Researchers Are Building a Simulated Moon/Mars Research Station Deep Underground

These images show the first laboratory in the Bio-SPHERE project. The medical lab is located 1 km under the surface, near one of the UK's deepest mine sites. Image Credit: Dr. Alexandra Iordachescu/University of Birmingham.

In the early days of spaceflight, just getting a satellite into Earth’s orbit was an accomplishment. In our era, landing rovers on other planets and bringing samples home from asteroids is the cutting edge. But the next frontier is rapidly approaching, when astronauts will stay for long periods of time on the Moon and hopefully Mars.

But before we can send people to those dangerous environments, the Artemis partner space agencies have to know how to keep them safe. An important part of that is simulating the conditions on the Moon and Mars.

Continue reading “Researchers Are Building a Simulated Moon/Mars Research Station Deep Underground”

It’s Time to Figure Out How to Land Large Spacecraft Safely on Other Worlds

Exhaust plume-surface interaction, more commonly known as brownout, while landing on the Moon. (Credit: Reproduced with permission from A. Rahimi, O. Ejtehadi, K.H. Lee, R.S. Myong, Acta Astronautica, 175 (2020) 308-326. ©2018 Elsevier.)

One of the most iconic events in history is Apollo 11 landing on the lunar surface. During the descent, astronauts Neil Armstrong and Edwin “Buzz” Aldrin are heard relaying commands and data back and forth to mission control across 385,000 kilometers (240,000 miles) of outer space as the lunar module “Eagle” slowly inched its way into the history books.

In the final moments before touchdown, Aldrin can be heard saying, “Picking up some dust”, followed by large dust clouds shooting outward from underneath from the spacecraft as the exhaust plumes interacted with the lunar surface, more commonly known as brownout or brownout effect. This significantly reduced the visibility for Armstrong and Aldrin as they landed, and while they successfully touched down on the Moon, future astronauts might not be so lucky.

Continue reading “It’s Time to Figure Out How to Land Large Spacecraft Safely on Other Worlds”

Glass Fibers in Lunar Regolith Could Help Build Structures on the Moon

Electron microscope images of various glass particles identified from China's Chang'e-5 lunar samples. Credit: Laiquan Shen, R.Z. et al. (2023)

Through the Artemis Program, NASA plans to send the first astronauts to the Moon in over fifty years. Before the decade is over, this program aims to establish the infrastructure that will allow for a “sustained program of lunar exploration and development.” The European Space Agency (ESA) also has big plans, which include the creation of a Moon Village that will serve as a spiritual successor to the International Space Station (ISS). China and Roscosmos also came together in June 2021 to announce that they would build the International Lunar Research Station (ILRS) around the lunar south pole.

In all cases, space agencies plan to harvest local resources to meet their construction and long-term needs – a process known as In-Situ Resource Utilization (ISRU). Based on samples returned by the fifth mission of the Chinese Lunar Exploration Program (Chang’e-5), a team of researchers from the Chinese Academy of Sciences (CAS) identified indigenous glass fibers for the first time. According to a paper they authored, these fibers were formed by past impacts in the region and could be an ideal building material for future lunar bases.

Continue reading “Glass Fibers in Lunar Regolith Could Help Build Structures on the Moon”

NASA Wants New Ideas for Launching Lunar Payloads and Unlocking Climate Science!

NASA Entrepreneurs Challenge 2023. Credit: HeroX

NASA has a long history of crowdsourcing solutions, seeking input from the public, entrepreneurs, and citizen scientists. Currently, the agency is tasked with preparing for the long-awaited return to the Moon (the Artemis Program) and addressing the growing problem of Climate Change. The former entails all manner of requirements, from launch vehicles and human-rated spacecraft to logistical concerns and payload services. The latter calls for advances in climate science, Earth observation, and high-quality data collection.

To enlist the help of entrepreneurs in addressing these challenges, NASA’s Science Mission Directorate (SMD) has once again teamed up with the world-leading crowdsourcing platform HeroX to launch the NASA Entrepreneurs Challenge. With a total prize purse of $1,000,000, NASA is looking for ideas to develop and commercialize state-of-the-art technology and data usage that advances lunar exploration and climate science. The challenge launched on April 10th and will run until November 29th, after which the winners will be invited to a live pitch event hosted at the Defense TechConnect Innovation Summit and Expo in Washington, D.C.

Continue reading “NASA Wants New Ideas for Launching Lunar Payloads and Unlocking Climate Science!”

NASA is Sending Humans Back to the Moon, But it Won't Stop There. Next Comes Mars

Credits: NASA

NASA recently announced the astronauts that will make up the Artemis II crew. This mission will see the four-person crew conduct a circumlunar flight, similar to what the uncrewed Artemis I mission performed, and return to Earth. This mission will pave the way for the long-awaited return to the Moon in 2025, where four astronauts will fly to the Moon, and two (“the first woman and first person of color“) will land on the surface using the Starship HLS. These missions are part of NASA’s plan to establish a program of “sustained lunar exploration and development.”

As NASA has emphasized for over a decade, the Artemis Program is part of their “Moon to Mars” mission architecture. On Tuesday, April 18th, NASA released the outcomes from its first Architecture Concept Review (ARC 2022), a robust analysis designed to align with its overall mission strategy and define the supporting architecture. This included an Architecture Document and an executive summary that provide a detailed picture of the mission architecture and design process, plus six supporting white papers that addressed some of the biggest questions regarding exploration and architecture.

Continue reading “NASA is Sending Humans Back to the Moon, But it Won't Stop There. Next Comes Mars”

China Tests a Stirling Engine in Orbit

The uncapped Stirling thermoelectric converter. Credit: China Manned Space Agency

The China National Space Agency (CNSA) has made considerable progress in recent years with the development of its Long March 5 (CZ-5) rocket and the completion of its Tiangong-3 space station. The agency also turned heads when it announced plans in June 2021 to create an International Lunar Research Station (ILRS) that would rival the Artemis Program. On top of all that, China upped the ante when it announced later that month that it also had plans to send crewed missions to Mars by 2033, concurrent with NASA’s plans.

As part of their growing efforts to become a major power in space, which includes human exploration, China recently announced the completion of the first in-orbit test of a Stirling thermoelectric converter. The Shenzou-15 mission crew performed the test aboard Tiangong-3, and it was the first successful verification of the technology in space. This technology is also being investigated by NASA and is considered a technological solution to the challenges of space exploration, especially where long-duration stays and missions to locations in deep space are concerned.

Continue reading “China Tests a Stirling Engine in Orbit”

Meet the Four Astronauts Who’ll Fly Around the Moon for Artemis II

Artemis II crew portrait
The Artemis II crew includes, clockwise from left, Christina Koch, Victor Glover, Jeremy Hansen and Reid Wiseman. (Credit: Josh Valcarcel / NASA)

The four astronauts chosen for NASA’s Artemis II mission will check off a string of firsts during their flight around the moon, scheduled for next year. It’ll mark the first trip beyond Earth orbit for a woman, for a person of color and for a Canadian. Artemis II will represent yet another first for Canadian astronaut Jeremy Hansen: Based on the current crew schedule, it’ll be his first-ever space mission.

Commander Reid Wiseman, pilot Victor Glover and mission specialist Christina Koch round out the first crew for NASA’s Artemis moon program, which picks up on the legacy of the Apollo moon program. If all goes according to plan, they’ll be the first humans to circle the moon since Apollo 17 in 1972.

Continue reading “Meet the Four Astronauts Who’ll Fly Around the Moon for Artemis II”

2033 is the Perfect Year to Send Humans to Mars (With a Bonus Venus Flyby)

According to a new report, NASA could launch a orbital-only mission to Mars in 2033. Credits: NASA

In the coming decade, NASA and China plan to send the first crewed missions (astronauts and taikonauts) to Mars. Both agencies hope to begin sending missions by 2033, coinciding with a Mars Opposition, followed by additional missions in 2035, 2037, and after. These missions will culminate with the creation of a Mars surface habitat that will enable future missions and research. Launch opportunities for these missions are limited because the distances between Earth and Mars vary considerably over time, ranging from about 56 million km (~35 million mi) to more than 400 million km (250 million mi).

The times when Earth and Mars are at their closest (known as a Mars Opposition) only occur once every 26 months. Moreover, using conventional propulsion methods, it takes missions six to nine months to travel between Earth and Mars. As a result, round-trip missions to Mars could take up to three years, dramatically increasing radiation exposure for the crew and the time they spend in microgravity. According to a recent study from NASA’s Jet Propulsion Laboratory (JPL), 2033 will be a unique opportunity to send a crewed orbital mission to Mars that lasts just 1.6 years.

Continue reading “2033 is the Perfect Year to Send Humans to Mars (With a Bonus Venus Flyby)”

China Hints at its Goals for a Lunar Base

Visualization of the ILRS, from the CNSA Guide to Partnership (June 2021). Credit: CNSA

In June 2021, China announced it was partnering with Russia to launch a lunar exploration program that would rival NASA’s Artemis Program. This program would include robotic landers, orbiters, and crewed missions that would culminate with the creation of an outpost around the Moon’s southern polar region – the International Lunar Research Station (ILRS). While the details are still scant, periodic updates have provided a “big-picture” idea of what this lunar outpost will look like.

Case in point, at a recent national space conference, a team of scientists from the Chinese Academy of Sciences (CAS) presented a list of objectives for the ILRS. According to China Science Daily, these objectives will include Moon-based astronomy, Earth observation, and lunar in-situ resource utilization (ISRU). In addition, the CAS scientists indicated that China plans to establish a basic model for a lunar research station based on two planned exploration missions by 2028, which will subsequently expand into an international base.

Continue reading “China Hints at its Goals for a Lunar Base”

Artemis II is Literally Coming Together

The core stage of the Artemis II rocket at NASA's MIchoud Assembly Facility. Credit: NASA/Michael DeMocker

In November 2024, NASA’s Artemis II mission will launch from Cape Canaveral, carrying a crew of four astronauts around the Moon before returning home. This will be the first crewed mission of the program, paving the way for Artemis III and the long-awaited return to the Moon in 2025. These missions will rely on the Orion spacecraft and the Space Launch System (SLS) super-heavy launch vehicle. At NASA’s Michoud Assembly Facility in New Orleans, teams of engineers have just finished integrating all five major structures that make up the core stage of the Artemis II rocket.

Continue reading “Artemis II is Literally Coming Together”