Who Are The Most Famous Astronauts?

Apollo 11 Crew Photo. Credit: NASA

There have been many astronauts who have made tremendous contributions to our knowledge of space. But asking “who is the most famous?” is somewhat tricky. For one, its a bit subjective. And second, it can be hard to objectively measure just how important and individuals contributions really are. Surely, all astronauts are deserving of recognition and respect for their bravery and contributions to the pursuit of knowledge.

Nevertheless, in the course of human space exploration, some names do stand out more than others. And some have made such immense contributions that their names will live on long after we too have passed away. So without further ado, here are just a few of the most famous astronauts, along with a list of their accomplishments.

Yuri Gagarin:

As the first man to ever go into space, no list of famous astronauts would be complete without Yuri Gagarin. Born in the village of Klushino in the Smolensk Oblast on March 9th, 1934, Gagarin was drafted into the Soviet Air Force in 1955 and trained in the use of jet fighters. In 1960, he was selected alongside 19 other pilots to join the newly-formed Soviet Space Program.

Yury Gagarin before a space flight aboard the Vostok spacecraft. April 12, 1961 Credit: RIA Novosti
Yuri Gagarin before a space flight aboard the Vostok 1 spacecraft, April 12th, 1961. Credit: RIA Novosti

Gagarin was further selected to become part of the Sochi Six, an elite group of cosmonauts who formed the backbone of the Vostok program. Due to his training, physical size (as the spacecraft were quite cramped), and favor amongst his peers, Gagarin was selected to be the first human cosmonaut (they had already sent dogs) to make the journey.

On April 12th, 1961, Gagarin was launched aboard the Vostok 1 spacecraft from the Baikonur Cosmodrome, and thus became the fist man to go into space. During reentry, Gagarin claimed to have whistled “The Motherland Hears, The Motherland Knows”, and reportedly said, “I don’t see any God up here” when he reached suborbital altitude (which was falsely attributed).

Afterwards, he toured the world and became a celebrity at home, commemorated with stamps, statues, and the renaming of his ancestral village to Gagarin. The 12th of April is also known as “Cosmonauts Day” in Russia and many former Soviet-states in his honor.

Gagarin died during a routine training exercise in March 27th, 1968. The details of his death were not released until June of 2013, when a declassified report indicated that Gagarin’s death was caused by the error of another pilot.

Alan B. Shepard Jr.:

In addition to being an astronaut and one of the Mercury Seven – the first seven pilots selected by NASA to go into space – Shepard was also the first American man to go into space. He was born November 18th, 1923 in Pebble, California and graduated from the United States Naval Academy with a Bachelor of Science degree. While in the Navy, Shepard became a fighter pilot and served aboard several aircraft carriers in the Mediterranean.

Alan Shepard prepares for his historic flight on May 5, 1961. Credit: NASA
Alan Shepard prepares for his historic flight on May 5, 1961. Credit: NASA

In 1959, he was selected as one of 110 military test pilots to join NASA. As 0ne of the seven Mercury astronauts, Shepard was selected to be the first to go up on May 5th, 1961. Known as the Freedom 7 mission, this flight placed him into a suborbital flight around Earth. Unfortunately, Alan was beaten into space by Soviet cosmonaut Yuri Gagarin by only a few weeks, and hence became the first American to go into space.

Shepard went on to lead other missions, including the Apollo 14 mission – which was the third mission to land on the Moon. While on the lunar surface, he was photographed playing a round of golf and hit two balls across the surface. After leaving NASA, he became a successful businessman. He died of leukemia on July 21st, 1998, five weeks before the death of his wife of 53 years.

Valentina Tereshkova:

Another famous Russian cosmonaut, Tereshkova is also internationally renowned for being the first woman to go into space. Born in the village of Maslennikovo in central Russia on March 6th, 1937, Tereshkova became interested in parachuting from a young age and began training at the local aeroclub.

After Gagarin’s historic flight in 1961, the Soviets hopes to also be the first country to put a woman into space. On 16 February 1962, Valentina Tereshkova was selected to join the female cosmonaut corps, and was selected amongst hundreds to be one of five women who would go into space.

In addition to her expertise in parachuting (which was essential since Vostok pilots were to parachute from the capsule after reentry), her background as a “proletariat”, and the fact that her father was a war hero from the Russo-Finnish War, led to her being selected.

Soviet Cosmonaut Valentina Tereshkova photographed inside the Vostok-6 spacecraft on June 16, 1963. Credit: Roscosmos
Soviet Cosmonaut Valentina Tereshkova photographed inside the Vostok-6 spacecraft on June 16, 1963. Credit: Roscosmos

Her mission, Vostok 6, took place on June 16th, 1963. During her flight, Tereshkova orbited Earth forty-eight times, kept a flight log and took photographs that would prove useful to atmospheric studies. Aside from some nausea (which she later claimed was the result of spoiled food!) she maintained herself for the full three days and parachuted down during re-entry, landing a bit hard and bruising her face.

After returning home, Tereshkova went on to become a cosmonaut engineer and spent the rest of her life in key political positions. She married fellow cosmonaut Andrian Nikolayev and had a daughter. After her flight, the women’s corps was dissolved. Vostok 6 was to be the last of the Vostok flights, and it would be nineteen years before another woman would go into space (see Sally Ride, below).

John Glenn Jr.:

Colonel Glenn, USMC (retired) was a Marine Corps fighter pilot and a test pilot before becoming an astronaut. Due to his experience, he was chosen by NASA to be part of the Mercury Seven in 1959. On February 20, 1962, Glenn flew the Friendship 7 mission, and thus became the first American astronaut to orbit the Earth and the fifth person to go into space.

John Glenn enters his Friendship 7 spacecraft on On Feb. 20, 1962. Credit: NASA
John Glenn enters his Friendship 7 spacecraft on On Feb. 20, 1962. Credit: NASA

For his contributions to spaceflight, John Glenn earned the Space Congressional Medal of Honor. After an extensive career as an astronaut, Glenn retired from NASA on January 16th, 1964, to enter politics. He won his first bid to become a US Senator in 1974, representing Ohio for the Democratic Party, and was reelected numerous times before retiring in January of 1999.

With the death of Scott Carpenter on October 10, 2013, he became the last surviving member of the Mercury Seven. He was also the only astronaut to fly in both the Mercury and Space Shuttle programs – at age 77, he flew as a Payload Specialist on Discovery mission (STS-95). For his history of service, he was awarded the Presidential Medal of Freedom in 2012.

Neil Armstrong:

Neil Armstrong is arguably the most famous astronauts, and indeed one of the most famous people that has ever lived. As commander of the historic Apollo 11 mission, he will forever be remembered as the first man to ever walk on a body other than Earth. Born on August 5th, 1930, in Wapakoneta, Ohio, he graduated from Purdue University and served the National Advisory Committee for Aeronautics High-Speed Flight Station before becoming an astronaut.

Neil A. Armstrong inside the Lunar Module after EVA
Neil A. Armstrong inside the Lunar Module after EVA. Credit: NASA

In accordance with the Holloway Plan, Neil studied at Purdue for two years and then committed to three years of military service as a naval aviator before completing his degree. During this time, he trained in the use of jet aircraft and became a test pilot at Andrews Air Force base, meeting such personalities as Chuck Yeager.

In 1962, when NASA was looking to create a second group of astronauts (after the Mercury 7), Armstrong joined and became part of the Gemini program. He flew two missions, as the command pilot and back-up command pilot for Gemini 8 and Gemini 11 (both in 1966), before being offered a spot with the Apollo program.

On July 16th, 1969, Armstrong went into space aboard the Apollo 11 spacecraft, alongside “Buzz” Aldrin and Michael Collins. On the 20th, after the lunar module set down on the surface,  he became the first person to walk on the Moon.  As he stepped onto the lunar surface, Armstrong uttered the famous words, “That’s one small step for a man, one giant leap for mankind.”

After retiring from NASA in 1971, Armstrong completed his master’s degree in aerospace engineering, became a professor at the University of Cincinnati, and a private businessman.

On Augusts 25th, 2012, he died at the age of 82 after suffering complications from coronary artery bypass surgery. On September 14th, his cremated remains were scattered in the Atlantic Ocean during a burial-at-sea ceremony aboard the USS Philippine Sea.

For his accomplishments, Armstrong was awarded the Presidential Medal of Freedom, the Congressional Space Medal of Honor, and the Congressional Gold Medal in 2009.

James Lovell Jr.:

Lovell was born on March 25th, 1928 in Cleveland, Ohio. Like Shepard, he graduated from the US Naval Academy and served as a pilot before becoming one of the Mercury Seven. Over the course of his career, he flew several missions into space and served in multiple roles. The first was as the pilot of the Apollo 8 command module, which was the first spacecraft to enter lunar orbit.

He also served as backup commander during the Gemini 12 mission, which included a rendezvous with another manned spacecraft. However, he is most famous for his role as commander the Apollo 13 mission, which suffered a critical failure en route to the Moon but was brought back safely due to the efforts of her crew and the ground control team.

Lovell is a recipient of the Congressional Space Medal of Honor and the Presidential Medal of Freedom. He is one of only 24 people to have flown to the Moon, the first of only three people to fly to the Moon twice, and the only one to have flown there twice without making a landing. Lovell was also the first person to fly in space four times.

Original crew photo. Left to right: Lovell, Mattingly, Haise. Credit: NASA
Original crew photo, (left to right) Jim Lovell, Thomas K. Mattingly, and Fred W. Haise. Credit: NASA

Dr. Sally Ride:

Sally Ride became renowned in the 1980s for being one of the first women to go into space. Though Russians had already sent up two female astronauts – Valentina Tereshkova (1963) and Svetlana Savitskaya (1982) – Ride was the first American female astronaut to make the journey. Born on May 26th, 1951, in La Jolla, California, Ride received her doctorate from Stanford University before joining NASA in 1978.

On June 18th, 1983, she became the first American female astronaut to go into space as part of the STS-7 mission that flew aboard the space shuttle Challenger. While in orbit, the five-person crew deployed two communications satellites and Ride became the first woman to use the robot arm (aka. Canadarm).

Her second space flight was in 1984, also on board the Challenger. In 1986, Ride was named to the Rogers Commission, which was charged with investigating the space shuttle Challenger disaster. In 2003, she would serve on the committee investigating the space shuttle Columbia disaster, and was the only person to serve on both.

Sally Ride communicates with ground controllers from the flight deck during the six-day mission in Challenger, 1983. Credit: U.S. National Archives and Records Administration
Sally Ride communicates with ground controllers from the flight deck during STL-7 in 1983. Credit: U.S. National Archives and Records Administration

Ride retired from NASA in 1987 as a professor of physics and continued to teach until her death in 2012 from pancreatic cancer. For her service, she was given numerous awards, which included the National Space Society’s von Braun Award, two NASA Space Flight Medals, and was inducted into the National Women’s Hall of Fame and the Astronaut Hall of Fame.

Chris Hadfield:

Last, but certainly not least, there’s Chris Hadfield, the Canadian astronaut, pilot and engineer who became famous for his rendition of “Space Oddity” while serving as the commander of the International Space Station. Born on August 29th, 1959 in Sarnia, Ontario, Hadfield became interesting in flying at a young age and in becoming an astronaut when he watched the televised Apollo 11 landing at age nine.

After graduating from high school, Hadfield joined the Canadian Armed Forces and spent two years at Royal Roads Military College followed by two years at the Royal Military College, where he received a bachelor’s degree in mechanical engineering in 1982. He then became a fighter pilot with the Royal Canadian Air Force, flying missions for NORAD. He also flew as a test pilot out of Andrews Air Force Base as part of an officer exchange.

In 1992, Hadfield became part of the Canadian Space Agency and was assigned to NASA’s Johnson Space Center in Houston, as a technical and safety specialist for Shuttle Operations Development. He participated in two space missions – STS-74 and STS-100 in 1995 and 2001, respectively – as a Mission Specialist. These missions involved rendezvousing with Mir and the ISS.

Canadian astronaut Chris Hadfield, the first Canadian to serve as commander of the ISS. Credit: CTV
Canadian astronaut Chris Hadfield performing his rendition of “Space Oddity”. Hadfield is the first Canadian to serve as commander of the ISS. Credit: CTV

On December 19th 2012, Hadfield launched in the Soyuz TMA-07M flight for a long duration stay on board the ISS as part of Expedition 35. He became the first Canadian to command the ISS when the crew of Expedition 34 departed in March 2013, and received significant media exposure due to his extensive use of social media to promote space exploration.

Forbes described Hadfield as “perhaps the most social media savvy astronaut ever to leave Earth”. His promotional activities included a collaboration with Ed Robertson of The Barenaked Ladies and the Wexford Gleeks, singing “Is Somebody Singing? (I.S.S.) via Skype. The broadcast of this event was a major media sensation, as was his rendition of David Bowie’s “Space Oddity“, which he sung shortly before departing the station in May 2013.

For his service, Hadfield has received numerous honors, including the Order of Canada in 2014, the Vanier Award in 2001, NASA Exceptional Service Medal in 2002, the Queen’s Golden Jubilee Medal in 2002, and the Queen’s Diamond Jubilee Medal in 2012. He is also the only Canadian to have received both a military and civilian Meritorious Service Cross, the military medal in 2001 and the civilian one in 2013.

Universe Today has interesting articles on Neil Armstrong, “Buzz” Edwin Aldrin, and the enduring legacy of Apollo 11.

If you are looking for more information, you should check out famous aviators and astronauts and astronaut biographies.

Astronomy Cast has an episode on the US space shuttle.

Sources:
NASA: Alan Shepard Jr
NASA: Neil Armstrong
NASA: John Glenn
NASA: James Lovell Jr.
NASA: Sally Ride

How Can We Live on Mars?

The Dragn Crew capsule is more than a modernized Apollo capsule. It will land softly and at least on Earth will be reusable while Musk and SpaceX dream of landing Falcon Crew on Mars. (Photo Credits: SpaceX)

Why live on Earth when you can live on Mars? Well, strictly speaking, you can’t. Mars is a completely hostile environment to human life, combining extreme cold with an unbreathable atmosphere and intense radiation. And while it is understood that the planet once had an atmosphere and lots of water, that was billions of years ago!

And yet, if we want to expand into the Solar System, we’ll need to learn how to live on other planets. And Mars is prime real-estate, compared to a lot of other bodies. So despite it being a challenge, given the right methods and technology, it is possible we could one day live on Mars. Here’s how we’ll do it.

Reasons To Go:

Let’s face it, humanity wants (and needs) to go Mars, and for several reasons.  For one, there’s the spirit of exploration, setting foot on a new world and exploring the next great frontier – like the Apollo astronauts did in the late 60s and early 70s.

Artist illustration of a Mars Colony. Image credit: NASA
Artist illustration of a Mars Colony. Image credit: NASA

We also need to go there if we want to create a backup location for humanity, in the event that life on Earth becomes untenable due to things like Climate Change. We could also go there to search for additional resources like water, precious metals, or additional croplands in case we can no longer feed ourselves.

In that respect, Mars is the next, natural destination. There’s also a little local support, as Mars does provide us some raw materials. The regolith, the material which covers the surface, could be used to make concrete, and there are cave systems which could be converted into underground habitats to protect citizens from the radiation.

Elon Musk has stated that the goal of SpaceX is to help humans get to Mars, and they’re designing rockets, landers and equipment to support that. Musk would like to build a Mars colony with about 1 million people. Which is a good choice, as its probably the second most habitable place in our Solar System. Real estate should be pretty cheap, but the commute is a bit much.

And then there’s the great vistas to think about. Mars is beautiful, after a fashion. It looks like a nice desert planet with winds, clouds, and ancient river beds. But maybe, just maybe, the best reason to go there is because it’s hard! There’s something to be said about setting a goal and achieving it, especially when it requires so much hard work and sacrifice.

Reasons NOT To Go:

Yeah, Mars is pretty great… if you’re not made of meat and don’t need to breathe oxygen. Otherwise, it’s incredibly hostile. It’s not much more habitable than the cold vacuum of space. First, there’s no air on Mars. So if you were dropped on the surface, the view would be spectacular. Then you’d quickly pass out, and expire a couple minutes later from a lack of oxygen.

There’s also virtually no air pressure, and temperatures are incredibly cold. And of course, there’s the constant radiation streaming from space. You also might want to note that the soil is toxic, so using it for planting would first require that it be put through a decontamination process.

A post-processed mosaic of MSL Mastcam images from Sol 582 (NASA/JPL-Caltech/MSSS. Edit by Jason Major)
Afternoon on Mars (MSL Mastcam mosaic)(NASA/JPL-Caltech/MSSS. Edit by Jason Major)

Assuming we can deal with those issues, there’s also the major problem of having limited access to spare parts and medical supplies. You can’t just go down to the store when you’re on Mars if your kidney gives out or if your sonic screwdriver breaks.

There will need to be a constant stream of supplies coming from Earth until the Martian economy is built up enough to support itself. And shipping from Earth will be very expensive, which will mean long period between supply drops.

One more big unknown is what the low gravity will do to the human body over months and years. At 40% of Earth normal, the long-term effects are not something we currently have any information on. Will it shorten our lifespan or lengthen it? We just don’t know.

There’s a long list of these types of problems. If we intend to live on Mars, and stay there permanently, we’ll be leaning pretty hard on our technology to keep us alive, never mind making us comfortable!

Possible Solutions:

In order to survive the lack of air pressure and the cold, humans will need pressurized and heated habitats. Martians, the terrestrial kind, will also need a spacesuit whenever they go outside. Every hour they spend outside will add to their radiation exposure, not to mention all the complications that exposure to radiation brings.

Artist's concept of a habitat for a Mars colony. Credit: NASA
Artist’s concept of a habitat for a Mars colony. Credit: NASA

For the long term, we’ll need to figure out how to extract water from underground supplies, and use that to generate breathable air and rocket fuel. And once we’ve reduced the risk of suffocation or dying of dehydration, we’ll need to consider food sources, as we’ll be outside the delivery area of everyone except Planet Express. Care packages could be shipped up from Earth, but that’s going to come with a hefty price tag.

We’ll need to produce our own food too, since we can’t possible hope to ship it all in on a regular basis. Interestingly, although toxic, Martian soil can be used to grow plants once you supplement it and remove some of the harsher chemicals. NASA’s extensive experience in hydroponics will help.

To thrive on Mars, the brave adventurers may want to change themselves, or possibly their offspring. This could lead to genetic engineering to help future generations adapt to the low gravity, higher radiation and lower air pressure. And why stop at humans? Human colonists could also adapt their plants and animals to live there as well.

Finally, to take things to the next level, humanity could make a few planetary renovations. Basically, we could change Mars itself through the process of terraforming. To do this, we’ll need to release megatons of greenhouse gasses to warm the planet, unleashing the frozen water reserves. Perhaps we’ll crash a few hundred comets into the planet to deliver water and other chemicals too.

An artist's conception of future Mars astronauts. Credit: NASA/JPL-Caltech
An artist’s conception of future Mars astronauts. Credit: NASA/JPL-Caltech

This might take thousands, or even millions of years. And the price tag will be, for lack of a better word, astronomical! Still, the technology required to do all this is within our current means, and the process could restore Mars to a place where we could live on it even without a spacesuit.

And even though we may not have all the particulars worked out just yet, there is something to be said about a challenge. As history has shown, there is little better than a seemingly insurmountable challenge to bring out the best in all of us, and to make what seems like an impossible dream a reality.

To quote the late, great John F. Kennedy, who addressed the people of the United States back when they was embarking on a similarly difficult mission:

We choose to go to the Moon! … We choose to go to the Moon in this decade and do the other things, not because they are easy, but because they are hard; because that goal will serve to organize and measure the best of our energies and skills, because that challenge is one that we are willing to accept, one we are unwilling to postpone, and one we intend to win

What do you think? Would you be part of the Mars terraforming expedition? Tell us in the comments below.

We have written many interesting articles about Mars here at Universe Today. Here’s How Do We Colonize Mars?, Mars Colony Will Have to Wait, Solar Power is Best for Mars Colonies, and Elon Musk is Sending Humans to Mars in 2024.

For more information, check out NASA’s Journey to Mars, and NASA Quest’s Mars Colony Project.

Astronomy Cast also has episodes on the subject, like Episode 52: Mars, and Episode 95: Humans to Mars, Part 2: Colonists.

America’s First Space Station: The NASA Skylab

Skylab, America’s First manned Space Station. Photo taken by departing Skylab 4 crew in Feb. 1974. Credit: NASA

Before there was the International Space Station, before there was Mir, there was Skylab. Established in 1973, and remaining in orbit until 1979, this orbital space station was American’s first long-duration orbital workshop, and the ancestor of all those that have followed.

Originally conceived of in 1969, the plans for the station were part of a general winding down that took place during the last years of the Space Race – which officially ran from 1955 to 1972. Having sent astronauts into orbit and achieved the dream of manned missions to the Moon, the purpose of Skylab was to achieve a lasting presence in space. Rather than simply “getting there first”, NASA was now concerned with staying there.

Planning:

The seeds of Skylab were planted as early as 1959, when Wernher von Braun – the head of the Development Operations Division at the Army Ballistic Missile Agency – proposed a mission that would use a multistage rocket to place men on the Moon. As part of this mission, the upper stage of the rocket would be deposited around the Earth to function as an orbital laboratory. Known as Horizon, these plans were eventually be seized upon by NASA, which was rapidly forming at the time.

A 1967 conceptual drawing of the Gemini B reentry capsule separating from the MOL at the end of a mission. Credit: NASA
A 1967 conceptual drawing of the Gemini B reentry capsule separating from the MOL at the end of a mission. Credit: NASA

Similarly, as of September 1963, the US Department of Defense (DoD) and NASA began collaborating on a manned facility known as the “Manned Orbital Laboratory” (MOL). The initial DoD plan called for a station that would be the same diameter as a Titan II upper stage, and which would primarily be intended for photo reconnaissance using large telescopes directed by a two-man crew.

As the head of the Marshall Space Flight Center during the 1960s, Von Braun became concerned that his employees would not have work beyond developing the Saturn rockets intended for the Apollo program. As a result, he began advocating for the creation of a space station using modified Apollo hardware – which included the S-II second stage of a Saturn V rocket.

Throughout 1965, several more proposals were considered that relied on the Saturn S-IVB stage to create a space station. As part of NASA’s The Orbital Workshop program, this proposal also called for sending a crew to man the station using a Apollo Command-Service Module (CSM) aboard a Saturn IB rocket.

 This artist's concept is a cutaway illustration of the Skylab with the Command/Service Module being docked to the Multiple Docking Adapter. Credit: NASA
This artist’s concept is a cutaway illustration of the Skylab with the Command/Service Module being docked to the Multiple Docking Adapter. Credit: NASA

The crew would dock with the station, vent the residual propellants from the S-IVB stage, fill the hydrogen tank with a breathable oxygen atmosphere, and then enter the tank and outfit it as a station. On August 8th, 1969, after years of development and workshops, the McDonnel Douglas Corporation received a contract to create an Orbital Workshop out of two existing S-IVB stages.

In February of 1970, the program was renamed “Skylab” as a result of a NASA contest. A Saturn V rocket that was originally produced for the Apollo program – before the cancellation of Apollo 18, 19, and 20 – was re-purposed and redesigned to carry the station into orbit.

Launch:

Skylab was launched on May 14th, 1973 on a mission that is sometimes referred to as Skylab 1 (or SL-1). Severe damage was sustained during the launch when the station’s meteoroid shield and one of the two solar panels tore off due to vibrations.

Since the station was designed to face the Sun in order to get as much power as possible, and the shield was ripped off, the station rose to a temperature of 52°C. As a result, scientists had to move the space station and effect repairs before astronauts could be dispatched to it.

Launch of the modified Saturn V rocket carrying the Skylab space station. Credit: NASA
Launch of the modified Saturn V rocket carrying the Skylab space station. Credit: NASA

Missions:

The first manned mission (designated Skylab 2, or SL-2) took place on May 25th, 1973, atop a Saturn IB and involved extensive repairs to the station. This mission last four weeks, and astronauts Charles Conrad, Jr., Paul J. Weitz, Joseph P. Kerwin were the crew members. During the mission, the crew conducted a number of experiments, including solar astronomy and medical studies, and three EVAs (extra-vehicular activities) were completed as well.

The second manned mission, also known as Skylab 3 (SL-3), was launched on July 28th, 1973. The crew consisted of Alan L. Bean, Jack R. Lousma, and Owen K. Garriott. The mission lasted 59 days and 11 hours, during which time the crew carried out additional repairs as well as performing scientific and medical experiments.

The third and final mission to the Skylab (Skylab 4, SL-4) was the longest, lasting 84 days and one hour. Gerald P. Carr, William R. Pogue, Edward G. Gibson were the crew, and in addition to performing various experiments, they also observed the Comet Kohoutek. The crew conducted three EVAs which lasted a total of 22 hours and 13 minutes.

Skylab in February 1974, pictured by the SL-4 crew as they departed the station to return to Earth. Credit: NASA
Skylab in February 1974, pictured by the SL-4 crew as they depart the station to return to Earth. Credit: NASA

Skylab was occupied a total of 171 days and orbited the Earth more than 2,476 times during the course of its service. Each Skylab mission set a record for the amount of time astronauts spent in space.

Decommissioning:

Though NASA hoped that the station would remain in orbit for ten years, by 1977, it became clear that it would not be able to maintain a stable orbit for that long. As a result, after SL-4, preparations were made to shut down all operations and de-orbit the station.

Skylab’s demise was an international media event, with merchandising of T-shirts and hats with bullseyes, wagering on the time and place of re-entry, and nightly news reports. In the hours before re-entry, ground controllers adjusted Skylab’s orientation to try to minimize the risk of re-entry on a populated area.

They aimed the station at a spot 1,300 km (810 miles) south southeast of Cape Town, South Africa, and re-entry began at approximately 16:37 UTC, July 11, 1979. The debris reached Earth on July 11th, 1979, raining down over the Indian Ocean and parts of Australia.

On May 13, NASA commemorated the 40th anniversary of Skylab’s liftoff with a special roundtable discussion broadcast live on NASA TV. The event took place at NASA’s Headquarters in Washington, DC, and participants included Skylab and current ISS astronauts and NASA human spaceflight managers.

While the station did not have the history of service that NASA initially hoped for, the development, deployment and crewed missions to Skylab were essential to the creation of the International Space Station, which began almost 20 years after Skylab came home.

We have many interesting articles on the Apollo program and space stations here at Universe Today. For example, here are some articles on Apollo 20 and the International Space Station.

You should also check out Skylab and NASA Skylab. Astronomy Cast has an episode on space elevators.

Source: NASA

Remembrance Week Pays Tribute to NASA’s Three Fallen Astronaut Crews

NASA pays tribute to the crews of Apollo 1 and space shuttles Challenger and Columbia

Today, Feb. 1, concludes the most somber week in NASA history as we remember the fallen astronauts who gave their lives exploring space so that others could reach to the stars – venturing further than ever before!

In the span of a week and many years apart three crews of American astronauts made the ultimate sacrifice and have perished since 1967. Heroes all ! – They believed that the exploration of space was worth risking their lives for the benefit of all mankind.

Apollo 1 memorial 1/27/2015. We start a week of remembrances on the 'Space Coast', years apart but so close together.  Credit: Julian Leek
Apollo 1 memorial 1/27/2015. We start a week of remembrances on the ‘Space Coast’, years apart but so close together. Words/Credit: Julian Leek

On Jan. 28, NASA paid tribute to the crews of Apollo 1 and space shuttles Challenger and Columbia, as well as other NASA colleagues, during the agency’s annual Day of Remembrance. Over the past week, additional remembrance ceremonies were held in many venues across the country.

“NASA’s Day of Remembrance honors members of the NASA family who lost their lives while furthering the cause of exploration and discovery,” said a NASA statement.

NASA Administrator Charles Bolden and other agency senior officials held an observance and wreath-laying at Arlington National Cemetery in Virginia on Jan. 28.

NASA Administrator Charles Bolden and his wife Alexis lay a wreath at the Tomb of the Unknowns as part of NASA’s Day of Remembrance, Wednesday, Jan. 28, 2015, at Arlington National Cemetery in Arlington, Va. The wreaths were laid in memory of those men and women who lost their lives in the quest for space exploration. Photo Credit: NASA/Joel Kowsky
NASA Administrator Charles Bolden and his wife Alexis lay a wreath at the Tomb of the Unknowns as part of NASA’s Day of Remembrance, Wednesday, Jan. 28, 2015, at Arlington National Cemetery in Arlington, Va. The wreaths were laid in memory of those men and women who lost their lives in the quest for space exploration. Photo Credit: NASA/Joel Kowsky

“Today we remember and give thanks for the lives and contributions of those who gave all trying to push the boundaries of human achievement. On the solemn occasion, we pause in our normal routines and remember the STS-107 Columbia crew; the STS-51L Challenger crew; the Apollo 1 crew; Mike Adams, the first in-flight fatality of the space program as he piloted the X-15 No. 3 on a research flight; and those lost in test flights and aeronautics research throughout our history,” said Bolden.

“Let us join together … in paying our respects, and honoring the memories of our dear friends. They will never be forgotten. Godspeed to every one of them.”

12 years ago today on Saturday, Feb. 1, 2003, Space Shuttle Columbia suddenly and unexpectedly disintegrated over the skies of Texas during the fiery reentry into the Earth’s atmosphere at the conclusion of the STS-107 science mission. All aboard were lost: Rick Husband, William McCool, David Brown, Laurel Clark, Kalpana Chawla, Michael Anderson, and Ilan Ramon.

STS-107 crew of Space Shuttle Columbia
STS-107 crew of Space Shuttle Columbia

Jan. 28 marked the 29th anniversary of the Challenger disaster on the STS-51L mission when it suddenly broke apart 73 seconds after liftoff in 1986. The entire seven person crew were killed; including Dick Scobee, Michael Smith, Ronald McNair, Judy Resnik, Gregory Jarvis, Ellison Onizuka, and the first “Teacher in Space” Christa McAuliffe.

STS-51L crew of Space Shuttle Challenger
STS-51L crew of Space Shuttle Challenger

Jan. 27 marks the 48th anniversary of the first of the three disasters when a horrendous cockpit fire at Launch Complex 34 in 1967 killed the Apollo 1 crew of Gus Grissom, Ed White II and Roger Chaffee during a training exercise in the capsule.

Apollo 1 Crew
Apollo 1 Crew

Launch Complex 34 on Cape Canaveral Air Force Station in Florida was never used again for a launch and the ruins stand as a stark memorial to the crew of Apollo 1.

An observance was also held on Jan. 28 at the Space Mirror Memorial at NASA’s Kennedy Space Center Visitor Complex.

The Space Mirror Memorial at NASA’s Kennedy Space Center honors all astronauts who perished during their service to the agency. Photo Credit: Talia Landman/AmericaSpace
The Space Mirror Memorial at NASA’s Kennedy Space Center honors all astronauts who perished during their service to the agency. Photo Credit: Talia Landman/AmericaSpace
Deeply humbled to put a rose on Christa McAuliffe's plaque at the Astronaut Memorial Ceremony today 1/28/15.  A little something extra...from one educator to another. Words/Credit: Sarah McNulty
Deeply humbled to put a rose on Christa McAuliffe’s plaque at the Astronaut Memorial Ceremony today 1/28/15. A little something extra…from one educator to another. Words/Credit: Sarah McNulty

Today the fallen astronauts legacy of human spaceflight lives on at NASA with the International Space Station (ISS), the development of Commercial Crew manned capsules for low Earth orbit, and the development of the Orion deep space crew exploration vehicle and SLS rocket for NASA’s ambitious plans to send ‘Human to Mars’ in the 2030s.

There are numerous memorials to the fallen crews. Among them are the tribute plaques to all five space shuttle orbiters that were the brainchild of the Space Shuttle Launch Director Mike Leinbach.

The five orbiter plaques were mounted inside the Space Shuttle Firing Room #4, above the Shuttle countdown clock at the Launch Control Center of NASA’s Kennedy Space Center.

The plaques for Columbia and Challenger, the first two shuttles built, include the crew portraits from STS-107 and STS-51L.

Memorial displays to all five Space Shuttle Orbiters mounted inside the Space Shuttle Firing Room #4 - above the Shuttle countdown clock. These tribute displays highlight and honor the significant achievements from the actual space voyages of the individual Orbiters launched from the Kennedy Space Center over three decades –starting with STS-1 in 1981. Shuttle mission patches since the return to flight in 2005 are mounted below the tribute displays. Click to enlarge. Credit: Ken Kremer/kenkremer.com.
Memorial displays to all five Space Shuttle Orbiters mounted inside the Space Shuttle Firing Room #4 – above the Shuttle countdown clock. These tribute displays highlight and honor the significant achievements from the actual space voyages of the individual Orbiters launched from the Kennedy Space Center over three decades –starting with STS-1 in 1981. Shuttle mission patches since the return to flight in 2005 are mounted below the tribute displays. Click to enlarge. Credit: Ken Kremer/kenkremer.com.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

The Dignity Memorial to fallen astronauts at the Kennedy Space Center Visitor Complex. Credit: Ken Kremer/kenkremer.com
The Dignity Memorial to fallen astronauts at the Kennedy Space Center Visitor Complex. Credit: Ken Kremer/kenkremer.com
Statement from NASA Administrator Charles Bolden
Statement from NASA Administrator Charles Bolden

NASA’s Exploration Roadmap to Mars Starts with Flawless Orion Launch and Landing

NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014. Launch pad remote camera view. Credit: Ken Kremer - kenkremer.com

KENNEDY SPACE CENTER, FL – NASA’s exploration roadmap aimed at sending Humans to Mars in the 2030s got off the ground magnificently with the flawless launch and landing of the agency’s new Orion deep space capsule on its maiden voyage to space on Friday, Dec. 5, 2014.

“The first look looks really good from a data standpoint and will help us as we go forward,” said Bill Gerstenmaier, NASA’s associate administrator for the Human Exploration and Operations Directorate, at the post Orion landing media briefing at the Kennedy Space Center (KSC).

“We, as a species, are meant to press humanity further into the solar system and this is a first step. What a tremendous team effort.”

Orion roared to orbit atop the fiery fury of a 242 foot tall United Launch Alliance Delta IV Heavy rocket – the world’s most powerful booster – at 7:05 a.m. EST from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.

The unpiloted test flight of Orion on the Exploration Flight Test-1 (EFT-1) mission carried the capsule farther away from Earth than any spacecraft designed for astronauts has traveled in more than four decades.

Humans have not ventured beyond low Earth orbit since the launch of Apollo 17 on NASA’s final moon landing mission on Dec. 7, 1972.

Orion’s inaugural launch on Dec. 5, 2014 atop United Launch Alliance Delta 4 Heavy rocket at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station, Florida at 7:05 a.m.  Credit: Alex Polimeni/Zero-G News/AmericaSpace
Orion’s inaugural launch on Dec. 5, 2014, atop United Launch Alliance Delta IV Heavy rocket at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station, Florida at 7:05 a.m. Credit: Alex Polimeni/Zero-G News/AmericaSpace

The first stage of the mammoth, triple barreled Delta IV Heavy generates some two million pounds of liftoff thrust and was the only rocket powerful enough to launch Orion and achieve its intended goals.

During the two orbit, 4.5 hour flight, Orion reached an altitude of 3,604 miles above Earth, about 15 times higher than the International Space Station (ISS).

The Delta rocket’s main stage and upper stage performed so well that Orion was injected into orbit within an accuracy of about 1 foot of the planned orbit, said Larry Price, Lockheed Martin Deputy Orion Program Manager in an interview with Universe Today.

“It’s phenomenal,” Price told me. NASA selected Lockheed Martin a decade ago as the prime contractor to design and build Orion.

A camera in the window of NASA's Orion spacecraft looks back at Earth during its unpiloted flight test in orbit. Credit: NASA Television
A camera in the window of NASA’s Orion spacecraft looks back at Earth during its unpiloted flight test in orbit. Credit: NASA Television

Orion was assembled, integrated, and tested inside the Neil Armstrong Operations & Checkout Facility at KSC.

“Lockheed Martin did a tremendous job of getting Orion ready,” noted Gerstenmaier.

“Thanks to everyone for getting us to be the leader in space.”

The EFT-1 mission concluded with a successful parachute-assisted splashdown of the Orion crew module in the Pacific Ocean, 600 miles southwest of San Diego.

Orion Service Module fairing separation. Credit: NASA TV
Orion Service Module fairing separation. Credit: NASA TV

“It was a difficult mission,” said Mark Geyer, NASA’s Orion program manager at the KSC briefing. It appears to have been nearly flawless.”

“It is hard to have a better day than today, The upper stage put us right where we needed to be.”

“Today’s flight test of Orion is a huge step for NASA and a really critical part of our work to pioneer deep space on our Journey to Mars,” said NASA Administrator Charles Bolden.

“The teams did a tremendous job putting Orion through its paces in the real environment it will endure as we push the boundary of human exploration in the coming years.”

The spacecraft was loaded with over 1200 sensors to collect critical performance data on numerous systems throughout the mission for evaluation by engineers.

EFT-1 tested the rocket, second stage, and jettison mechanisms, as well as avionics, attitude control, computers, environmental controls, and electronic systems inside the Orion spacecraft and ocean recovery operations.

It also tested the effects of intense radiation by traveling twice through the Van Allen radiation belt.

Approximately 3 hours and 20 minutes into the mission, the spacecraft separated and soon experienced the highest radiation levels of the mission.

At about 4 hours and 15 minutes, the capsule began its high speed re-entry through the atmosphere at speeds approaching 20,000 mph, thereby testing the 16.5-foot-wide heat shield at speeds approximating 85% of the reentry velocity for astronauts returning from voyages to the Red Planet.

The capsule survived scorching temperatures near 4,000 degrees Fahrenheit in a successful test of the heat shield and thermal protection tiles, before splashing down on a trio of parachutes in the Pacific Ocean at 11:29 a.m. EST.

The Orion crew module splashed down in the Pacific Ocean about 600 miles southwest of San Diego.  Credit: NASA TV
The Orion crew module splashed down in the Pacific Ocean about 600 miles southwest of San Diego. Credit: NASA TV

The purpose was to check out many, but not all, of the systems critical to the safety of astronauts who will eventually travel to deep space in Orion.

“When Orion started there were still a lot of Apollo veterans. Now we have finally done something for our generation,” said Mike Hawes, Lockheed Martin Orion Program manager.

Onboard cameras captured stunning views during many stages of the EFT-1 mission, including the fairing jettison and views out the window.

“Some of those pictures where you could see the frame of the window, you don’t feel like you’re watching like a satellite, you feel like an astronaut yourself,” Geyer said.

In the Kennedy Space Center’s Press Site auditorium, agency leaders received prolonged applause on entering the room and spoke to members of the news media about the successful Orion Flight Test on Dec. 5, 2014. From left are: Bill Gerstenmaier, NASA associate administrator for Human Exploration and Operations, Mark Geyer, Orion program manager, Mike Hawes, Lockheed Martin Orion Program manager, and NASA astronaut Rex Walheim.  Credit:  Ken Kremer - kenkremer.com
In the Kennedy Space Center’s Press Site auditorium, agency leaders received prolonged applause on entering the room and spoke to members of the news media about the successful Orion Flight Test on Dec. 5, 2014. From left are: Bill Gerstenmaier, NASA associate administrator for Human Exploration and Operations; Mark Geyer, Orion program manager; Mike Hawes, Lockheed Martin Orion Program manager; and NASA astronaut Rex Walheim. Credit: Ken Kremer – kenkremer.com

“That picture really meant something to me,” said astronaut Rex Walheim, who flew on the final space shuttle mission on STS-135.

A drone captured stunning images of Orion during the final plummet to Earth and parachute deployment.

The pace of the Orion program is constrained by budgets and is slower than anyone wishes.

The next Orion launch on the EM-1 mission is slated for the second half of 2018 and will also be unmanned during the debut launch of NASA’s powerful new SLS rocket.

America’s astronauts flying aboard Orion will venture farther into deep space than ever before – beyond the Moon to Asteroids, Mars, and other destinations in our Solar System starting around 2020 or 2021 on Orion’s first crewed flight atop NASA’s new monster rocket – the SLS – concurrently under development.

Watch for Ken’s ongoing Orion coverage from onsite at the Kennedy Space Center about the historic launch on Dec. 5.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Apollo 11 Splashdown 45 Years Ago on July 24, 1969 Concludes 1st Moon Landing Mission – Gallery

Apollo 11 Comes Home. The Apollo 11 crew await pickup by a helicopter from the USS Hornet, prime recovery ship for the historic lunar landing mission. The fourth man in the life raft is a United States Navy underwater demolition team swimmer. All four men are wearing biological isolation garments. They splashed down at 12:49 a.m. EDT, July 24, 1969, about 812 nautical miles southwest of Hawaii and only 12 nautical miles from the USS Hornet. Credit: NASA

Apollo 11 Comes Home
The Apollo 11 crew await pickup by a helicopter from the USS Hornet, prime recovery ship for the historic lunar landing mission. The fourth man in the life raft is a United States Navy underwater demolition team swimmer. All four men are wearing biological isolation garments. They splashed down at 12:49 a.m. EDT, July 24, 1969, about 812 nautical miles southwest of Hawaii and only 12 nautical miles from the USS Hornet. Credit: NASA
Story and gallery expanded[/caption]

The three man crew of NASA’s Apollo 11 splashed down in the Pacific Ocean 45 years ago today on July 24, 1969 – successfully concluding Earth’s first journey to land humans on another world and return them safely to our Home Planet.

Apollo 11 Commander Neil Armstrong became the first human to set foot on the Moon on July 20, 1969 after he stepped off the footpad of the Lunar Module Eagle soon after the start of the moonwalk EVA at 10:39 p.m. EDT and onto the lunar surface with his left foot at the Sea of Tranquility at 10:56 p.m. EDT. Lunar Module (LM) pilot Buzz Aldrin followed soon thereafter. They came in peace for all mankind!

The magnificent Lunar landing feat accomplished by US Apollo 11 astronauts Neil Armstrong and Buzz Aldrin marks the pinnacle of Mankind’s most momentous achievement.

The Apollo 11 crew consisting of Neil Armstrong, Buzz Aldrin and Command module pilot Michael Collins splashed down safely at 12:50 p.m. EDT on July 24 about 900 miles southwest of Hawaii in the North Pacific Ocean while seated inside the Command Module Columbia dangling at the end of a trio of massive parachutes that slowed their descent through the Earth’s atmosphere.

President Nixon Greets the Returning Apollo 11 Astronauts. The Apollo 11 astronauts, left to right, Commander Neil A. Armstrong, Command Module Pilot Michael Collins and Lunar Module Pilot Edwin E. "Buzz" Aldrin Jr., inside the Mobile Quarantine Facility aboard the USS Hornet, listen to President Richard M. Nixon on July 24, 1969 as he welcomes them back to Earth and congratulates them on the successful mission. The astronauts had splashed down in the Pacific Ocean at 12:50 p.m. EDT about 900 miles southwest of Hawaii.  Credit: NASA
President Nixon Greets the Returning Apollo 11 Astronauts. The Apollo 11 astronauts, left to right, Commander Neil A. Armstrong, Command Module Pilot Michael Collins and Lunar Module Pilot Edwin E. “Buzz” Aldrin Jr., inside the Mobile Quarantine Facility aboard the USS Hornet, listen to President Richard M. Nixon on July 24, 1969 as he welcomes them back to Earth and congratulates them on the successful mission. The astronauts had splashed down in the Pacific Ocean at 12:50 p.m. EDT about 900 miles southwest of Hawaii. Credit: NASA

After a mission duration of 8 days, 3 hours, 18 minutes, 35 seconds from launch to landing the Apollo 11 crew were plucked from the ocean by helicopters from the USS Hornet recovery ship after splashdown only 12 nautical miles (24 km) away.

They had to don protective biological isolation garments (BIGs) in case they were infected by some unknown and potentially hazardous “moon germs.” Of course there were no pathogens, but this was not definitely known at the time.

After their return to Earth, the trio was scrubbed with a disinfect solution of sodium hypochlorite and had to remain in quarantine for 21 days inside a 30 feet (9.1 m) long quarantine facility known as the Lunar Receiving Laboratory (LRL).

They were welcomed back to Earth by President Nixon aboard the USS Hornet.

We’ve chronicled the journey of Apollo 11 and lunar touchdown on July 20, 1969 as well as this week’s renaming of a historic human spaceflight facility at the Kennedy Space Center in honor of Mission Commander Neil Armstrong.

Armstrong passed away at age 82 on August 25, 2012 due to complications from heart bypass surgery. Read my prior tribute articles: here and here

Here we’ve collected a gallery of the mission and ocean splashdown that brought Apollo 11 to a close and fulfilled the lunar landing quest set by a young President John F. Kennedy early in the decade of the 1960s.

The trio blasted off atop a 363 foot-tall Saturn V rocket from Launch Complex 39A on their bold, quarter of a million mile moon mission from the Kennedy Space Center , Florida on July 16, 1969.

Apollo 11 Official Crew Portrait.    Official crew photo of the Apollo 11 Prime Crew. From left to right are astronauts Neil A. Armstrong, Commander; Michael Collins, Command Module Pilot; and Edwin E. Aldrin Jr., Lunar Module Pilot.  Image Credit: NASA
Apollo 11 Official Crew Portrait. Official crew photo of the Apollo 11 Prime Crew. From left to right are astronauts Neil A. Armstrong, Commander; Michael Collins, Command Module Pilot; and Edwin E. Aldrin Jr., Lunar Module Pilot. Image Credit: NASA

The three-stage Saturn V generated 7.5 million pounds of thrust and propelled the trio into space and immortality.

Read my story about the deep sea recovery of the Apollo 11 first stage F-1 engines in 2013 – here.

The crew arrived in lunar orbit three days later on July 19, 1969, inside the docked Apollo 11 Command/Service and Lunar Modules (CSM/LM).

Armstrong and Aldrin then moved into the Lunar Module, undocked and safely touched down at the Sea of Tranquility on the lunar surface on July 20, 1969 at 4:18 p.m EDT as hundreds of millions across the globe watched in awe.

Six hours later Armstrong climbed down the LM ladder and stepped onto the Moon and into immortality.

Armstrong’s first words:

“That’s one small step for [a] man, one giant leap for mankind.”

During their 2 ½ hour long moonwalk Armstrong and Aldrin unveiled a plaque on the side of the lunar module. Armstrong read the words;

“Here men from the planet Earth first set foot upon the moon. July 1969 A.D. We came in peace for all mankind.”

The duo collected about 50 pounds (22 kg) of priceless moon rocks and set out the first science experiments placed by humans on another world. The moon rocks were invaluable in informing us about the origin of the Earth – Moon system.

Here is NASA’s restored video of the Apollo 11 EVA on July 20, 1969:

Video Caption: Original Mission Video as aired in July 1969 depicting the Apollo 11 astronauts conducting several tasks during extravehicular activity (EVA) operations on the surface of the moon. The EVA lasted approximately 2.5 hours with all scientific activities being completed satisfactorily. The Apollo 11 EVA began at 10:39:33 p.m. EDT on July 20, 1969 when Astronaut Neil Armstrong emerged from the spacecraft first. While descending, he released the Modularized Equipment Stowage Assembly on the Lunar Module’s descent stage.

Altogether Armstrong and Aldrin spent about 21 hours on the moon’s surface. Then they said goodbye to the greatest adventure and fired up the LM ascent engine to rejoin Michael Collins circling above in the Apollo 11 Command Module.

“The whole world was together at that particular moment,” says NASA Administrator Charles Bolden in a CNN interview. “In spite of all we are going through there is hope!”

Celebrating Apollo 11.  NASA and Manned Spacecraft Center (MSC) officials joined with flight controllers to celebrate the successful conclusion of the Apollo 11 lunar landing mission in the Mission Control Center. From left foreground Dr. Maxime A. Faget, MSC Director of Engineering and Development; George S. Trimble, MSC Deputy Director; Dr. Christopher C. Kraft Jr., MSC Director fo Flight Operations; Julian Scheer (in back), Assistant Adminstrator, Office of Public Affairs, NASA HQ.; George M. Low, Manager, Apollo Spacecraft Program, MSC; Dr. Robert R. Gilruth, MSC Director; and Charles W. Mathews, Deputy Associate Administrator, Office of Manned Space Flight, NASA HQ.  Credit: NASA
Celebrating Apollo 11. NASA and Manned Spacecraft Center (MSC) officials joined with flight controllers to celebrate the successful conclusion of the Apollo 11 lunar landing mission in the Mission Control Center. From left foreground Dr. Maxime A. Faget, MSC Director of Engineering and Development; George S. Trimble, MSC Deputy Director; Dr. Christopher C. Kraft Jr., MSC Director fo Flight Operations; Julian Scheer (in back), Assistant Adminstrator, Office of Public Affairs, NASA HQ.; George M. Low, Manager, Apollo Spacecraft Program, MSC; Dr. Robert R. Gilruth, MSC Director; and Charles W. Mathews, Deputy Associate Administrator, Office of Manned Space Flight, NASA HQ. Credit: NASA

Stay tuned here for Ken’s Earth & Planetary science and human spaceflight news.

Ken Kremer

Apollo 11 Welcome. New York City welcomes the Apollo 11 crew in a ticker tape parade down Broadway and Park Avenue. Pictured in the lead car, from the right, are astronauts Neil A. Armstrong, Buzz Aldrin and Michael Collins. The three astronauts teamed for the first manned lunar landing, on July 20, 1969.  Credit: NASA
Apollo 11 Welcome. New York City welcomes the Apollo 11 crew in a ticker tape parade down Broadway and Park Avenue. Pictured in the lead car, from the right, are astronauts Neil A. Armstrong, Buzz Aldrin and Michael Collins. The three astronauts teamed for the first manned lunar landing, on July 20, 1969. Credit: NASA
Apollo 11 Launch.  The American flag heralded the launch of Apollo 11, the first Lunar landing mission, on July 16, 1969. The massive Saturn V rocket lifted off from NASA's Kennedy Space Center with astronauts Neil A. Armstrong, Michael Collins, and Edwin "Buzz" Aldrin at 9:32 a.m. EDT. Four days later, on July 20, Armstrong and Aldrin landed on the Moon's surface while Collins orbited overhead in the Command Module. Armstrong and Aldrin gathered samples of lunar material and deployed scientific experiments that transmitted data about the lunar environment.   Credit: NASA
Apollo 11 Launch. The American flag heralded the launch of Apollo 11, the first Lunar landing mission, on July 16, 1969. The massive Saturn V rocket lifted off from NASA’s Kennedy Space Center with astronauts Neil A. Armstrong, Michael Collins, and Edwin “Buzz” Aldrin at 9:32 a.m. EDT. Four days later, on July 20, Armstrong and Aldrin landed on the Moon’s surface while Collins orbited overhead in the Command Module. Armstrong and Aldrin gathered samples of lunar material and deployed scientific experiments that transmitted data about the lunar environment. Credit: NASA
Launch of Apollo 11.  On July 16, 1969, the huge, 363-feet tall Saturn V rocket launches on the Apollo 11 mission from Pad A, Launch Complex 39, Kennedy Space Center, at 9:32 a.m. EDT. Onboard the Apollo 11 spacecraft are astronauts Neil A. Armstrong, commander; Michael Collins, command module pilot; and Edwin E. Aldrin Jr., lunar module pilot. Apollo 11 was the United States' first lunar landing mission. While astronauts Armstrong and Aldrin descended in the Lunar Module "Eagle" to explore the Sea of Tranquility region of the moon, astronaut Collins remained with the Command and Service Modules "Columbia" in lunar orbit.  Image credit: NASA
Launch of Apollo 11. On July 16, 1969, the huge, 363-feet tall Saturn V rocket launches on the Apollo 11 mission from Pad A, Launch Complex 39, Kennedy Space Center, at 9:32 a.m. EDT. Onboard the Apollo 11 spacecraft are astronauts Neil A. Armstrong, commander; Michael Collins, command module pilot; and Edwin E. Aldrin Jr., lunar module pilot. Apollo 11 was the United States’ first lunar landing mission. While astronauts Armstrong and Aldrin descended in the Lunar Module “Eagle” to explore the Sea of Tranquility region of the moon, astronaut Collins remained with the Command and Service Modules “Columbia” in lunar orbit. Image credit: NASA
The Eagle Prepares to Land.  The Apollo 11 Lunar Module Eagle, in a landing configuration was photographed in lunar orbit from the Command and Service Module Columbia. Inside the module were Commander Neil A. Armstrong and Lunar Module Pilot Buzz Aldrin. The long rod-like protrusions under the landing pods are lunar surface sensing probes. Upon contact with the lunar surface, the probes sent a signal to the crew to shut down the descent engine.  Image Credit: NASA
The Eagle Prepares to Land. The Apollo 11 Lunar Module Eagle, in a landing configuration was photographed in lunar orbit from the Command and Service Module Columbia. Inside the module were Commander Neil A. Armstrong and Lunar Module Pilot Buzz Aldrin. The long rod-like protrusions under the landing pods are lunar surface sensing probes. Upon contact with the lunar surface, the probes sent a signal to the crew to shut down the descent engine. Image Credit: NASA
On the Lunar Surface – Apollo 11 astronauts trained on Earth to take individual photographs in succession in order to create a series of frames that could be assembled into panoramic images. This frame from fellow astronaut Buzz Aldrin’s panorama of the Apollo 11 landing site is the only good picture of mission commander Neil Armstrong on the lunar surface. Credit: NASA
On the Lunar Surface – Apollo 11 astronauts trained on Earth to take individual photographs in succession in order to create a series of frames that could be assembled into panoramic images. This frame from fellow astronaut Buzz Aldrin’s panorama of the Apollo 11 landing site is the only good picture of mission commander Neil Armstrong on the lunar surface. Credit: NASA
Aldrin Gazes at Tranquility Base. Astronaut and Lunar Module pilot Buzz Aldrin is pictured during the Apollo 11 extravehicular activity on the moon. He had just deployed the Early Apollo Scientific Experiments Package. In the foreground is the Passive Seismic Experiment Package; beyond it is the Laser Ranging Retro-Reflector (LR-3). In the left background is the black and white lunar surface television camera and in the far right background is the Lunar Module "Eagle." Mission commander Neil Armstrong took this photograph with the 70mm lunar surface camera.   Image credit: NASA
Aldrin Gazes at Tranquility Base. Astronaut and Lunar Module pilot Buzz Aldrin is pictured during the Apollo 11 extravehicular activity on the moon. He had just deployed the Early Apollo Scientific Experiments Package. In the foreground is the Passive Seismic Experiment Package; beyond it is the Laser Ranging Retro-Reflector (LR-3). In the left background is the black and white lunar surface television camera and in the far right background is the Lunar Module “Eagle.” Mission commander Neil Armstrong took this photograph with the 70mm lunar surface camera. Image credit: NASA
At the Kennedy Space Center in Florida on July 21, 2014, NASA officials and Apollo astronauts have a group portrait taken in front of the refurbished Operations and Checkout Building, newly named for Apollo 11 astronaut Neil Armstrong, the first person to set foot on the moon. From left are NASA Administrator Charles Bolden, Apollo astronauts Mike Collins, Buzz Aldrin and Jim Lovell, and Center Director Robert Cabana. The visit of the former astronauts was part of NASA's 45th anniversary celebration of the Apollo 11 moon landing. The building's high bay is being used to support the agency's new Orion spacecraft, which will lift off atop the Space Launch System rocket. Photo credit: NASA/Kevin O'Connell
At the Kennedy Space Center in Florida on July 21, 2014, NASA officials and Apollo astronauts have a group portrait taken in front of the refurbished Operations and Checkout Building, newly named for Apollo 11 astronaut Neil Armstrong, the first person to set foot on the moon. From left are NASA Administrator Charles Bolden, Apollo astronauts Mike Collins, Buzz Aldrin and Jim Lovell, and Center Director Robert Cabana. The visit of the former astronauts was part of NASA’s 45th anniversary celebration of the Apollo 11 moon landing. The building’s high bay is being used to support the agency’s new Orion spacecraft, which will lift off atop the Space Launch System rocket. Photo credit: NASA/Kevin O’Connell

Apollo 11 Moon Landing 45 Years Ago on July 20, 1969: Relive the Moment! – With an Image Gallery and Watch the Restored EVA Here

The Eagle Prepares to Land. The Apollo 11 Lunar Module Eagle, in a landing configuration was photographed in lunar orbit from the Command and Service Module Columbia. Inside the module were Commander Neil A. Armstrong and Lunar Module Pilot Buzz Aldrin. The long rod-like protrusions under the landing pods are lunar surface sensing probes. Upon contact with the lunar surface, the probes sent a signal to the crew to shut down the descent engine. Image Credit: NASA

The Eagle Prepares to Land
The Apollo 11 Lunar Module Eagle, in a landing configuration was photographed in lunar orbit from the Command and Service Module Columbia. Inside the module were Commander Neil A. Armstrong and Lunar Module Pilot Buzz Aldrin. The long rod-like protrusions under the landing pods are lunar surface sensing probes. Upon contact with the lunar surface, the probes sent a signal to the crew to shut down the descent engine. Image Credit: NASA
Watch the restored EVA video below and on NASA TV on July 20 starting at 10:39 p.m. EDT[/caption]

Man first walked on the Moon 45 years ago today on July 20, 1969 when American astronauts Neil Armstrong and Buzz Aldrin opened the hatch to the Apollo 11 Lunar Module Eagle, climbed down the ladder and set foot on the surface – marking mankind’s greatest achievement. They came in peace for all mankind!

You can relive the historic moment with the gallery of Apollo 11 NASA images collected here and by watching NASA’s restored video of the moonwalk, or extravehicular activity (EVA) by Armstrong and Aldrin – watch video below. The Apollo 11 EVA began at 10:39:33 p.m. EDT.

NASA TV is also broadcasting a replay of the historic moonwalk tonight (July 20) to commemorate the anniversary starting at 10:39 p.m. EDT, with the restored footage of Armstrong and Aldrin’s historic steps on the lunar surface.

You can view the NASA TV Apollo 11 EVA webcast – here.

The Eagle had landed on the Moon’s desolate surface on the Sea of Tranquility (see map below) barely 6 hours earlier at 4:18 p.m EDT. And only 30 seconds of fuel remained as Armstrong searched for a safe landing spot.

Neil Armstrong was the commander of the three man crew of Apollo 11, which included fellow moonwalker Buzz Aldrin and Command module pilot Michael Collins.

Here is NASA’s restored video of the Apollo 11 EVA on July 20, 1969:

Video Caption: Original Mission Video as aired in July 1969 depicting the Apollo 11 astronauts conducting several tasks during extravehicular activity (EVA) operations on the surface of the moon. The EVA lasted approximately 2.5 hours with all scientific activities being completed satisfactorily. The Apollo 11 EVA began at 10:39:33 p.m. EDT on July 20, 1969 when Astronaut Neil Armstrong emerged from the spacecraft first. While descending, he released the Modularized Equipment Stowage Assembly on the Lunar Module’s descent stage.

The trio blasted off atop a 363 foot-tall Saturn V rocket from Launch Complex 39A on their bold, quarter of a million mile moon mission from the Kennedy Space Center , Florida on July 16, 1969 to fulfill the lunar landing quest set by President John F. Kennedy early in the decade.

The three-stage Saturn V generated 7.5 million pounds of thrust and propelled the trio into space and immortality.

Apollo 11 Official Crew Portrait.    Official crew photo of the Apollo 11 Prime Crew. From left to right are astronauts Neil A. Armstrong, Commander; Michael Collins, Command Module Pilot; and Edwin E. Aldrin Jr., Lunar Module Pilot.  Image Credit: NASA
Apollo 11 Official Crew Portrait. Official crew photo of the Apollo 11 Prime Crew. From left to right are astronauts Neil A. Armstrong, Commander; Michael Collins, Command Module Pilot; and Edwin E. Aldrin Jr., Lunar Module Pilot. Image Credit: NASA

The Apollo 11 mission was truly a global event.

Armstrong and Aldrin safely touched down at the Sea of Tranquility on the lunar surface on July 20, 1969 at 4:18 p.m EDT as hundreds of millions across the globe watched in awe and united in purpose.

“Houston, Tranquility Base here. The Eagle has landed !,” Armstrong called out and emotional applause erupted at Mission Control – “You got a bunch of guys about to turn blue.”

Apollo 11 commander Neil Armstrong stands on the moon's surface on July 20, 1969, the first human to do so. Credit: NASA/CBS/YouTube (screenshot)
Apollo 11 commander Neil Armstrong stands on the moon’s surface on July 20, 1969, the first human to do so. Credit: NASA/CBS/YouTube (screenshot)

Armstrong carried all of humanity with him when he stepped off the footpad of NASA’s Apollo 11 Lunar Module and became the first representative of the human species to walk on the surface of another celestial body.

Armstrong’s first immortal words:

“That’s one small step for [a] man, one giant leap for mankind.”

During their 2 ½ hours moonwalk Armstrong and Aldrin unveiled a plaque on the side of the lunar module. Armstrong read the words;

“Here men from the planet Earth first set foot upon the moon. July 1969 A.D. We came in peace for all mankind.”

On the Lunar Surface – Apollo 11 astronauts trained on Earth to take individual photographs in succession in order to create a series of frames that could be assembled into panoramic images. This frame from fellow astronaut Buzz Aldrin’s panorama of the Apollo 11 landing site is the only good picture of mission commander Neil Armstrong on the lunar surface. Credit: NASA
On the Lunar Surface – Apollo 11 astronauts trained on Earth to take individual photographs in succession in order to create a series of frames that could be assembled into panoramic images. This frame from fellow astronaut Buzz Aldrin’s panorama of the Apollo 11 landing site is the only good picture of mission commander Neil Armstrong on the lunar surface. Credit: NASA

The duo collected about 50 pounds (22 kg) of priceless moon rocks and set out the first science experiments placed by humans on another world. The moon rocks were invaluable in informing us about the origin of the Earth – Moon system.

Aldrin on the Moon. Astronaut Buzz Aldrin walks on the surface of the moon near the leg of the lunar module Eagle during the Apollo 11 mission. Mission commander Neil Armstrong took this photograph with a 70mm lunar surface camera. While astronauts Armstrong and Aldrin explored the Sea of Tranquility region of the moon, astronaut Michael Collins remained with the command and service modules in lunar orbit.  Image Credit: NASA
Aldrin on the Moon. Astronaut Buzz Aldrin walks on the surface of the moon near the leg of the lunar module Eagle during the Apollo 11 mission. Mission commander Neil Armstrong took this photograph with a 70mm lunar surface camera. While astronauts Armstrong and Aldrin explored the Sea of Tranquility region of the moon, astronaut Michael Collins remained with the command and service modules in lunar orbit. Image Credit: NASA

Altogether Armstrong and Aldrin spent about 21 hours on the moon’s surface. Then they said goodbye to the greatest adventure and fired up the LM ascent engine to rejoin Michael Collins circling above in the Apollo 11 Command Module.

Neil Armstrong and Buzz Aldrin plant the US flag on the Lunar Surface during 1st human moonwalk in history 45 years ago on July 20, 1969 during Apollo 1l mission. Credit: NASA
Neil Armstrong and Buzz Aldrin plant the US flag on the Lunar Surface during 1st human moonwalk in history 45 years ago on July 20, 1969 during Apollo 1l mission. Credit: NASA

Following the triumphant moonwalk and docking, the crew set their sights for the journey back to the Home Planet.

apollo 11 logo
Apollo 11 logo

The Apollo 11 mission ended with a successful splash down off Hawaii on July 24.

The crew, NASA and America achieved President Kennedy’s challenge of men walking on the Moon before the decade was out and returning safely to Earth.

Armstrong passed away at age 82 on August 25, 2012 due to complications from heart bypass surgery. Read my prior tribute articles: here and here

Surviving crew members Aldrin and Collins will join NASA Administrator Charles Bolden at a ceremony on Monday at the Kennedy Space Center.

Bootprint.  A close-up view of astronaut Buzz Aldrin's bootprint in the lunar soil, photographed with the 70mm lunar surface camera during Apollo 11's sojourn on the moon.  Image Credit: NASA
Bootprint. A close-up view of astronaut Buzz Aldrin’s bootprint in the lunar soil, photographed with the 70mm lunar surface camera during Apollo 11’s sojourn on the moon. Image Credit: NASA

Altogether a dozen Americans have walked on the Moon during NASA’s five additional Apollo lunar landing missions. No human has returned since the final crew of Apollo 17 departed the Moon’s surface in December 1972.

One legacy of Apollo is the International Space Station (ISS) where six astronauts and cosmonauts work together on science research to benefit mankind.

Notably, the Cygnus commercial cargo ship berthed at the ISS on the 45th anniversary of the Apollo 11 liftoff bringing over 3600 pounds of science experiments and supplies to the station.

NASA’s next big human spaceflight goals are building commercial ‘space taxis’ to low Earth orbit in this decade, an asteroid retrieval mission in the 2020s and voyages to Mars in the 2030s using the new SLS rocket and Orion deep space crew capsule currently under development.

Stay tuned here for Ken’s Earth & Planetary science and human spaceflight news.

Ken Kremer

Aldrin Gazes at Tranquility Base. Astronaut and Lunar Module pilot Buzz Aldrin is pictured during the Apollo 11 extravehicular activity on the moon. He had just deployed the Early Apollo Scientific Experiments Package. In the foreground is the Passive Seismic Experiment Package; beyond it is the Laser Ranging Retro-Reflector (LR-3). In the left background is the black and white lunar surface television camera and in the far right background is the Lunar Module "Eagle." Mission commander Neil Armstrong took this photograph with the 70mm lunar surface camera.   Image credit: NASA
Aldrin Gazes at Tranquility Base. Astronaut and Lunar Module pilot Buzz Aldrin is pictured during the Apollo 11 extravehicular activity on the moon. He had just deployed the Early Apollo Scientific Experiments Package. In the foreground is the Passive Seismic Experiment Package; beyond it is the Laser Ranging Retro-Reflector (LR-3). In the left background is the black and white lunar surface television camera and in the far right background is the Lunar Module “Eagle.” Mission commander Neil Armstrong took this photograph with the 70mm lunar surface camera. Image credit: NASA
Beginning the Mission. The Apollo 11 crew leaves Kennedy Space Center's Manned Spacecraft Operations Building during the pre-launch countdown. Mission commander Neil Armstrong, command module pilot Michael Collins, and lunar module pilot Buzz Aldrin prepare to ride the special transport van to Launch Complex 39A where their spacecraft awaited them. Liftoff occurred 38 years ago today at 9:32 a.m. EDT, July 16, 1969.  Image credit: NASA
Beginning the Mission. The Apollo 11 crew leaves Kennedy Space Center’s Manned Spacecraft Operations Building during the pre-launch countdown. Mission commander Neil Armstrong, command module pilot Michael Collins, and lunar module pilot Buzz Aldrin prepare to ride the special transport van to Launch Complex 39A where their spacecraft awaited them. Liftoff occurred 38 years ago today at 9:32 a.m. EDT, July 16, 1969. Image credit: NASA
Launch of Apollo 11.  On July 16, 1969, the huge, 363-feet tall Saturn V rocket launches on the Apollo 11 mission from Pad A, Launch Complex 39, Kennedy Space Center, at 9:32 a.m. EDT. Onboard the Apollo 11 spacecraft are astronauts Neil A. Armstrong, commander; Michael Collins, command module pilot; and Edwin E. Aldrin Jr., lunar module pilot. Apollo 11 was the United States' first lunar landing mission. While astronauts Armstrong and Aldrin descended in the Lunar Module "Eagle" to explore the Sea of Tranquility region of the moon, astronaut Collins remained with the Command and Service Modules "Columbia" in lunar orbit.  Image credit: NASA
Launch of Apollo 11. On July 16, 1969, the huge, 363-feet tall Saturn V rocket launches on the Apollo 11 mission from Pad A, Launch Complex 39, Kennedy Space Center, at 9:32 a.m. EDT. Onboard the Apollo 11 spacecraft are astronauts Neil A. Armstrong, commander; Michael Collins, command module pilot; and Edwin E. Aldrin Jr., lunar module pilot. Apollo 11 was the United States’ first lunar landing mission. While astronauts Armstrong and Aldrin descended in the Lunar Module “Eagle” to explore the Sea of Tranquility region of the moon, astronaut Collins remained with the Command and Service Modules “Columbia” in lunar orbit. Image credit: NASA
Apollo 11 liftoff from Pad 39 at the Kennedy Space Center on July 16, 1969. Credit: NASA
Apollo 11 liftoff from Pad 39 at the Kennedy Space Center on July 16, 1969. Credit: NASA
Apollo 11 landing site on the Moon at the Sea of Tranquility on July 20, 1969
Apollo 11 landing site on the Moon at the Sea of Tranquility on July 20, 1969

How Do We Know the Moon Landing Isn’t Fake?

How Do We Know the Moon Landing Isn't Fake?

There’s a conspiracy theory that astronauts never landed on the Moon. Is it all a conspiracy? Were the Moon landings faked? What is the evidence that we actually went to the Moon?

Apparently, there’s an organization called “NASA”, who’s done a remarkable job of sticking to their story. They say Neil Armstrong and Buzz Aldrin landed on the Moon on July 20, 1969, and set foot on the surface 6 hours later.This same organization claims there were 5 additional missions which successfully landed on the Moon, and an alleged total of 12 people went for a walk there.

Can you imagine? According to them, they spent $24 billion, which is more than $150 billion in inflation adjusted dollars. Their so-called “Apollo” program allegedly employed 400,000 people, supported by more than 20,000 companies and research institutions. I say “alleged”, as some people choose to think the Moon landings were acts of cinematic chicanery.

More than 10 years ago, Fox popularized the Moon landing conspiracy with a show called “Did We Land On The Moon?”. They revealed several pieces of evidence about the hoax and cover-up citing incorrect shadows on the Moon, lack of background stars, and more. Each of the pieces of evidence they present is wrong and easily explained once you understand the underlying science.… Or at least, that’s what they would have us believe.

Phil Plait successfully brings a NASA supporting voice to this story, explaining how the evidence against moon landings is at best, fantasy and misunderstanding. A more cynical view might be to suggest it’s a deliberate manipulation created to maintain an anti-scientific narrative to foster ignorance, mistrust and uphold a larger political agenda. Do a little search for “Phil Plait moon landing” and you’ll see him present even-handed science over any one of the arguments. In fact, if you buy into that whole “evidence” idea, he appears to successfully tear apart the conspiracy arguments.

Some still, are not convinced, possibly including you. “NASA and Phil, they’re in cahoots. Phil’s a PhD astronomer, which means he studies space, one of the letters in NASA stands for SPACE, I think it’s the A.” Coincidence? I think not. There’s collusion going on there.

The main pillar of any conspiracy requires a few select people keeping a really, really, really big secret. Looking at the numbers, the select group required to successfully fabricate the appearance of hurling metal capsules containing humans at our orbiting neighbor and then retrieving them, additionally keep their story straight for at best 45 years, and never, ever slip up… is about 400,000 humans.

Was the Moon Landing Real
Neil Armstrong on the Lunar Surface

So, there are really two sides to this story, the NASA side which is… They went to the Moon. and everyone is telling the truth. OR, they never went to the Moon, and somehow 400,000 people have never, ever, ever, ever let it slip that they made a bunch of fake moon rocks, or the rockets shot up didn’t really go anywhere. It’s all a big ruse. The thought 400,000 people have managed to keep their mouths shut is definitely the more romantic perspective. Seeing people come together to screw with everyone, and then never blabbing. This truly is a triumph of the human spirit.

When something big does happen, like the Chelyabinsk meteor, we see the evidence everywhere – for example captured on Russian dashboard cameras. For the lunar landing, NASA suggests something similar. There are independent astronomers who tracked the rockets escape from Earth’s gravity, and are either providing unsolicited, nonpartisan unfunded support of the events, or they’re in on the whole thing. The Russians, who were in a race with the Americans to be the first to set foot on the Moon, allegedly tracked the missions in horror and disappointment.

NASA just keeps sticking to this story that they sent people to the moon. In fact, they just keep on producing more of their “evidence”. They recently published high resolution images of the surface of the Moon captured by their own Lunar Reconnaissance Orbiter. Adding a whole new generation of secret keepers, who now know the secret handshake and get participate in the rigging of Oscar nights.

Apollo moon landing sites
Apollo moon landing sites

They imaged all of the alleged Apollo landing sites, and they haven’t missed any detail. You can see the landers, rovers, and even the astronauts’ footsteps. The images show that all the flags planted are still standing, except Apollo 11, which was blown over by the exhaust from the ascent engine. Or alleged exhaust from an alleged ascent engine, if you’re still thinking 400,000 people are continuing to punk the triumphs of mankind. Some might suggest that a big paycheck was sent on over to China and Japan, to have them verify the landing sites by photographing them with their own spacecraft.

According to NASA the astronauts placed retro-reflectors during their missions which reflect light directly back to Earth. Apparently these can be used this to calculate the distance to the Moon with 1 cm accuracy. So, if you want to confirm that humans went to the Moon for yourself, you could just point a high-power laser at the landing sites. Sure, there are many large independent institutions which have verified the existence of these retro-reflectors, but who knows, maybe they’re some how pawns of our silent and vigilant 400,000 co-conspirators.

What do you think? Make up a conspiracy theory for your favorite triumph of human innovation and exploration! Post it in the comments below.

“I believe this nation should commit itself…” Kennedy’s Moon Shot Speech to Congress

50 years ago today, US President John F. Kennedy addressed a joint session of Congress to ask for support for the goal to “commit…before this decade is out, to landing a man on the Moon and returning him safely to the Earth.” Kennedy urged Congress to appropriate the necessary funds, which eventually was one of the largest financial expenditure of any nation in peacetime. Just 2 1/2 years after giving this speech, Kennedy was assassinated in Dallas on Nov. 22, 1963. And in just over eight years after the speech, on July 20, 1969, NASA’s Apollo 11 mission would successfully fulfill Kennedy’s vision by landing the first humans on the moon.

Below is the transcript of the entire section on space:
Continue reading ““I believe this nation should commit itself…” Kennedy’s Moon Shot Speech to Congress”

Was the Apollo Program an Anomaly?

Dust flies from the tires of a moon buggy, driven by Apollo 17 astronaut Gene Cernan. These "rooster-tails" of dust caused problems. Credit: NASA

[/caption]

How often have you heard (or thought) the sentiment that all NASA really needs is a President who will issue a bold challenge for the space agency, like Kennedy did in 1961, initiating the Apollo program to the Moon? Can we ever expect to witness such a call to action again?

“It is very unlikely,” said space historian and author Andrew Chaikin, who believes Apollo was an historical anomaly. “I think for many decades people saw Apollo as a model for how to do a space program; that you get a President to get up and make a challenge and the country follows along and does great things. But that was only true that one time in the context of the Cold War.”

We went to the Moon when we did not because we were a nation devoted to exploration, Chaikin believes, but because it seemed a politically important course of action in the context of our Cold War with the Soviet Union. “Once that was accomplished, then that political imperative evaporated,” he said.

On May 25, 1961, Kennedy announced his support for the Apollo program as part of a special address to a joint session of Congress:

Likely, we won’t hear any bold space-related challenge in tonight’s State of the Union Address by President Obama. Given the state of the economy, NASA might be facing a cut or freeze on their budget, a fact which might emphasize how unique an event the Apollo program ended up to be.

“What is required now is the development of technologies that will allow us to explore space in a sustainable way,” said Chaikin, author of “A Man on the Moon: The Voyages of the Apollo Astronauts,” who I interviewed for the NASA Lunar Science Institute podcast, “a way that won’t break the bank and will allow us to do more and more with reliable transportation systems that get us up into low Earth orbit. Then perhaps we can build the machines that can actually be stored in space to allow us to venture beyond low Earth orbit to the Moon and even further, to Mars and other destinations in the solar system.”

Chaikin said he’s actually very excited about the work being done in the private sector, such as by SpaceX, one of several commercial space companies trying to develop new transportation systems to provide sustainable hardware and sustainable architecture. “That can allow us to really get back in the game of exploring, not only with robots as we have been doing all along, but with humans again,” Chaikin said.

But Apollo’s uniqueness doesn’t mean it wasn’t important, or hasn’t left a lasting legacy for human spaceflight, and the human race in general.

Buzz Aldrin on the Moon
Buzz Aldrin on the Moon for Apollo 11. Credit: NASA

“Simply put Apollo was the opening act in a story that has no end,” Chaikin said. “It’s a story of human beings leaving their home planet and venturing out into the universe, and as far as we go into space in some distant epoch, when we are living in other star systems and venturing throughout the galaxy, Apollo will have been the first step, so it is absolutely monumental when you look at it in that scale. I think Apollo is a lasting inspiration about what humans can accomplish when they work together.”

Apollo also showed people that anything was possible. “There was a phrase that went into our language after Apollo, and that was ‘If we can put a man on the Moon, why can’t we…’ fill in the blank,” said Chaikin. “The spirit that humans can overcome monumental challenges by working together, I think, is a valid legacy of Apollo culturally.”

Chaikin said Apollo was also important because of the technology development it spurred.

“A lot of the challenges that Apollo presented forced the industries to accelerate their development,” he said, “particularly in microelectronics. It is not that NASA invented all of the microelectronics that we use today but rather that the requirements of building a moon-ship and cramming it with all of the electronics that it needed to do its job required the electronics industry to miniaturize at a faster pace, it required the development of computers that could fit on a spacecraft, it required all kinds of analytical techniques and real-time tracking of the spacecraft as it went to and from the Moon. The legacy today is all the communications technologies and information processing technology that we are surrounded by. That really got an amazing jump start as part of the Apollo program.”

Earthrise from Apollo 8
Earthrise from Apollo 8

And Apollo also affected our culture, in unique ways we observe even today. How often have you seen the “Earthrise” image taken by Apollo 8 or the picture of Buzz Aldrin standing on the Moon or other Apollo-related imagery in non-space-related venues?

“We got to a place where humans had never been before,” Chaikin said, “and the other lasting legacy is the view that we got from that ‘mountaintop,’ of our Earth as a very precious oasis of life in space, and a world that really is to be cherished and protected.”

We knew even as it was happening, Chaikin said, that seeing our world floating alone in space was perhaps the most profound impact of the voyage.

“In fact, if you look at the front page of the New York Times the very day after Frank Borman and his crew became the first humans to orbit the Moon,” Chaikin said, “you will see an essay by a poet named Archibald MacLeish talking about the impact of that view and the perspective of us as ‘brothers in the eternal cold riding on spaceship Earth.’ So this is one of the things sets Apollo apart from other earlier explorations is that we were experiencing it as it happened through live television and we were actually absorbing and processing the impact in real time.”

Launch of Apollo 8 lunar orbit mission
Launch of Apollo 8 lunar orbit mission

But then, humans being as attention-challenged as we are, it didn’t take very long for all of it to become old hat and to kind of recede into history. “And that is where we are today,” Chaikin said.

That being said, Chaikin does not see the Moon as a “been there, done that” world.

“As you know, we’ve been finding frozen water at the poles of the Moon and this is a completely different view of the Moon than we had 40 years ago,” Chaikin said. “And there are more and more intricacies that we are finding all the time. The Moon itself is a Rosetta Stone for deciphering the history of the solar system, and is profoundly valuable world for us on so many levels. And it is a spectacular place. The Apollo astronauts – I’ve spent hours talking to all of them about the Moon, about the experience of being on the Moon and they just say it is a spectacular place.”

“It is too bad that the political impetus for going to the Moon was so short-lived because it was part of the Cold war,” Chaikin continued, “and looking back we can see why that was the case. It is too bad we lost interest in the Moon and it has taken us so long to turn our attention back to the Moon and all it has to offer.”


Listen to the entire interview with Chaikin on the NLSI podcast, which can also be heard on the 365 Days of Astronomy podcast.

For more information about Andrew Chaikin, see his website, andrewchaikin.com