Meet the Four Astronauts Who’ll Fly Around the Moon for Artemis II

Artemis II crew portrait
The Artemis II crew includes, clockwise from left, Christina Koch, Victor Glover, Jeremy Hansen and Reid Wiseman. (Credit: Josh Valcarcel / NASA)

The four astronauts chosen for NASA’s Artemis II mission will check off a string of firsts during their flight around the moon, scheduled for next year. It’ll mark the first trip beyond Earth orbit for a woman, for a person of color and for a Canadian. Artemis II will represent yet another first for Canadian astronaut Jeremy Hansen: Based on the current crew schedule, it’ll be his first-ever space mission.

Commander Reid Wiseman, pilot Victor Glover and mission specialist Christina Koch round out the first crew for NASA’s Artemis moon program, which picks up on the legacy of the Apollo moon program. If all goes according to plan, they’ll be the first humans to circle the moon since Apollo 17 in 1972.

Continue reading “Meet the Four Astronauts Who’ll Fly Around the Moon for Artemis II”

2033 is the Perfect Year to Send Humans to Mars (With a Bonus Venus Flyby)

According to a new report, NASA could launch a orbital-only mission to Mars in 2033. Credits: NASA

In the coming decade, NASA and China plan to send the first crewed missions (astronauts and taikonauts) to Mars. Both agencies hope to begin sending missions by 2033, coinciding with a Mars Opposition, followed by additional missions in 2035, 2037, and after. These missions will culminate with the creation of a Mars surface habitat that will enable future missions and research. Launch opportunities for these missions are limited because the distances between Earth and Mars vary considerably over time, ranging from about 56 million km (~35 million mi) to more than 400 million km (250 million mi).

The times when Earth and Mars are at their closest (known as a Mars Opposition) only occur once every 26 months. Moreover, using conventional propulsion methods, it takes missions six to nine months to travel between Earth and Mars. As a result, round-trip missions to Mars could take up to three years, dramatically increasing radiation exposure for the crew and the time they spend in microgravity. According to a recent study from NASA’s Jet Propulsion Laboratory (JPL), 2033 will be a unique opportunity to send a crewed orbital mission to Mars that lasts just 1.6 years.

Continue reading “2033 is the Perfect Year to Send Humans to Mars (With a Bonus Venus Flyby)”

China Hints at its Goals for a Lunar Base

Visualization of the ILRS, from the CNSA Guide to Partnership (June 2021). Credit: CNSA

In June 2021, China announced it was partnering with Russia to launch a lunar exploration program that would rival NASA’s Artemis Program. This program would include robotic landers, orbiters, and crewed missions that would culminate with the creation of an outpost around the Moon’s southern polar region – the International Lunar Research Station (ILRS). While the details are still scant, periodic updates have provided a “big-picture” idea of what this lunar outpost will look like.

Case in point, at a recent national space conference, a team of scientists from the Chinese Academy of Sciences (CAS) presented a list of objectives for the ILRS. According to China Science Daily, these objectives will include Moon-based astronomy, Earth observation, and lunar in-situ resource utilization (ISRU). In addition, the CAS scientists indicated that China plans to establish a basic model for a lunar research station based on two planned exploration missions by 2028, which will subsequently expand into an international base.

Continue reading “China Hints at its Goals for a Lunar Base”

Artemis II is Literally Coming Together

The core stage of the Artemis II rocket at NASA's MIchoud Assembly Facility. Credit: NASA/Michael DeMocker

In November 2024, NASA’s Artemis II mission will launch from Cape Canaveral, carrying a crew of four astronauts around the Moon before returning home. This will be the first crewed mission of the program, paving the way for Artemis III and the long-awaited return to the Moon in 2025. These missions will rely on the Orion spacecraft and the Space Launch System (SLS) super-heavy launch vehicle. At NASA’s Michoud Assembly Facility in New Orleans, teams of engineers have just finished integrating all five major structures that make up the core stage of the Artemis II rocket.

Continue reading “Artemis II is Literally Coming Together”

The 9th Annual Achieving Mars Workshop Report has been Released! How to Make Mars Affordable…

Artist's concept image of a boot print on the moon and on Mars. Credit: NASA/JPL-Caltech

This past summer (June 14th to June 16th), representatives from the public space sector, the commercial space industry, and academic institutions convened at George Washington University in Washington D.C. for The Ninth Community Workshop for Achievability and Sustainability of Human Exploration of Mars. The invitation-only event was hosted by Explore Mars, Inc., a non-profit organization dedicated to fostering international collaboration and cooperation between government and industry to achieve the human exploration of Mars by the 2030s.

The purpose of this workshop is to identify activities that will help prepare for missions to Mars by the 2030s. In particular, the workshop sought to address how a sustainable program of human Martian exploration can be achieved. The highlights of this event were recently shared with the release of the Achieve Mars (AM) IX Report, which established priorities and science objectives for future missions to Mars. The authors also made several recommendations for how cutting-edge technologies could play a role, how the health and safety of astronauts can be assured, and how Mars and Earth can be protected from possible contamination.

;.

Here’s Where Artemis III Might Land. It Looks… Inviting

Malapert massif (informal name) is thought to be a remnant of the South Pole - Aitken basin rim, which formed more than 4 billion years ago. More recently, this magnificent peak (lower left) was selected as an Artemis 3 candidate landing region. Image is 25 kilometers wide in the center, Narrow Angle Camera M1432398306LR (NASA/GSFC/Arizona State University).

Where on the Moon will the first crewed Artemis mission Land? While NASA is still deliberating on the exact location, they’ve chosen several candidate landing sites near the lunar south pole. This new image captured by the Lunar Reconnaissance Orbiter reveals what the astronauts might see out the window as they approach their destination.

Continue reading “Here’s Where Artemis III Might Land. It Looks… Inviting”

NASA and Axiom Space Do a Partial Reveal of the Spacesuit That Will be Worn on the Moon

A partial reveal of the new spacesuit that will be used for the first crewed Artemis mission to the Moon, created by NASA and Axiom Space. The actual suits will be white, not dark. Credit: Axiom Space.

NASA and Axiom Space Inc. provided a first, limited look at the new spacesuits that will be worn by the next astronauts to land on the Moon. The Axiom Extravehicular Mobility Unit (AxEMU) spacesuit that will be worn for the Artemis missions was only partially revealed at an event at Johnson Space Center in Houston, in order not to give away any proprietary information about the suit.

“Since a spacesuit worn on the Moon must be white to reflect heat and protect astronauts from extreme high temperatures,” Axiom Space said in a press release, “a cover layer is currently being used for display purposes only to conceal the suit’s proprietary design.”

Continue reading “NASA and Axiom Space Do a Partial Reveal of the Spacesuit That Will be Worn on the Moon”

NASA has Simulated a Tiny Part of the Moon Here on Earth

Using the Lunar Lab and Regolith Testbeds at NASA’s Ames Research Center, a team created this simulated lunar environment to study lighting conditions experienced at the unexplored poles of the Moon. Credit: NASA/Uland Wong.

Before going to the Moon, the Apollo astronauts trained at various sites on Earth that best approximated the lunar surface, such as the volcanic regions Iceland and Hawaii and deserts in the US Southwest.  To help prepare for upcoming robotic and human Artemis missions, a newly upgraded “mini-Moon” lunar testbed will allow astronauts and robots to test out realistic conditions on the Moon including rough terrain and unusual sunlight.

Continue reading “NASA has Simulated a Tiny Part of the Moon Here on Earth”

Study Shows How Cells Could Help Artemis Astronauts Exercise

NASA’s Orion spacecraft will carry astronauts further into space than ever before using a module based on Europe’s Automated Transfer Vehicles (ATV). Credit: NASA

In 2033, NASA and China plan to send the first crewed missions to Mars. These missions will launch every two years when Earth and Mars are at the closest points in their orbits (Mars Opposition). It will take these missions six to nine months to reach the Red Planet using conventional technology. This means that astronauts could spend up to a year and a half in microgravity, followed by months of surface operations in Martian gravity (roughly 40% of Earth gravity). This could have drastic consequences for astronaut health, including muscle atrophy, bone density loss, and psychological effects.

Aboard the International Space Station (ISS), astronauts maintain a strict exercise regimen to mitigate these effects. However, astronauts will not have the same option while in transit to Mars since their vehicles (the Orion spacecraft) have significantly less volume. To address this challenge, Professor Marni Boppart and her colleagues at the Beckman Institute for Advanced Science and Technology are developing a process using regenerative cells. This work could help ensure that astronauts arrive at Mars healthy, hearty, and ready to explore!

Continue reading “Study Shows How Cells Could Help Artemis Astronauts Exercise”

We’re Going to see at Least Five More SLS Rockets Launch in the Coming Years

March 2022 image of NASA's Space Launch System rocket’s core stage forward assembly boasting a 40-meter (130-foot) liquid hydrogen tank. (Credits: NASA/Eric Bordelon)

NASA’s continued goal of sending humans into deep space using its Space Launch System (SLS) recently took a giant leap as the world’s largest space agency finalized the SLS Stages Production and Evolution Contract worth $3.2 billion with The Boeing Company in Huntsville, Alabama. The purpose of the contract is for Boeing to keep building SLS core and upper stages for future Artemis missions to the Moon and beyond for at least five more SLS launches.

Continue reading “We’re Going to see at Least Five More SLS Rockets Launch in the Coming Years”