batch of 23 student experiments involving life sciences topics ranging from amoeba reproduction to calcium in the bones to salamanders.

Of course you can still view the launch live via the NASA TV webcast.

NASA Television coverage of the Antares launch will begin at 1 p.m. on Jan. 8 – www.nasa.gov/ntv

A launch on either Jan. 8 or Jan. 9 will result in a grapple of Cygnus by the Expedition 38 crew aboard the station on Sunday, Jan. 12 at at 6:02 a.m. EDT.

Weather outlook appears rather promising at this time – 90% favorable chance of lift off.

Watch for my ongoing Antares launch reports from on site at NASA Wallops.

Stay tuned here for Ken’s continuing Orbital Sciences, SpaceX, commercial space, Chang’e-3, LADEE, Mars and more news.

Ken Kremer

…………….

Learn more about Orbital Sciences Antares Jan. 8 launch, SpaceX, Curiosity, Orion, MAVEN, MOM, Mars rovers and more at Ken’s upcoming presentations

Jan 7-9: “Antares/Cygnus ISS Rocket Launch from Virginia on Jan. 8” & “Space mission updates”; Rodeway Inn, Chincoteague, VA, evening

Iwo Jima memorial
Iwo Jima memorial
Dover
Dover
Antares rocket slated for Jan. 7, 2014 launch undergoes processing at the Horizontal Integration Facility at NASA Wallops, Virginia, during exclusive visit by  Ken Kremer/Universe Today.   Credit: Ken Kremer - kenkremer.com
Antares rocket slated for Jan. 8, 2014 launch undergoes processing at the Horizontal Integration Facility at NASA Wallops, Virginia, during exclusive visit by Ken Kremer/Universe Today. Credit: Ken Kremer – kenkremer.com
Seaside panoramic view of an Antares rocket and Cygnus spacecraft at Launch Pad 0A at NASA Wallops Flight Facility on the Virginia Eastern Shore.  Blastoff for the ISS is slated for Jan. 7 at 1:55 p.m. EDT.  Credit: Ken Kremer (kenkremer.com)
Seaside panoramic view of an Antares rocket and Cygnus cargo spacecraft built by Orbital Sciences at Launch Pad 0A at NASA Wallops Flight Facility on the Virginia Eastern Shore. Blastoff for the ISS is slated for Jan. 8, 2014 at 1:32 p.m. EDT. Credit: Ken Kremer – kenkremer.com
Antares Launch from Virginia– Maximum Elevation Map  The Antares daytime launch will be visible to millions of spectators across a wide area of the Eastern US -weather permitting. This map shows the maximum elevation (degrees above the horizon) that the Antares rocket will reach during the Jan 7, 2014 launch depending on your location along the US east coast. Credit: Orbital Sciences
Antares Launch from Virginia– Maximum Elevation Map
The Antares daytime launch will be visible to millions of spectators across a wide area of the Eastern US -weather permitting. This map shows the maximum elevation (degrees above the horizon) that the Antares rocket will reach during the Jan 8, 2014 launch depending on your location along the US east coast. Credit: Orbital Sciences
Mike Whalen of Orbital Sciences and Ken Kremer of Universe Today pose at the base of the Antares rocket 1st stage now slated for liftoff on Jan. 7, 2014 at NASA Wallops, Virginia.  Credit: Ken Kremer - kenkremer.com
Mike Whalen of Orbital Sciences and Ken Kremer of Universe Today pose at the base of the Antares rocket 1st stage now slated for liftoff on Jan. 8, 2014 at NASA Wallops, Virginia. Credit: Ken Kremer – kenkremer.com

Rise of the PhoneSats

A Phonesat to scale. (Credit: NASA).

Satellites can now fit in the palm of your hand.

Known as Cubesats, several of these tiny but cost-effective payloads use off-the-shelf technology that you may currently carry in your pocket. In fact, engineers have put out a call for app designers to write programs for these tiny micro-satellites. Four of this new breed of satellites are part of the Antares A-One mission and another four are slated to launch tomorrow atop a Soyuz rocket from Plesetsk along with the Bion M-1 payload.

Yesterday’s launch of Orbital Sciences’ Antares rocket was scrubbed with minutes to go due to the premature retraction of an umbilical. Current plans call for a 48 hour turnaround with a new launch window opening Friday night on April 19th at 5:00 PM EDT/ 21:00 UT.

Cubesats are nothing new. As technology becomes miniaturized, so have the satellites that they’re contained in. Cubesats have even been deployed from the International Space Station.

The primary goal of the Antares A-One mission is to deploy a test mass into low Earth Orbit that simulates the Cygnus spacecraft. If all goes well, Cygnus is set to make its first flight to the ISS this summer.

But also onboard are the three unique payloads; the PhoneSat-1a, 1b & 1c cubesats and the Dove 1 cubesat.

As the name implies, the PhoneSat series of satellites are each constructed around a Nexus Smartphone and operate using Google’s very own Android operating system. The mission serves as NASA’s test bed for the concept. The phone system will monitor the orientation of the satellites. The PhoneSats will also use their off-the-shelf built-in cameras to take pictures of the Earth from orbit.

A separate watchdog circuit will reboot the phones if necessary. The PhoneSats are expected to last about a week in orbit until their batteries die. One of the PhoneSats is equipped with solar panels to test rechargeable technology for the platform.

Two of the nano satellites are built around a Samsung Nexus S and the other around a HTC Nexus Smartphone. The satellites will also use the SD card for info storage plus the 3-axis magnetometer and accelerometer incorporated into the phones for measurements and orientation.

A PhoneSat 1.0 during a balloon test flight. (Credit: NASA).
A PhoneSat 1.0 during a balloon test flight. (Credit: NASA).

Dove-1 will test a similar technology. It is built around a low-cost bus using off-the-shelf components. Each of the three PhoneSats cost less than $3,500 dollars U.S. to build.

Amateur radio operators will also be able to monitor the satellites as well. The PhoneSats will transmit at 437.425 MHz. Information will also available to track them in real time on the web once they’re deployed.

The two PhoneSat 1.0 satellites are dubbed Graham and Bell and will transmit every 28 and 30 seconds, and the one PhoneSat 2.0 satellite is named Alexandre and will transmit every 25 seconds.

The PhoneSat 2.0 series will also employ magnets that interact with the Earth’s magnetic field. A future application of this could include use of a PhoneSat for a possible heliophysics mission.

Although the Antares A-One mission is aiming to place the Cygnus test mass and the Cubesats in an inclination of 51.6° degrees similar to the ISS, it will not be following the ISS in its orbit and won’t present a hazard to the station.

The goal of NASA’s PhoneSat team based out of the Ames Research Center at Moffett Field California is to “release early and often.” Missions like Antares A-One present a unique opportunity for the teams to get “piggyback payloads” into orbit. To this end, NASA’s Cubesat Launch Initiative (CSLI) issues periodic calls for teams across the nation to make proposals and build tiny satellites.

Basic dimensions of a cubesat are 10x10x14 centimetres (for comparison, a CD jewel case is about 14×12 cm) and must weigh less than 1.33 kilograms for 1U, 2U & 3U variants. Up to 14kg is allowed for 6U models. Cubesats are deployed from a Poly-Picosatellite Deployer, or P-Pod.

Another set of cubesats is also slated to launch tomorrow from Plesetsk. The primary payload of the mission is deployment of the Bion M-1 biological research satellite. Bion M-1 will carry an assortment of organisms including lizards, mice and snails for a one month mission to study the effects of a long duration spaceflight on micro-organisms.

The Bion M-1 mission will also deploy the AIST microsatellite built by students of Samara Aerospace University, & BeeSats 2 & 3 provided by the Technical University of Berlin. A twin of the Dove-1 satellite launching on Antares named Dove-2 is also onboard.

One of the micro-satellites named OSSI-1 is of particular interest to backyard satellite trackers. Part of the Open Source Satellite Initiative, OSSI-1 was developed by radio amateur and artist Hojun Song. In addition to a Morse Code beacon, OSSI-1 will also contain a 44 watt optical LED beacon that will periodically be visible to observers on Earth.

Another similar project, FITSAT-1, has been tracked and imaged by observers in recent months. Follow the AmSat-UK website for predictions and visibility prospects of OSSI-1 after launch and deployment. FITSAT-1 has been visible with binoculars only, but OSSI-1 may just be visible to the unaided eye during shadow passes while it’s operational.

It will be interesting to watch these “home-brewed” projects take to orbit. The price tag and the technology is definitely within reach of a sufficiently motivated basement tinker or student team with an idea. Hey, how about the world’s first free-flying “Amateur Space Telescope?” Just throwing that out there!