Could the Death Star Destroy a Planet?

Could the Death Star Destroy a Planet?

In the movie Star Wars, the Darth Vader’s Death Star destroyed a planet. Could this really happen?

You’ve watched Star Wars right? Is that still a thing? With the Starring and the Warring? Anyway, there’s this classic scene where the “Death Star” sidles up to Alderaan, and it is all like “Hey Planetoid, you lookin’ fine tonight” and then it fires up the superlaser and destroys the entire orb in a single blast. “BOOM”. Shortly followed by some collective group screaming on the interstellar forceway radio.

This is generally described as “science fiction”. And when you’re making up stories, anything you like can happen in them. George Lucas’ hunger for your childhood toy money wasn’t hampered by the pesky constraints of physics in any meaningful way.

Here at the Guide to Space, we get to take our own flights of fancy and pointlessly speculate for your amusement. That’s our job. Well, that and snark. Let’s consider what it would actually take to destroy a planet with a ‘pew pew’ style laser beam, and what kinds of energy would need to be harnessed in a fully armed and operational battle station.

Let’s go back and carefully review our “evidence”. The Death Star drifts in, charges up all its lasers into a superlaser blast focused on Alderaan. The planet then detonates and chunks fly off in every direction just like the pie eating contest in “Stand By Me”.

What we saw was every part of Alderaan given enough of a kick so that it was traveling at escape velocity from every other part of the planet. If the Death Star hadn’t delivered enough explosive energy, the planet might have fluffed up for a moment, but then the collective gravity would suck it all back in together, and then the slightly re-arranged, and likely now uninhabited planet would continue orbiting its star.

You can imagine doing this the slow way. Take each continent on Alderaan, load it up into a rocket and blast that rocket off into space as though it was on escape trajectory from the planet. Sure, you’d would need an incomprehensible number of rocket launches to get that material off the planet. But hey, midichlorians, blue finger lightning and ESP.

Fortunately, as you carted away more and more of the busted up rock, it would have less mutual gravity, and so the rocket launches would require less and less energy to get the job done. Eventually, you’d just be left with one last chunk of rock that you could just force ninja kick into the neighboring star.

Death Star beam. Credit: Lucasfilm
Death Star beam. Credit: Lucasfilm

So how much energy is that going to take? Well, there’s an “easy” calculation you can make. The energy you’d need is equal to 3 times the gravitational constant (6.673 x 10^-11) times the mass of the planet squared divided by 5 times the planet’s radius. Do this math for an Earth-sized/mass world, and let’s see that’s, two and one, carry the 5… and you get 2 x 10^36 joules. That’s a two followed by 36 zeros in joules. Is that a lot? That sounds like a lot.

Well, our own Sun puts out 3 x 10^26 joules per second. So, if you poured all the energy from the Sun into the task of tearing apart the Earth, it wouldn’t have enough energy to do it. In fact, you’d need to focus the light of the Sun for a full week to get that level of planet destruction done.

According to ancient Star Warsian dork scholars, the Death Star (SOLUS MORTIS) is powered by a hyperreactor with the output of multiple main sequence stars. So there you go, problem solved. It’s the size of a small moon, but it’s more powerful than many stars. Of course it can destroy a planet.

Exploding planet. Credit: ESO
Exploding planet. Credit: ESO

The Death Star clearly destroyed Alderaan. We watched it explode. I saw it, you saw it. We heard the screams of millions of souls cry out. It happened. But what if it wasn’t a beam thingy?

Our math is good, but clearly we’re not enlightened enough to comprehend the true wisdom hidden within the Lucasian scriptures. Perhaps the Death Star’s superlaser was just a targeting laser. Directing the placement of gigantic antimatter bomb. According to Ethan Siegel, from “Starts With a Bang,” you’d only need 1.24 trillion tonnes of antimatter.

Imagine you made a bomb out of that much antimatter iron – if that’s even a thing – you’d only need a sphere about 3 km across. If the Death Star is 150 km across or so, they could carry a bunch of these. Very carefully. Like super carefully. Okay, maybe it’d be a good idea if everyone took off their boots, and make sure they only talked with their inside voices.

Obviously, Star Wars is a story, so anything, ANYTHING can happen. The future is unknown, and we might discover all kinds of weirdo physics and harness them into all kinds of powerful weapons. I’m only suggesting, that a space station capable of deploying a week’s worth of solar energy in a single second might be a stretch. And maybe, George, if you just done a little back of the napkin math, we wouldn’t be talking about this right now. Also, maybe no Ewoks. I’m just saying.

Where do you stand on the feasibility of imaginary space station weaponry? How big a planet can your imagination destroy?

Where’s All The Antimatter?

Protons, neutrons, electrons - particles in an atom.

One of the biggest mysteries in the Universe is the fact there there’s matter, and not antimatter. Where did it all go?

When we look around, everything we can see is made of matter. For every type of matter from electrons, protons and quarks there is a similar type of matter known as antimatter. So why aren’t there piles of antimatter rocks, cars and chocolate bars just lying around? Why does Scotty always have a little extra kicking around in his liquor cabinet? And where do I get mine?

The primary difference between matter and antimatter is that they have opposite electric charge. Which seems pretty mundane. The negatively charged electron has an antiparticle known as the positron, which has a positive electric charge.

Anti-protons have a negative charge, and are just flat out grumpy. We’ve been able to create these particles in the lab, and have even been able to create small amounts of anti-hydrogen consisting of a positron bound to an antiproton, when examined closely there’s were shown to have a goatee and a little colorful sash or dagger.

When we create particles in accelerators such as the Large Hadron Collider, we seem to get equal amounts of matter and antimatter. This suggests that when particles were formed soon after the big bang, there should have been equal amounts of matter and antimatter.

Particle Collider
Large Hadron Collider (CERN/LHC/GridPP)

But the universe we observe is only made of matter, and… here’s the best part… we have no idea why. Why didn’t the matter and antimatter completely annihilate each other? How come we ended up with a little more matter? This delightful mystery is known as baryon asymmetry.

We do have a few ideas, and by we, I mean some giant brained crackerjacks have come up with a few plausible options. The most popular is that somehow antimatter behaves a little differently than matter. This could cause an imbalance between matter and antimatter. After particles collided in the early universe, there would still be matter left over, hence the matter we observe.

Another idea is that the observable universe just happens to be in a region dominated by matter. Other parts of the multiverse could have observable universes dominated by antimatter. Baryon asymmetry is one of the big mysteries of modern cosmology.

Zero Gravity Flight
Stephen Hawking, weightless (courtesy Zero Gravity Corporation)

There is an even crazier idea. Antimatter might have anti-gravity. In other words, an atom of anti-hydrogen would fall up instead of down. If that is the case, then matter and antimatter would repel each other, and you might have matter universes and antimatter universes that are forever separate.There have been some initial experiments to test this idea, but so far there have been no conclusive results.

What do you think? Where’s all our antimatter and how do we track it down? I’d sure love to bring some home and show my friends…

And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!

Where Have All the Pulsars Gone? The Mystery at the Center of Our Galaxy

The galactic core, observed using infrared light and X-ray light. Credit: NASA, ESA, SSC, CXC, and STScI

The galactic center is a happening place, with lots of gas, dust, stars, and surprising binary stars orbiting a supermassive black hole about three million times the size of our sun. With so many stars, astronomers estimate that there should be hundreds of dead ones. But to date, scientists have found only a single young pulsar at the galactic center where there should be as many as 50.

The question thus arises: where are all those rapidly spinning, dense stellar corpses known as pulsars? Joseph Bramante of Notre Dame University and astrophysicist Tim Linden of the University of Chicago have a possible solution to this missing-pulsar problem, which they describe in a paper accepted for publication in the journal Physical Review Letters.

Maybe those pulsars are absent because dark matter, which is plentiful in the galactic center, gloms onto the pulsars, accumulating until the pulsars become so dense they collapse into a black hole. Basically, they disappeared into the fabric of space and time by becoming so massive that they punched a hole right through it.

Dark matter, as you may know, is the theoretical mass that astrophysicists believe fills roughly a quarter of our universe. Alas, it is invisible and undetectable by conventional means, making its presence known only in how its gravitational pull interacts with other stellar objects.

One of the more popular candidates for dark matter is Weakly Interacting Massive Particles, otherwise known as WIMPs. Underground detectors are currently hunting for WIMPs and debate has raged over whether gamma rays streaming from the galactic center come from WIMPs annihilating one another.

In general, any particle and its antimatter partner will annihilate each other in a flurry of energy. But WIMPs don’t have an antimatter counterpart. Instead, they’re thought to be their own antiparticles, meaning that one WIMP can annihilate another.

But over the last few years, physicists have considered another class of dark matter called asymmetric dark matter. Unlike WIMPs, this type of dark matter does have an antimatter counterpart.

Numerical simulation of the density of matter when the universe was one billion years old. Cosmic Infrared Background ExpeRIment (CIBER) Credit: Caltech/Jamie Bock
 Cosmic Infrared Background ExpeRIment (CIBER) simulation of the density of matter when the universe was one billion years old, as produced by large-scale structures from dark matter. Credit: Caltech/Jamie Bock

Asymmetric dark matter appeals to physicists because it’s intrinsically linked to the imbalance of matter and antimatter. Basically, there’s a lot more matter in the universe than antimatter – which is good considering anything less than an imbalance would lead to our annihilation. Likewise, according to the theory, there’s much more dark matter than anti-dark-matter.

Physicists think that in the beginning, the Big Bang should’ve created as much matter as antimatter, but something altered this balance. No one’s sure what this mechanism was, but it might have triggered an imbalance in dark matter as well – hence it is “asymmetric”.

Dark matter is concentrated at the galactic center, and if it’s asymmetric, then it could collect at the center of pulsars, pulled in by their extremely strong gravity. Eventually, the pulsar would accumulate so much mass from dark matter that it would collapse into a black hole.

The idea that dark matter can cause pulsars to implode isn’t new.  But the new research is the first to apply this possibility to the missing-pulsar problem.

If the hypothesis is correct, then pulsars around the galactic center could only get so old before grabbing so much dark matter that they turn into black holes. Because the density of dark matter drops the farther you go from the center, the researchers predict that the maximum age of pulsars will increase with distance from the center. Observing this distinct pattern would be strong evidence that dark matter is not only causing pulsars to implode, but also that it’s asymmetric.

“The most exciting part about this is just from looking at pulsars, you can perhaps say what dark matter is made of,” Bramante said. Measuring this pattern would also help physicists narrow down the mass of the dark matter particle.

    Artist's illustration of a pulsar that was found to be an ultraluminous X-ray source. Credit: NASA, Caltech-JPL
Artist’s illustration of a pulsar that was found to be an ultraluminous X-ray source.
Credit: NASA, Caltech-JPL

But as Bramante admits, it won’t be easy to detect this signature. Astronomers will need to collect much more data about the galactic center’s pulsars by searching for radio signals, he claims. The hope is that as astronomers explore the galactic center with a wider range of radio frequencies, they will uncover more pulsars.

But of course, the idea that dark matter is behind the missing pulsar problem is still highly speculative, and the likelihood of it is being called into question.

“I think it’s unlikely—or at least it is too early to say anything definitive,” said Zurek, who was one of the first to revive the notion of asymmetric dark matter in 2009. The tricky part is being able to know for sure that any measurable pattern in the pulsar population is due to dark-matter-induced collapse and not something else.

Even if astronomers find this pulsar signature, it’s still far from being definitive evidence for asymmetric dark matter. As Kathryn Zurek of the Lawrence Berkeley National Laboratory explained: “Realistically, when dark matter is detected, we are going to need multiple, complementary probes to begin to be convinced that we have a handle on the theory of dark matter.”

And asymmetric dark matter may not have anything to do with the missing pulsar problem at all. The problem is relatively new, so astronomers may find more plausible, conventional explanations.

“I’d say give them some time and maybe they come up with some competing explanation that’s more fleshed out,” Bramante said.

Nevertheless, the idea is worth pursuing, says Haibo Yu of the University of California, Riverside. If anything, this analysis is a good example of how scientists can understand dark matter by exploring how it may influence astrophysical objects. “This tells us there are ways to explore dark matter that we’ve never thought of before,” he said. “We should have an open mind to see all possible effects that dark matter can have.”

There’s one other way to determine if dark matter can cause pulsars to implode: To catch them in the act. No one knows what a collapsing pulsar might look like. It might even blow up.

“While the idea of an explosion is really fun to think about, what would be even cooler is if it didn’t explode when it collapsed,” Bramante said. A pulsar emits a powerful beam of radiation, and as it spins, it appears to blink like a lighthouse with a frequency as high as several hundred times per second. As it implodes into a black hole, its gravity gets stronger, increasingly warping the surrounding space and time.

Studying this scenario would be a great way to test Einstein’s theory of general relativity, Bramante says. According to theory, the pulse rate would get slower and slower until the time between pulses becomes infinitely long. At that point, the pulses would stop entirely and the pulsar would be no more.

Further Reading: APS Physics, WIRED

First Precise Measurement of Antihydrogen

Hydrogen’s electron and proton have oppositely charged antimatter counterparts in the antihydrogen: the positron and antiproton. Image credit: NSF.

The best science — the questions that capture and compel any human being — is enshrouded in mystery. Here’s an example: scientists expect that matter and antimatter were created in equal quantities shortly after the Big Bang. If this had been the case, the two types of particles would have annihilated each other, leaving a Universe permeated by energy.

As our existence attests, that did not happen. In fact, nature seems to have a one-part in 10 billion preference for matter over antimatter. It’s one of the greatest mysteries in modern physics.

But the Large Hadron Collider is working hard, literally pushing matter to the limit, to solve this captivating mystery. This week, CERN created a beam of antihydrogen atoms, allowing scientists to take precise measurements of this elusive antimatter for the first time.

Antiparticles are identical to matter particles except for the sign of their electric charge. So while hydrogen consists of a positively charged proton orbited by a negatively charged electron, antihydrogen consists of a negatively charged antiproton orbited by a positively charged anti-electron, or a positron

While primordial antimatter has never been observed in the Universe, it’s possible to create antihydrogen in a particle accelerator by mixing positrons and low energy antiprotons.

In 2010, the ALPHA team captured and held atoms of antihydrogen for the first time. Now the team has successfully created a beam of antihydrogen particles. In a paper published this week in Nature Communications, the ALPHA team reports the detection of 80 antihydrogen atoms 2.7 meters downstream from their production.

“This is the first time we have been able to study antihydrogen with some precision,” said ALPHA spokesperson Jeffrey Hangst in a press release. “We are optimistic that ALPHA’s trapping technique will yield many such insights in the future.”

One of the key challenges is keeping antihydrogen away from ordinary matter, so that the two don’t annihilate each other. To do so, most experiments use magnetic fields to trap antihydrogen atoms long enough to study them.

However, the strong magnetic fields degrade the spectroscopic properties of the antihydrogen atoms, so the ALPHA team had to develop an innovative set-up to transfer antihydrogen atoms to a region where they could be studied, far from the strong magnetic field.

To measure the charge of antihydrogen, the ALPHA team studied the trajectories of antihydrogen atoms released from the trap in the presence of an electric field. If the antihydrogen atoms had an electric charge, the field would deflect them, whereas neutral atoms would be undeflected.

The result, based on 386 recorded events, gives a value of the antihydrogen electric charge at -1.3 x 10-8. In other words, its charge is compatible with zero to eight decimal places. Although this result comes as no surprise, since hydrogen atoms are electrically neutral, it is the first time that the charge of an antiatom has been measured to such high precision.

In the future, any detectable difference between matter and antimatter could help solve one of the greatest mysteries in modern physics, opening up a window into a new realm of science.

The paper has been published in Nature Communications.

How Do You Kill a Black Hole?

How Do You Kill a Black Hole?

Black holes want to absorb all matter and energy in the Universe. It’s just a matter of time. So what can we do to fight back? What superweapons have been devised to destroy black holes?

Black holes are the natural enemies of all spacefaring races. With their bottomless capacity to consume all light and matter, it’s just a few septillion years before all things in the Universe have found their way into the cavernous maw of a black hole, crushed into the infinitely dense singularity. If Star Trek has taught us anything, it’s that it’s mankind’s imperative to survive against all odds.

So will we take this lying down?
Heck no!

Will we strike first and destroy the black holes before they destroy us?
Heck yes!

But how? How could you kill a black hole?
This… gets a little tricky.
Continue reading “How Do You Kill a Black Hole?”

Weekly Space Hangout – May. 3, 2013

Another busy episode of the Weekly Space Hangout, with more than a dozen space stories covered by a collection of space journalists. This week’s panel included Alan Boyle, Dr. Nicole Gugliucci, Amy Shira Teitel, David Dickinson, Dr. Matthew Francis, and Jason Major. Hosted by Fraser Cain. We discussed:

We record the Weekly Space Hangout every Friday at 12 pm Pacific / 3 pm Eastern. You can watch us live on Google+, Cosmoquest or listen after as part of the Astronomy Cast podcast feed (audio only).

Will Antimatter Obey Gravity’s Pull?

What matter and antimatter might look like annihilating one another. Credit: NASA/CXC/M. Weiss

What goes up must always come down, right? Well, the European Laboratory for Particle Physics (CERN) wants to test if that principle applies to antimatter.

Antimatter, most simply speaking, is a mirror image of matter. The concept behind it is that the particles that make up matter have an opposite counterpart, antiparticles. For example, if you consider that electrons are negatively charged, an antielectron would be positively charged.

This sounds like science fiction, but as NASA says, it is “real stuff.” In past experiments, CERN’s particle accelerator has created antiprotons, positrons and even antihydrogen. Properly harnessed, antimatter could be used for applications ranging from rocketry to medicine, NASA added. But we’ll need to figure out its nature first.

Continue reading “Will Antimatter Obey Gravity’s Pull?”

How Could Aliens Blow Up Earth?

Scientists say that a ten-second burst of gamma rays from a massive star explosion within 6,000 light years from Earth could have triggered a mass extinction hundreds of millions of years ago. In this artist's conception we see the gamma rays hitting the Earth's atmosphere. (The expanding shell is pictured as blue, but gamma rays are actually invisible.) The gamma rays initiate changes in the atmosphere that deplete ozone and create a brown smog of NO2. Credit: NASA

Earth. It seems so solid and permanent. But really, all you need to do is expand the Sun enough, and the entire planet would melt away. Or worse, find yourself at the mercy of some seriously powerful and angry aliens.

Actually, the beings who destroy Earth in The Hitchhiker’s Guide to the Galaxy, which first aired on BBC Radio 4 on this day (March 8) in 1978, were not so much angry as logical about their reasons.

In the novel, Earthlings are shocked when extraterrestrial beings — known as the Vogons — arrive with plans to build a hyperspatial express route that runs through Earth’s orbit. The plans for the route were apparently lodged in Alpha Centauri (a star system four light-years away) for the past 50 Earth years, leaving residents of the planet “plenty of time to lodge any formal complaint.”

The Vogons then prepare to do the deed. The book Douglas Adams wrote describes it thusly:

“Energize the demolition beams.” Light poured out of the hatchways … There was a terrible ghastly silence. There was a terrible ghastly noise. There was a terrible ghastly science. The Vogon Constructor Fleet coasted away into the inky starry void.

The situation had us at Universe Today wondering: just how did the Vogons do it? There isn’t much to go on, admittedly; a demolition beam, and then a terrific noise as the planet breaks apart.

We scoured the Internet for some answers and came up with these ideas:

Anti matter

What matter and antimatter might look like annihilating one another. Credit: NASA/CXC/M. Weiss
What matter and antimatter might look like annihilating one another. Credit: NASA/CXC/M. Weiss

Anti matter is most simply, the opposite of matter. If you think of matter as being made up of electrons, neutrons and protons, anti matter has its own particles that have the opposite charge and magnetic moment (a property of magnetism.) You can read more technical details of anti matter in our past story, but here’s the important take-away: when matter and anti matter collide, they kill each other dead and produce gamma rays or other fundamental particles in the process. Phil Plait (author of the blog Bad Astronomy, now at Slate) says it’s indeed possible to blow up the Earth with it, but it would take a trillion tons. That’s not only complicated, but expensive. “Given that it currently costs hundreds of billions of dollars to make a single ounce of anti matter, you might have to work an extra job to cover the expense,” he wrote on Blastr.

Black hole

This artist's concept illustrates a supermassive black hole with millions to billions times the mass of our sun. Supermassive black holes are enormously dense objects buried at the hearts of galaxies. Image credit: NASA/JPL-Caltech
This artist’s concept illustrates a supermassive black hole with millions to billions times the mass of our sun. Supermassive black holes are enormously dense objects buried at the hearts of galaxies. Image credit: NASA/JPL-Caltech

If a black hole were to pop up right next to Earth or inside the planet, this might be a way to shrink the planet down to nothing super-quick. We’re not sure how the Vogons did this, but hey, we’re talking science fiction here. It’s also unclear to us how bright this would look (remember, the Vogons had a light beam), but maybe the Vogons turned on the lights for dramatic effect. And here we should interject with some sobering reality from NASA, too: “Black holes do not go around in space eating stars, moons and planets,” the agency once wrote, adding that even if a black hole appeared where the Sun is today, Earth still wouldn’t be sucked over there. In fact, the gravitational force would be identical and the planets would continue their merry orbits.

A Death Star

The Death Star in Star Wars. Credit: Lucasfilm.
The Death Star in Star Wars. Credit: Lucasfilm.

Yes yes, we know, we’re mixing up our science fiction franchises. This was actually a laser-blasting, planet-destroying machine from Star Wars. But at risk of offending the Internet, a couple of legitimate points: There’s nothing to stop alien civilizations from sharing technology, or perhaps acquiring it, rather than spend the money to develop it themselves. In 2011, three researchers from the University of Leicester suggested that indeed a Death Star could destroy a planet, given an adequate power source. Check out the details in our past Universe Today story.

Do you have some other ideas of how the Vogons destroyed Earth?

Antigravity Could Replace Dark Energy as Cause of Universe’s Expansion

Annihilation
Illustration of Antimatter/Matter Annihilation. (NASA/CXC/M. Weiss)

[/caption]

Since the late 20th century, astronomers have been aware of data that suggest the universe is not only expanding, but expanding at an accelerating rate. According to the currently accepted model, this accelerated expansion is due to dark energy, a mysterious repulsive force that makes up about 73% of the energy density of the universe. Now, a new study reveals an alternative theory: that the expansion of the universe is actually due to the relationship between matter and antimatter. According to this study, matter and antimatter gravitationally repel each other and create a kind of “antigravity” that could do away with the need for dark energy in the universe.

Massimo Villata, a scientist from the Observatory of Turin in Italy, began the study with two major assumptions. First, he posited that both matter and antimatter have positive mass and energy density. Traditionally, the gravitational influence of a particle is determined solely by its mass. A positive mass value indicates that the particle will attract other particles gravitationally. Under Villata’s assumption, this applies to antiparticles as well. So under the influence of gravity, particles attract other particles and antiparticles attract other antiparticles. But what kind of force occurs between particles and antiparticles?

To resolve this question, Villata needed to institute the second assumption – that general relativity is CPT invariant. This means that the laws governing an ordinary matter particle in an ordinary field in spacetime can be applied equally well to scenarios in which charge (electric charge and internal quantum numbers), parity (spatial coordinates) and time are reversed, as they are for antimatter. When you reverse the equations of general relativity in charge, parity and time for either the particle or the field the particle is traveling in, the result is a change of sign in the gravity term, making it negative instead of positive and implying so-called antigravity between the two.

Villata cited the quaint example of an apple falling on Isaac Newton’s head. If an anti-apple falls on an anti-Earth, the two will attract and the anti-apple will hit anti-Newton on the head; however, an anti-apple cannot “fall” on regular old Earth, which is made of regular old matter. Instead, the anti-apple will fly away from Earth because of gravity’s change in sign. In other words, if general relativity is, in fact, CPT invariant, antigravity would cause particles and antiparticles to mutually repel. On a much larger scale, Villata claims that the universe is expanding because of this powerful repulsion between matter and antimatter.

What about the fact that matter and antimatter are known to annihilate each other? Villata resolved this paradox by placing antimatter far away from matter, in the enormous voids between galaxy clusters. These voids are believed to have stemmed from tiny negative fluctuations in the primordial density field and do seem to possess a kind of antigravity, repelling all matter away from them. Of course, the reason astronomers don’t actually observe any antimatter in the voids is still up in the air. In Villata’s words, “There is more than one possible answer, which will be investigated elsewhere.” The research appears in this month’s edition of Europhysics Letters.

Fermi Telescope Catches Thunderstorms Hurling Antimatter into Space

From a NASA press release:

Scientists using NASA’s Fermi Gamma-ray Space Telescope have detected beams of antimatter produced above thunderstorms on Earth, a phenomenon never seen before.

Scientists think the antimatter particles were formed in a terrestrial gamma-ray flash (TGF), a brief burst produced inside thunderstorms and shown to be associated with lightning. It is estimated that about 500 TGFs occur daily worldwide, but most go undetected.

“These signals are the first direct evidence that thunderstorms make antimatter particle beams,” said Michael Briggs, a member of Fermi’s Gamma-ray Burst Monitor (GBM) team at the University of Alabama in Huntsville (UAH). He presented the findings Monday, during a news briefing at the American Astronomical Society meeting in Seattle.
Continue reading “Fermi Telescope Catches Thunderstorms Hurling Antimatter into Space”