Fermi Telescope Catches Thunderstorms Hurling Antimatter into Space

From a NASA press release:

Scientists using NASA’s Fermi Gamma-ray Space Telescope have detected beams of antimatter produced above thunderstorms on Earth, a phenomenon never seen before.

Scientists think the antimatter particles were formed in a terrestrial gamma-ray flash (TGF), a brief burst produced inside thunderstorms and shown to be associated with lightning. It is estimated that about 500 TGFs occur daily worldwide, but most go undetected.

“These signals are the first direct evidence that thunderstorms make antimatter particle beams,” said Michael Briggs, a member of Fermi’s Gamma-ray Burst Monitor (GBM) team at the University of Alabama in Huntsville (UAH). He presented the findings Monday, during a news briefing at the American Astronomical Society meeting in Seattle.
Continue reading “Fermi Telescope Catches Thunderstorms Hurling Antimatter into Space”

Anti-hydrogen Captured, Held For First Time

The electrodes (gold) of the trap used to combine positrons and antiprotons to form antihydrogen.N. MADSEN, ALPHA/SWANSEA

[/caption]

Can warp drive be far behind? A paper published in this week’s edition of Nature reports that for the first time, antimatter atoms have been captured and held long enough to be studied by scientific instruments. Not only is this a science fiction dream come true, but in a very real way this could help us figure out what happened to all the antimatter that has vanished since the Big Bang, one of the biggest mysteries of the Universe. “We’re very excited about the fact that we can actually now trap antimatter atoms long enough to study their properties and see if they’re very different from matter,” said Makoto Fujiwara, a team member from ALPHA, an international collaboration at CERN.

Antimatter is produced in equal quantities with matter when energy is converted into mass. This happens in particle colliders like CERN and is believed to have happened during the Big Bang at the beginning of the universe.

“A good way to think of antimatter is a mirror image of normal matter,” said team spokesman Jeffrey Hangst, a physicist at Aarhus University in Denmark. “For some reason the universe is made of matter, we don’t know why that is, because you could in principle make a universe of antimatter.”

In order to study antimatter, scientists have to make it in a laboratory. The ALPHA collaboration at CERN has been able to make antihydrogen – the simplest antimatter atom – since 2002, producing it by mixing anti- protons and positrons to make a neutral anti-atom. “What is new is that we have managed to hold onto those atoms,” said Hangst, by keeping atoms of antihydrogen away from the walls of their container to prevent them from getting annihilated for nearly a tenth of a second.

The antihydrogen was held in an ion trap, with electromagnetic fields to trap them in a vacuum, and cooled to 9 Kelvin (-443.47 degrees Fahrenheit, -264.15 degrees Celsius). To actually see if they made any antihydrogen, they release a small amount and see if there is any annihilation between matter and antimatter.

The next step for the ALPHA collaboration is to conduct experiments on the trapped antimatter atoms, and the team is working on a way to find out what color light the antihydrogen shines when it is hit with microwaves, and seeing how that compares to the colors of hydrogen atoms.

CERN Press release

ALPHA collaboration

Nature article.

Possibility for White Dwarf Pulsars?

AE Aquarii - A possible White Dwarf Pulsar
The white dwarf in the AE Aquarii system is the first star of its type known to give off pulsar-like pulsations that are powered by its rotation and particle acceleration.

[/caption]

Some satellites get all the glory. While Hubble, Chandra, and Spitzer frequently make headlines with their stunning images, many other space based observatories silently toil away. One of them, known as the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) has been in orbit since 2006, but rarely receives media attention although a stunning discovery has led to the publication of over 300 papers within a single year. A new paper in that onslaught has proposed an interesting new object: pulsars powered by white dwarfs.
PAMELA isn’t a satellite in its own right. It piggybacks on another satellite. Its mission is to observe high energy cosmic rays. Cosmic rays are particles, whether they be protons, electrons, nuclei of entire atoms, or other pieces, that are accelerated to high velocities, often from exotic sources and cosmological distances.

Among the types of particles PAMELA detects is the elusive positron. This anti-particle of the electron is quite rare due to the scarcity of anti-matter in general in our universe. However, much to the surprise of astronomers, in the range of 10 – 100 GeV, PAMELA has reported an abundance of positrons. In even higher ranges (100 GeV – 1 TeV) astronomers have found that there is a rise in both electrons and positrons. The conclusion from this is that something is able to actually create these particles in these energy ranges.

A flurry of papers went to publication to explain this unexpected finding. Explanations ranged from showers of particles created by even higher energy cosmic rays striking the interstellar medium, to the decay of dark matter, to neutron stars, pulsars, supernovae, and gamma ray bursts. Indeed, many events that produce high energies are sufficient to spontaneously produce matter from energy through the process of pair production. However, the range of these ejected particles would be limited. Effects, such as synchrotron and inverse Compton emission would drain their energy over large distances and as such, by the time they reached PAMELA’s detectors would be too low energy to account for the excesses in the observed energy ranges. From this, astronomers are presuming the culprits are in the local universe.

Joining the long list of candidates, a new paper has proposed a mundane object could be responsible for the high energy necessary to create these energetic particles, albeit with an unusual twist. Neutron stars, one of the potential objects formed in a supernova, are known to release large amounts of energies when spinning quickly while creating a strong magnetic field in the form of pulsars, but the authors propose that white dwarfs, the products of the slow death from stars not massive enough to result in a supernova, may be able to do the same thing. The difficulty in creating such a white dwarf pulsar is that, since white dwarfs don’t collapse to such a small size, they don’t “spin up” as much as they conserve angular momentum and shouldn’t have the sufficient angular velocity necessary.

The authors, led by Kazumi Kashiyama at Kyoto University propose that a white dwarf may reach the necessary rotational speed if they undergo a merger or accrete a sufficient amount of mass. This idea is not unheard of since white dwarf mergers and accretion are already implicated in Type Ia Supernovae. The combination of this with the expectation that around 10% of white dwarfs are expected to have magnetic fields of 106 Gauss, the steps necessary to produce a pulsar from a white dwarf seem to be in place. They note that since white dwarfs tend to have weaker magnetic fields, they shed their angular momentum more slowly and would last longer. Although this duration is still far longer than humans can possibly watch, this may indicate that many of the pulsars observed in our own galaxy are white dwarfs.

Next, the authors hope to conclusively identify such a star. The creation of each of these types of pulsars may provide a clue: Since neutron stars form from supernovae, they are surrounded by a shell of gas that contains a shock front from the supernova itself, which is more dense than the interstellar medium in general. As particles pass through this shock front, some of them would be lost. The same would not be said for white dwarfs which formed from a more gentle release and aren’t impeded by the relatively high density area. This shift in energy distributions may be one distinguishing characteristic.

Some stars have even been tentatively proposed as candidates for white dwarf pulsars. AE Aquarii was seen to give off some pulsar-like signals. EUVE J0317-855 is another white dwarf that appears to meet the qualifications, although no signals have been detected from this star. This new class of stars would be able to explain the excess signal in the higher energy range detected by PAMELA and will likely be the target of further observational searches in the future.

Dark Matter Detector Heading to the ISS This Summer

AMS-2 during integration activities at CERN facility in Switzerland. Credit: ESA

[/caption]

The long-awaited experiment that will search for dark matter is getting closer to heading to the International Space Station. The Alpha Magnetic Spectrometer (AMS) is undergoing final testing at ESA’s Test Centre in the Netherlands before being launched on the space shuttle to the ISS, currently scheduled for July, 2010. The AMS will help scientists better understand the fundamental issues on the origin and structure of the Universe by observing dark matter, missing matter and antimatter. As a byproduct, AMS will gather other information from cosmic radiation sources such as stars and galaxies millions of light years from our home galaxy.

ISS officials have been touting that science is now beginning to be done in earnest on the orbiting laboratory. The AMS will be a giant leap in science capability for the ISS. Not only is it the biggest scientific instrument to be installed on the International Space Station (ISS), but also it is the first magnetic spectrometer to be flown in space, and the largest cryogenically cooled superconducting magnet ever used in space. It will be installed on the central truss of the ISS.
Location of where the AMS will be located on the exterior of the ISS. Credits: CERN et Universite de Geneve
AMS had been cut from the ISS program following the 2003 Columbia shuttle accident, but the outcry over the cancellation forced NASA to rethink their decision. Most of AMS’s $1.5-billion costs have been picked up the international partners that NASA wishes to stay on good terms with. 56 institutes from 16 countries have contributed to the AMS project, with Nobel laureate Samuel Ting coordinating the effort.

In an interview with the BBC, Ting said results from AMS may take up to three years to search for antimatter in other galaxies, and dark matter in our own.
The instrument was built at the European Organization for Nuclear Research (CERN) in Geneva, Switzerland. The first part of the tests was also conducted at CERN, when the detector was put through its paces using a proton beam from CERN’s Super Proton Synchrotron accelerator to check its momentum resolution and its ability to measure particle curvature and momentum.

AMS’s ability to distinguish electrons from protons was also tested. This is very important for the measurement of cosmic rays, 90% of which are protons and constitute a natural background for other signals that interest scientists. AMS will be looking for an abundance of positrons and electrons from space, one of the possible markers for dark matter.

Once the extensive testing is complete, AMS will leave ESTEC at the end of May on a special US Air Force flight to Kennedy Space Center in Florida. It will be launched to the ISS on the Space Shuttle Endeavour on flight STS-134, now scheduled for July.

Source: ESA

Antineutrino

IceCube neutrino detector.

[/caption]
The antineutrino (or anti-neutrino) is a lepton, an antimatter particle, the counterpart to the neutrino.

Actually, there are three distinct antineutrinos, called types, or flavors: electron antineutrino (symbol ̅νe), muon antineutrino (symbol ̅νμ), and tau antineutrino (symbol ̅ντ).

Beta Decay which produces electrons also produces (electron) antineutrinos. Wolfgang Pauli proposed the existence of these particles, in 1930, to ensure that beta decay conserved energy (the electrons in beta decay have a continuum of energies) and momentum (the momentum of the electron and recoil nucleus – in beta decay – do not add up to zero); Enrico Fermi – who developed the first theory of beta decay – coined the word ‘neutrino’, in 1934 (it’s actually a pun, in Italian!). It would be a quarter of a century before the (electron) antineutrino was confirmed, via direct detection (Cowan and Reines did the experiment, in 1956, and later got a Nobel Prize for it).

Another Nobel Prize – for Leon Lederman, Melvin Schwartz, and Jack Steinberger, in 1988 – came from experimental work in the 1960s which showed that muon antineutrinos are not the same as electron antineutrinos.

And in 2002, Davis and Koshiba shared the Nobel Prize (with Giacconi, for work in x-ray astronomy) for their detection of cosmic antineutrinos (a 40-year task!), which lead to the discovery of flavor oscillations (in which an antineutrino of one kind changes into another – electron antineutrino to muon antineutrino, for example).

Are neutrinos their own antiparticles? No … but perhaps there is an as yet undiscovered kind of neutrino that is (called a Majorana neutrino)? So β (electron) decay produces antineutrinos (lepton number is conserved: 1 + (-1) = 0), and β+ (positron) decay produces neutrinos.

No Guide to Space article would be complete without some ‘Further Reading’, would it? KamLAND (the Kamioka Liquid-scintillator Anti-Neutrino Detector) is a wonderful place to start! For one of the greatest physics detective stories of the 20th century, check out my idol John Bahcall’s webpage. Applied Antineutrino Physics (Lawrence Livermore National Laboratory) – great stuff there too.

You won’t find ‘antineutrino’ in many Universe Today articles … but you’ll find plenty on neutrinos! That’s OK … remember that it’s very common to use the word ‘neutrino’ in a generic sense, one that includes the meaning ‘antineutrino’. Some examples: Neutrino Evidence Confirms Big Bang Predictions , Seeing Inside the Earth with Neutrinos, and Do Advanced Civilizations Communicate with Neutrinos?

Two Astronomy Cast episodes give you more insight into the antineutrino, Antimatter, and The Search for Neutrinos.

Sources:
Stanford University KamLAND
Wikipedia

Superbright Supernova First Observed of Antimatter Variety

The supernova 2007bi, circled in the image above, might be the first confirmation of a pair-instability supernova. Image Credit: Nearby Supernova Factory

[/caption]

The supernova 2007bi wasn’t your typical supernova: it was 10 times brighter than a Type Ia supernova, making it one of the most energetic supernova events ever recorded. Astronomers from the University of California Berkeley have analyzed the explosion, which was recorded by a robotic survey in 2007, and found that it is likely the first confirmed observation ever made of a pair-instability supernova, a type of extremely energetic supernova that has been theorized but never directly confirmed.

The confirmed observation of a pair-instability supernova has been long-awaited – the theory that they exist has been around since the 1960’s – but it appears as if the wait is over. The supernova 2007bi, seen by the Nearby Supernova Factory in April of 2007, is the first observed supernova that fits the bill for the unfathomably huge proportions of pair-instability supernovae explosions. A team of astronomers led by Alex Filippenko of the University of California Berkeley published their analysis in in the December 3rd issue of Nature. The discovery was initially made by the Nearby Supernova Factory, and emission spectra of the event was taken with the Keck Telescope and Very Large Telescope in Chile 

These type of supernovae occur only in stars above 100 solar masses, and are incredibly bright. Energetic gamma rays are created by the intense heat in the core of the star. These gamma rays, in turn, create antimatter pairs of electrons and positrons. Because of this antimatter production, the outward pressure exerted by the nuclear reactions in the core of the star is lessened, and gravity takes over, quickly collapsing the massive core of the star and creating a supernova.

There are theorized to be two kinds: those that explode with just enough force to allow for the mass around the leftover core of the star to recombine, and those that explode completely with not a smidgen left to form a black hole or neutron star. The supernova 2006gy, which had a luminosity 10 times that of a Type Ia supernova, is thought to be of the first variety. Here’s our story on that one, Could Antimatter be Powering Super-Luminous Supernovae? and Eta Carinae may also fit the profile.hese types of pair-instability supernovae will eject the outer shells of the star’s matter, settle down into an equilibrium, and repeat that process until the mass is low enough for a normal supernova to occur.

But 2007bi was much too massive to settle back down and explode multiple times. With a mass of 200 suns, the runaway thermonuclear explosion that happened in its core was energetic enough to effectively vaporize the entire star. Pair-instability supernovae in stars above 130 solar masses leave nothing behind in the way of black holes or neutron stars, but because they are so energetic and luminous, the increasing light from the explosion peaks over a very long time – 70 days in the case of 2007bi.

Though the team detected the supernova almost a week after the peak, they were able to calculate the duration of the light curve. They then studied the remnants of the explosion over the next 555 days as it faded away.

Filippenko said, “The central part of the huge star had fused to oxygen near the end of its life, and was very hot. Then the most energetic photons of light turned into electron-positron pairs, robbing the core of pressure and causing it to collapse. This led to a nuclear runaway explosion that created a large amount of radioactive nickel, whose decay energized the ejected gas and kept the supernova visible for a long time.”

The star was unique in another way: it lies in a nearby dwarf galaxy, which contains little else but the elements hydrogen and helium. Because of this, 2007bi is much like the stars that existed near the beginning of the Universe, before the trillions of supernovae populated the Universe with heavier elements. Looking more closely at dwarf galaxies – the Universe has them in spades, but they are quite dim – may be the key to observing more supernovae of this kind. Being able to study its explosion and aftereffects will give scientists a look into what the earliest massive stars acted like.

Source: Berkeley Lab press release

Building an Antimatter Spaceship

A spacecraft powered by a positron reactor would resemble this artist's concept of the Mars Reference Mission spacecraft. Credit: NASA

If you’re looking to build a powerful spaceship, nothing’s better than antimatter. It’s lightweight, extremely powerful and could generate tremendous velocity. However, it’s enormously expensive to create, volatile, and releases torrents of destructive gamma rays. NASA’s Institute for Advanced Concepts is funding a team of researchers to try and design an antimatter-powered spacecraft that could avoid some of those problems.

Most self-respecting starships in science fiction stories use anti matter as fuel for a good reason – it’s the most potent fuel known. While tons of chemical fuel are needed to propel a human mission to Mars, just tens of milligrams of antimatter will do (a milligram is about one-thousandth the weight of a piece of the original M&M candy).

However, in reality this power comes with a price. Some antimatter reactions produce blasts of high energy gamma rays. Gamma rays are like X-rays on steroids. They penetrate matter and break apart molecules in cells, so they are not healthy to be around. High-energy gamma rays can also make the engines radioactive by fragmenting atoms of the engine material.

The NASA Institute for Advanced Concepts (NIAC) is funding a team of researchers working on a new design for an antimatter-powered spaceship that avoids this nasty side effect by producing gamma rays with much lower energy.

Antimatter is sometimes called the mirror image of normal matter because while it looks just like ordinary matter, some properties are reversed. For example, normal electrons, the familiar particles that carry electric current in everything from cell phones to plasma TVs, have a negative electric charge. Anti-electrons have a positive charge, so scientists dubbed them “positrons”.

When antimatter meets matter, both annihilate in a flash of energy. This complete conversion to energy is what makes antimatter so powerful. Even the nuclear reactions that power atomic bombs come in a distant second, with only about three percent of their mass converted to energy.

Previous antimatter-powered spaceship designs employed antiprotons, which produce high-energy gamma rays when they annihilate. The new design will use positrons, which make gamma rays with about 400 times less energy.

The NIAC research is a preliminary study to see if the idea is feasible. If it looks promising, and funds are available to successfully develop the technology, a positron-powered spaceship would have a couple advantages over the existing plans for a human mission to Mars, called the Mars Reference Mission.

“The most significant advantage is more safety,” said Dr. Gerald Smith of Positronics Research, LLC, in Santa Fe, New Mexico. The current Reference Mission calls for a nuclear reactor to propel the spaceship to Mars. This is desirable because nuclear propulsion reduces travel time to Mars, increasing safety for the crew by reducing their exposure to cosmic rays. Also, a chemically-powered spacecraft weighs much more and costs a lot more to launch. The reactor also provides ample power for the three-year mission. But nuclear reactors are complex, so more things could potentially go wrong during the mission. “However, the positron reactor offers the same advantages but is relatively simple,” said Smith, lead researcher for the NIAC study.

Also, nuclear reactors are radioactive even after their fuel is used up. After the ship arrives at Mars, Reference Mission plans are to direct the reactor into an orbit that will not encounter Earth for at least a million years, when the residual radiation will be reduced to safe levels. However, there is no leftover radiation in a positron reactor after the fuel is used up, so there is no safety concern if the spent positron reactor should accidentally re-enter Earth’s atmosphere, according to the team.

It will be safer to launch as well. If a rocket carrying a nuclear reactor explodes, it could release radioactive particles into the atmosphere. “Our positron spacecraft would release a flash of gamma-rays if it exploded, but the gamma rays would be gone in an instant. There would be no radioactive particles to drift on the wind. The flash would also be confined to a relatively small area. The danger zone would be about a kilometer (about a half-mile) around the spacecraft. An ordinary large chemically-powered rocket has a danger zone of about the same size, due to the big fireball that would result from its explosion,” said Smith.

Another significant advantage is speed. The Reference Mission spacecraft would take astronauts to Mars in about 180 days. “Our advanced designs, like the gas core and the ablative engine concepts, could take astronauts to Mars in half that time, and perhaps even in as little as 45 days,” said Kirby Meyer, an engineer with Positronics Research on the study.

Advanced engines do this by running hot, which increases their efficiency or “specific impulse” (Isp). Isp is the “miles per gallon” of rocketry: the higher the Isp, the faster you can go before you use up your fuel supply. The best chemical rockets, like NASA’s Space Shuttle main engine, max out at around 450 seconds, which means a pound of fuel will produce a pound of thrust for 450 seconds. A nuclear or positron reactor can make over 900 seconds. The ablative engine, which slowly vaporizes itself to produce thrust, could go as high as 5,000 seconds.

One technical challenge to making a positron spacecraft a reality is the cost to produce the positrons. Because of its spectacular effect on normal matter, there is not a lot of antimatter sitting around. In space, it is created in collisions of high-speed particles called cosmic rays. On Earth, it has to be created in particle accelerators, immense machines that smash atoms together. The machines are normally used to discover how the universe works on a deep, fundamental level, but they can be harnessed as antimatter factories.

“A rough estimate to produce the 10 milligrams of positrons needed for a human Mars mission is about 250 million dollars using technology that is currently under development,” said Smith. This cost might seem high, but it has to be considered against the extra cost to launch a heavier chemical rocket (current launch costs are about $10,000 per pound) or the cost to fuel and make safe a nuclear reactor. “Based on the experience with nuclear technology, it seems reasonable to expect positron production cost to go down with more research,” added Smith.

Another challenge is storing enough positrons in a small space. Because they annihilate normal matter, you can’t just stuff them in a bottle. Instead, they have to be contained with electric and magnetic fields. “We feel confident that with a dedicated research and development program, these challenges can be overcome,” said Smith.

If this is so, perhaps the first humans to reach Mars will arrive in spaceships powered by the same source that fired starships across the universes of our science fiction dreams.

Original Source: NASA News Release