Latest LRO Image Solves Apollo 14 Mystery

Cropped image of LRO's image from Apollo 14 landing site and Cone Crater. Tracks from the astronauts can be seen. Click for larger version.

During the second EVA of the Apollo 14 mission on the moon, astronauts Alan Shepard and Edgar Mitchell had a goal of hiking to the rim of nearby Cone Crater in the Fra Maura highlands. But the steep terrain made the going difficult, elevating the astronauts’ heart rates. Additionally, without landmarks it was difficult to judge distances. With the rolling terrain, filled with similar-looking ridges, Shepard and Mitchell couldn’t really tell if they were close to the rim or not.

Realizing time and available oxygen were getting short, Mission Control told the astronauts to head back to the Lunar Module, and although disappointed, the astronauts agreed. But how close did they actually come to the crater? No one knew for sure, until now.

Annotated figure showing the positions of various landmarks surrounding the Apollo 14 landing site. The small white arrows highlight locations where the astronauts’ path can be clearly seen [NASA/GSFC/Arizona State University].

One of the latest images from the Lunar Reconnaissance Orbiter shows new details of the Apollo 14 landing site. If you look closely at the image above, visible are the tracks from the astronauts steps and their three-wheeled MET cart, and you can clearly follow the trail of the astronauts on their “radial traverse.” Click the image for larger version if you’re having trouble seeing the tracks. Their tracks stop just 30 meters short of the rim, near a dark spot just to the lower left of the crater, which might be Saddle Rock, shown in the image below. Shepard and Mitchell never realized just how close they really were.

This photograph shows Saddle Rock, the largest boulder seen on this mission. Named for its shape, Saddle Rock is 4.5 meters across. Credit: NASA

On the LROC (Lunar Reconnaissance Orbiter Camera) website, Samuel Lawrence notes that more and different detail is visible on this image as opposed to the initial images released prior to the Apollo 11 anniversary in July because the lighting is different. “This time the Sun is 24 degrees higher above the horizon providing a clearer view with fewer shadows. Albedo contrasts are greater, and more clearly show soil disturbances from landing, astronaut surface operations, and blast off.”

The MET cart from Apollo 14. Credit: NASA
The MET cart from Apollo 14. Credit: NASA

Lawrence notes how the term “radial traverse” does not quite do the crew of Apollo 14 justice.

“Their journey sounds like a stroll in the park, however the reality is quite the contrary. The hike up Cone crater was quite challenging. For the first time, astronauts traveled out of the sight of their lunar module while hiking uphill over 1400 meters with only a poor map, dragging the tool cart (MET), and wearing their bulky spacesuits. It was an amazing feat that the two astronauts made it to the top of Cone ridge and acquired all their samples. They ended up about 30 meters shy of peering into Cone crater itself, surely a disappointment at the time, but absolutely no reflection on the success of the traverse and the scientific results gleaned after the mission.”

Source: LROC

Gigapan the Apollo Landing Sites

Gigapan from Apollo 17. Credit: Gigapan

[/caption]
If you haven’t had enough Apollo yet, this is like a firehose of image goodness. Gigapan and NASA Ames have collaborated to make huge, zoomable, panable images from two of the Apollo missions to the Moon. Apollo 16 and 17 are the only missions where the astronauts took panoramic images, so these are the only landing sites available in Gigapan. And if you really want to blow your socks off, look at these images in Google Moon. Click your icon for Google Earth (you DO have it downloaded already, don’t you?? If not go to Google Earth and download it,) choose Moon under the little Saturn-like icon on top, zoom in and find the flags for the Apollo 16 and 17 landing sites. Then look for the “camera” icons and click on one, and then choose the option to “fly” into the images. I’m still gasping from doing this with Apollo 17! Once you recover from flying in, you can then pan around and feel like you are walking alongside Gene Cernan and Harrison Schmitt on the Moon. It really is amazing!

Here’s the Gigapan image site. Enjoy!

Forgotten Apollo Data Could Solve Moon Dust Problem

An IMB 726, a precursor of the 729 data recorder. Credit: IBM

Old, forgotten data from three Apollo moon missions could help overcome one of the biggest environmental hurdles facing future lunar colonists. Pervasive moon dust can clog equipment, scratch helmet visors –or worse, get inside astronaut lungs and cause serious health problems. But 173 data tapes hold information that could be essential in overcoming the problems the dust causes. The only trouble is that the tapes are archived on “ancient” 1960’s technology and no one could find the right equipment to playback the tapes. However, the Australian Computer Museum has an old IBM729 Mark 5 tape drive that should do the trick, IF the machine can be restored to operable condition again…

The IBM729 Mark 5 tape recorder is about as big as a household refrigerator. It recorded data from Apollo 11, 12 and 14 missions that carried “dust detectors.” Information from the detectors was beamed back to earth and recorded onto tapes. Copies of the tapes were supposedly sent to NASA, but the tapes were lost or misplaced before they could be archived in NASA’s holdings. But the original data tapes have sat in Perth, Australia for almost 40 years.

Physicist Brian O’Brien invented the detectors. He wrote a couple of papers on the information in the 1970’s, but no one was very interested in moon dust back then. However now, scientists realize this information could help make future missions to the moon more feasible.

Apollo astronaut Gene Cernan covered with moon dust.  Credit: NASA
Apollo astronaut Gene Cernan covered with moon dust. Credit: NASA

“These were the only active measurements of moon dust made during the Apollo missions, and no one thought it was important,” said O’Brien. “But it’s now realised that dust, to quote Harrison Schmitt, who was the last astronaut to leave the moon, is the number one environmental problem on the moon.”

O’Brien quit his work on lunar dust when he left the University of Sydney. Two years ago, someone at NASA remembered the data had been taken, but couldn’t find the duplicate tapes.

O’Brien says there is no indication as to when exactly the tapes were lost, but he guesses that it was “way, way back.” When O’Brien learned of the tape loss, he was contacted by Guy Holmes from a data recovery company who offered to try and extract the information on the old, original tapes. But Holmes realized he needed some old equipment to do the job, and came across the right IBM tape drive at the Australian Computer Museum.

The archaic-looking recorder is in need of refurbishing, however. Holmes jokes that a 1970s Toyota Corolla fan belt could be used to get the recorder up and running.

“The drives are extremely rare, we don’t know of any others that are still operating,” he said.

“It’s going to have to be a custom job to get it working again. It’s certainly not simple, there’s a lot of circuitry in there, it’s old, it’s not as clean as it should be and there’s a lot of work to do.”

Holmes is hopeful of getting the tape recorder working again in January, and then he says it should only take a week to extract information that has been locked away since the early 1970s.

Source: Australia’s ABC News