NASA’s Artemis mission objective is among other things, to get human beings back to the Moon. Much of the attention of late has been focussed on the rocket technology to get the astronauts there but as we progress from Artemis I to Artemis II – which aims to take a crew around the Moon and back before Artemis III lands them on the lunar surface – attention is shifting on the spacesuits the crew will wear. The new suits, built by Axiom Space are designed to provide the mobility and protection required on the surface and now, NASA has received samples and is testing them in simulated space environments.
Continue reading “NASA Continues Testing its New Lunar Spacesuits”This is How Astronauts Would Escape from the Artemis II Launch Pad
Space exploration is a tricky and at times, dangerous business. The safety of the crews is of paramount importance and escape technology is always factored into spacecraft design. Whilst Artemis I did not require such provisions when it launched Artemis II with astronauts on board is being prepared with a ski-lift style escape system to take them far away from the launch pad.
Continue reading “This is How Astronauts Would Escape from the Artemis II Launch Pad”NASA is Pushing Back its Moon Landings to 2026
I wasn’t around for the Apollo program that took human beings to the Moon. I would have love to have seen it all unfold though. With NASAs Artemis program the opportunity will soon be with us again to watch humans set foot on another world, just not for the first time. Alas NASA announced on Tuesday that the Moon landings which form part of Artemis 3, have been pushed back one year to 2026.
Continue reading “NASA is Pushing Back its Moon Landings to 2026”Plants Could Grow in Lunar Regolith Using Bacteria
In the next decade, NASA, China, and their international and commercial partners plan to establish habitats on the Moon. Through the Artemis Program, NASA will deploy the orbiting Lunar Gateway and the Artemis Base Camp on the lunar surface. Meanwhile, China (and its partner Roscosmos) will deploy the International Lunar Research Station (ILRS), consisting of an orbital and surface element. The creation of this infrastructure will enable a “sustained program of lunar exploration and development” that could lead to a permanent human presence there.
To ensure that humans can work and live sustainably beyond Earth, astronauts and crews will need to be able to harvest local resources to see to their needs – in-situ resource utilization (ISRU). This includes using lunar water ice and regolith to grow plants, providing astronauts with food and an additional source of oxygen and biomass. To test the potential for growing plants on the Moon, a Chinese research team conducted a series of experiments where they grew tobacco plants in simulated lunar soil with the help of bacteria.
Continue reading “Plants Could Grow in Lunar Regolith Using Bacteria”NASA Wants to Learn to Live Off the Land on the Moon
In preparation for the upcoming Artemis missions to the lunar south pole, NASA recently solicited a Request for Information (RFI) from the lunar community to map out its future Lunar Infrastructure Foundational Technologies (LIFT-1) demonstration for developing In-situ Resource Utilization (ISRU) technologies as part of the agency’s ambitious Lunar Surface Innovation Initiative (LSII). The primary goal of LIFT-1, which is being driven by NASA’s Space Technology Mission Directorate (STMD), is to advance ISRU technologies for extracting oxygen from the lunar regolith, including manufacturing, harnessing, and storing the extracted oxygen for use by future astronauts on the lunar surface. Proposals for LIFT-1 became available to be submitted via NSPIRES on November 6, 2023, with a deadline of December 18, 2023.
Continue reading “NASA Wants to Learn to Live Off the Land on the Moon”We Don't Know Enough About the Biomedical Challenges of Deep Space Exploration
Although humans have flown to space for decades, the missions have primarily been in low-Earth orbit, with just a handful of journeys to the Moon. Future missions with the upcoming Artemis program aim to have humans living and working on the Moon, with the hopes of one day sending humans to Mars.
However, the environments of the Moon and deep space present additional health challenges to astronauts over low-Earth orbit (LEO), such as higher radiation, long-term exposure to reduced gravity and additional acceleration and deceleration forces. A new paper looks at the future of biomedicine in space, with a sobering takeaway: We currently don’t know enough about the biomedical challenges of exploring deep space to have an adequate plan to ensure astronaut health and safety for the Artemis program.
Continue reading “We Don't Know Enough About the Biomedical Challenges of Deep Space Exploration”SpaceX Test Fires a Raptor Engine, Simulating a Lunar Landing
When NASA astronauts return to the surface of the Moon in the Artemis III mission, the plan is to use a modified SpaceX Starship as their lunar lander. NASA announced last week that SpaceX has now demonstrated an important capability of the vacuum-optimized Raptor engine that will be used for the lander: an extreme cold start.
A test last month successfully confirmed the engine can be started in the frigid conditions of space, even when the vehicle has spent an extended time in space, where temperatures will drop lower than a shorter low-Earth orbit mission. The Raptor vacuum engine was chilled to mimic conditions after a long coast period in space, and then was successfully fired.
Continue reading “SpaceX Test Fires a Raptor Engine, Simulating a Lunar Landing”Low Gravity Simulator Lets You Jump Around in Lunar Gravity
When the Apollo astronauts landed on the Moon, they had to perform tasks in 1/6th of Earth’s gravity. At first, walking and working in this low gravity environment posed some challenges. However, the astronauts soon adapted and figured out that hopping like a bunny made it easier to get around.
The Artemis astronauts will also need to adapt to life on the Moon, and to that end, ESA has built a unique facility in a 17-meter (55 ft.) refurbished ventilation shaft.
Continue reading “Low Gravity Simulator Lets You Jump Around in Lunar Gravity”We’re Going to see at Least Five More SLS Rockets Launch in the Coming Years
NASA’s continued goal of sending humans into deep space using its Space Launch System (SLS) recently took a giant leap as the world’s largest space agency finalized the SLS Stages Production and Evolution Contract worth $3.2 billion with The Boeing Company in Huntsville, Alabama. The purpose of the contract is for Boeing to keep building SLS core and upper stages for future Artemis missions to the Moon and beyond for at least five more SLS launches.
Continue reading “We’re Going to see at Least Five More SLS Rockets Launch in the Coming Years”NASA Releases a Stunning New Supercut of the Artemis I Launch
NASA just released a new supercut of high-resolution video from the Artemis I launch on November 16, 2022. Much of the footage is from cameras attached to the rocket itself, allowing everyone to ride along from engine ignition to the separation of the Orion capsule as it begins its journey to the Moon.
Continue reading “NASA Releases a Stunning New Supercut of the Artemis I Launch”