According to current estimates, there could be as many as 100 billion planets in the Milky Way Galaxy alone. Unfortunately, finding evidence of these planets is tough, time-consuming work. For the most part, astronomers are forced to rely on indirect methods that measure dips in a star’s brightness (the Transit Method) of Doppler measurements of the star’s own motion (the Radial Velocity Method).
Direct imaging is very difficult because of the cancelling effect stars have, where their brightness makes it difficult to spot planets orbiting them. Luckily a new study led by the Infrared Processing and Analysis Center (IPAC) at Caltech has determined that there may be a shortcut to finding exoplanets using direct imaging. The solution, they claim, is to look for systems with a circumstellar debris disk, for they are sure to have at least one giant planet.
For the sake of this study, Dr. Meshkat and her colleagues examined data on 130 different single-star systems with debris disks, which they then compared to 277 stars that do not appear to host disks. These stars were all observed by NASA’s Spitzer Space Telescope and were all relatively young in age (less than 1 billion years). Of these 130 systems, 100 had previously been studied for the sake of finding exoplanets.
Dr. Meshkat and her team then followed up on the remaining 30 systems using data from the W.M. Keck Observatory in Hawaii and the European Southern Observatory’s (ESO) Very Large Telescope (VLT) in Chile. While they did not detect any new planets in these systems, their examinations helped characterize the abundance of planets in systems that had disks.
What they found was that young stars with debris disks are more likely to also have giant exoplanets with wide orbits than those that do not. These planets were also likely to have five times the mass of Jupiter, thus making them “Super-Jupiters”. As Dr. Meshkat explained in a recent NASA press release, this study will be of assistance when it comes time for exoplanet-hunters to select their targets:
“Our research is important for how future missions will plan which stars to observe. Many planets that have been found through direct imaging have been in systems that had debris disks, and now we know the dust could be indicators of undiscovered worlds.”
This study, which was the largest examination of stars with dusty debris disks, also provided the best evidence to date that giant planets are responsible for keeping debris disks in check. While the research did not directly resolve why the presence of a giant planet would cause debris disks to form, the authors indicate that their results are consistent with predictions that debris disks are the products of giant planets stirring up and causing dust collisions.
In other words, they believe that the gravity of a giant planet would cause planestimals to collide, thus preventing them from forming additional planets. As study co-author Dimitri Mawet, who is also a JPL senior research scientist, explained:
“It’s possible we don’t find small planets in these systems because, early on, these massive bodies destroyed the building blocks of rocky planets, sending them smashing into each other at high speeds instead of gently combining.”
Within the Solar System, the giant planets create debris belts of sorts. For example, between Mars and Jupiter, you have the Main Asteroid Belt, while beyond Neptune lies the Kuiper Belt. Many of the systems examined in this study also have two belts, though they are significantly younger than the Solar System’s own belts – roughly 1 billion years old compared to 4.5 billion years old.
One of the systems examined in the study was Beta Pictoris, a system that has a debris disk, comets, and one confirmed exoplanet. This planet, designated Beta Pictoris b, which has 7 Jupiter masses and orbits the star at a distance of 9 AUs – i.e. nine times the distance between the Earth and the Sun. This system has been directly imaged by astronomers in the past using ground-based telescopes.
Interestingly enough, astronomers predicted the existence of this exoplanet well before it was confirmed, based on the presence and structure of the system’s debris disk. Another system that was studied was HR8799, a system with a debris disk that has two prominent dust belts. In these sorts of systems, the presence of more giant planets is inferred based on the need for these dust belts to be maintained.
This is believed to be case for our own Solar System, where 4 billion years ago, the giant planets diverted passing comets towards the Sun. This resulted in the Late Heavy Bombardment, where the inner planets were subject to countless impacts that are still visible today. Scientists also believe that it was during this period that the migrations of Jupiter, Saturn, Uranus and Neptune deflected dust and small bodies to form the Kuiper Belt and Asteroid Belt.
Dr. Meshkat and her team also noted that the systems they examined contained much more dust than our Solar System, which could be attributable to their differences in age. In the case of systems that are around 1 billion years old, the increased presence of dust could be the result of small bodies that have not yet formed larger bodies colliding. From this, it can be inferred that our Solar System was once much dustier as well.
However, the authors note is also possible that the systems they observed – which have one giant planet and a debris disk – may contain more planets that simply have not been discovered yet. In the end, they concede that more data is needed before these results can be considered conclusive. But in the meantime, this study could serve as an guide as to where exoplanets might be found.
“By showing astronomers where future missions such as NASA’s James Webb Space Telescope have their best chance to find giant exoplanets, this research paves the way to future discoveries.”
In addition, this study could help inform our own understanding of how the Solar System evolved over the course of billions of years. For some time, astronomers have been debating whether or not planets like Jupiter migrated to their current positions, and how this affected the Solar System’s evolution. And there continues to be debate about how the Main Belt formed (i.e. empty of full).
Last, but not least, it could inform future surveys, letting astronomers know which star systems are developing along the same lines as our own did, billions of years ago. Wherever star systems have debris disks, they an infer the presence of a particularly massive gas giant. And where they have a disk with two prominent dust belts, they can infer that it too will become a system containing many planets and and two belts.
In 1990, the NASA/ESA Hubble Space Telescope was deployed into Low Earth Orbit (LEO). As one of NASA’s Great Observatories – along with the Compton Gamma Ray Observatory, the Chandra X-ray Observatory, and the Spitzer Space Telescope – this instrument remains one of NASA’s larger and more versatile missions. Even after twenty-seven years of service, Hubble continues to make intriguing discoveries, both within our Solar System and beyond.
The latest discovery was made by a team of international astronomers led by the Max Planck Institute for Solar System Research. Using Hubble, they spotted a unique object in the Main Asteroid Belt – a binary asteroid known as 288P – which also behaves like a comet. According to the team’s study, this binary asteroid experiences sublimation as it nears the Sun, which causes comet-like tails to form.
Using the Hubble telescope, the team first observed 288P in September 2016, when it was making its closest approach to Earth. The images they took revealed that this object was not a single asteroid, but two asteroids of similar size and mass that orbit each other at a distance of about 100 km. Beyond that, the team also noted some ongoing activity in the binary system that was unexpected.
As Jessica Agarwal explained in a Hubble press statement, this makes 288P the first known binary asteroid that is also classified as a main-belt comet. “We detected strong indications of the sublimation of water ice due to the increased solar heating – similar to how the tail of a comet is created,” she said. In addition to being a pleasant surprise, these findings are also highly significant when it comes to the study of the Solar System.
Since only a few objects of this type are known, 288P is an extremely important target for future asteroid studies. The various features of 288P also make it unique among the few known wide asteroid binaries in the Solar System. Basically, other binary asteroids that have been observed orbited closer together, were different in size and mass, had less eccentric orbits, and did not form comet-like tails.
The observed activity of 288P also revealed a great deal about the binary asteroids past. From their observations, the team concluded that 288P has existed as a binary system for the past 5000 years and must have accumulated ice since the earliest periods of the Solar System. As Agarwal explained:
“Surface ice cannot survive in the asteroid belt for the age of the Solar System but can be protected for billions of years by a refractory dust mantle, only a few meters thick… The most probable formation scenario of 288P is a breakup due to fast rotation. After that, the two fragments may have been moved further apart by sublimation torques.”
Naturally, there are many unresolved questions about 288P, most of which stem from its unique behavior. Given that it is so different from other binary asteroids, scientists are forced to wonder if it merely coincidental that it presents such unique properties. And given that it was found largely by chance, it is unlikely that any other binaries that have similar properties will be found anytime soon.
“We need more theoretical and observational work, as well as more objects similar to 288P, to find an answer to this question,” said Agarwal. In the meantime, this unique binary asteroid is sure to provide astronomers with many interesting opportunities to study the origin and evolution of asteroids orbiting between Mars and Jupiter.
In particular, the study of those asteroids that show comet-like activity (aka. main-belt comets) is crucial to our understanding of how the Solar System formed and evolved. According to contrasting theories of its formation, the Asteroid Belt is either populated by planetesimals that failed to become a planet, or began empty and gradually filled with planetesimals over time.
In either case, studying its current population can tell us much about how the planets formed billions of years ago, and how water was distributed throughout the Solar System afterwards. This, in turn, is crucial to determining how and where life began to emerge on Earth, and perhaps elsewhere!
Be sure to check out this animation of the 288P binary asteroid too, courtesy of the ESA and Hubble:
By popular request, Isaac Arthur and I have teamed up again to bring you a vision of the future of human space exploration. This time, we bring you practical construction tips from a pair of Type 2 Civilization engineers.
To make this collaboration even better, we’ve teamed up with two artists, Kevin Gill and Sergio Botero. They’re going to help create some special art, just for this episode, to help show what some of these megaprojects might look like.
As the single-largest body in the Asteroid Belt, Ceres has long been a source of fascination to astronomers. In addition to being the only asteroid large enough to become rounded under its own gravity, it is also the only minor planet to be found within the orbit of Neptune. And with the arrival of the Dawn probe around Ceres in March of 2015, we have been treated to a steady stream of scientific finds about this protoplanet.
The latest find, which has come as something of a surprise, has to do with the composition of the planet. Contrary to what was previously suspected, new evidence shows that Ceres has large deposits of water ice near its surface. This and other evidence suggests that beneath its rocky, icy surface, Ceres has deposits of liquid water that could have played a major role in its evolution.
This evidence were presented at the 2016 American Geophysical Union meeting, which kicked off on Monday, Dec. 12th, in San Fransisco. Amid the thousands of seminars that detailed the biggest findings made during the past year in the fields of space and Earth science – which included updates from the Curiosity mission – members of the Dawn mission team shared the results of their research, which were recently published in Science.
In short, the GRaND instrument detected high levels of hydrogen in Ceres’ uppermost structure (10% by weight), which appeared most prominently around the mid-latitudes. These readings were consistent with broad expanses of water ice. The GRaND data also showed that rather than consisting of a solid ice layer, the ice was likely to take the form of a porous mixture of rocky materials (in which ice fills the pores).
Previously, ice was thought to only exist within certain cratered regions on Ceres, and was thought to be the result of impacts that deposited water ice over the course of Ceres’ long history. But as Thomas Prettyman – the principal investigator of Dawn’s GRaND instrument – said in a NASA press release, scientists are now rethinking this position:
“On Ceres, ice is not just localized to a few craters. It’s everywhere, and nearer to the surface with higher latitudes. These results confirm predictions made nearly three decades ago that ice can survive for billions of years just beneath the surface of Ceres. The evidence strengthens the case for the presence of near-surface water ice on other main belt asteroids.”
The concentrations of iron, potassium and carbon detected by the GRaND instrument also supports the theory that Ceres’ surface was altered by liquid water in the interior. Basically, scientists theorize that the decay of radioactive elements within Ceres created enough heat to cause the protoplanet’s structure to differentiate between a rocky interior and icy outer shell – which also allowed minerals like those observed to be deposited in the surface.
Similarly, a second study produced by researchers from the Max Planck Institute for Solar Research examined hundreds of permanently-shadowed craters located in Ceres’ northern hemisphere. According to this study, which appeared recently in Nature Astronomy, these craters are “cold traps”, where temperatures drop to less than 11o K (-163 °C; -260 °F), thus preventing all but the tiniest amounts of ice from turning into vapor and escaping.
Within ten of these craters, the researcher team found deposits of bright material, reminiscent to what Dawn spotted in the Occator Crater. And in one that was partially sunlit, Dawn’s infrared mapping spectrometer confirmed the presence of ice. This suggests that water ice is being stored in Ceres darker craters in a way that is similar to what has been observed around the polar regions of both Mercury and the Moon.
Where this water came from (i.e. whether or not it was deposited by meteors) remains something of a mystery. But regardless, it shows that water molecules on Ceres could be moving from warmer mid-latitudes to the colder, darker polar regions. This lends further weight to the theory that Ceres might have a tenuous water vapor atmosphere, which was suggested back in 2012-13 based on evidence obtained by the Herschel Space Observatory.
All of this adds up to Ceres being a watery and geologically active protoplanet, one which could hold clues as to how life existed billions of years ago. As Carol Raymond, deputy principal investigator of the Dawn mission, also explained in the NASA press release:
“These studies support the idea that ice separated from rock early in Ceres’ history, forming an ice-rich crustal layer, and that ice has remained near the surface over the history of the solar system. By finding bodies that were water-rich in the distant past, we can discover clues as to where life may have existed in the early solar system.”
Back in July Dawn began its extended mission phase, which consists of it conducting several more orbits of Ceres. At present, it is flying in an elliptical orbit at a distance of more than 7,200 km (4,500 mi) from the protoplanet. The spacecraft is expected to operate until 2017, remaining a perpetual satellite of Ceres until the end.
In the 18th century, observations made of all the known planets (Mercury, Venus, Earth, Mars, Jupiter and Saturn) led astronomers to discern a pattern in their orbits. Eventually, this led to the Titius–Bode law, which predicted the amount of space between the planets. In accordance with this law, there appeared to be a discernible gap between the orbits of Mars and Jupiter, and investigation into it led to a major discovery.
Eventually, astronomers realized that this region was pervaded by countless smaller bodies which they named “asteroids”. This in turn led to the term “Asteroid Belt”, which has since entered into common usage. Like all the planets in our Solar System, it orbits our Sun, and has played an important role in the evolution and history of our Solar System.
Structure and Composition:
The Asteroid Belt consists of several large bodies, along with millions of smaller size. The larger bodies, such as Ceres, Vesta, Pallas, and Hygiea, account for half of the belt’s total mass, with almost one-third accounted for by Ceres alone. Beyond that, over 200 asteroids that are larger than 100 km in diameter, and 0.7–1.7 million asteroids with a diameter of 1 km or more.
It total, the Asteroid Belt’s mass is estimated to be 2.8×1021 to 3.2×1021 kilograms – which is equivalent to about 4% of the Moon’s mass. While most asteroids are composed of rock, a small portion of them contain metls such as iron and nickel. The remaining asteroids are made up of a mix of these, along with carbon-rich materials. Some of the more distant asteroids tend to contain more ices and volatiles, which includes water ice.
Despite the impressive number of objects contained within the belt, the Main Belt’s asteroids are also spread over a very large volume of space. As a result, the average distance between objects is roughly 965,600 km (600,000 miles), meaning that the Main Belt consists largely of empty space. In fact, due to the low density of materials within the Belt, the odds of a probe running into an asteroid are now estimated at less than one in a billion.
The main (or core) population of the asteroid belt is sometimes divided into three zones, which are based on what is known as “Kirkwood gaps”. Named after Daniel Kirkwood, who announced in 1866 the discovery of gaps in the distance of asteroids, these gaps are similar to what is seen with Saturn’s and other gas giants’ systems of rings.
Origin:
Originally, the Asteroid Belt was thought to be the remnants of a much larger planet that occupied the region between the orbits of Mars and Jupiter. This theory was originally suggested by Heinrich Olbders to William Herschel as a possible explanation for the existence of Ceres and Pallas. However, this hypothesis has since been shown to have several flaws.
For one, the amount of energy required to destroy a planet would have been staggering, and no scenario has been suggested that could account for such events. Second, there is the fact that the mass of the Asteroid Belt is only 4% that of the Moon (and 22% that of Pluto). The odds of a cataclysmic collision with such a tiny body are very unlikely. Lastly, the significant chemical differences between the asteroids do no point towards a common origin.
Today, the scientific consensus is that, rather than fragmenting from an original planet, the asteroids are remnants from the early Solar System that never formed a planet at all. During the first few million years of the Solar System’s history, gravitational accretion caused clumps of matter to form out of an accretion disc. These clumps gradually came together, eventually undergoing hydrostatic equilibrium (become spherical) and forming planets.
However, within the region of the Asteroid Belt, planestesimals were too strongly perturbed by Jupiter’s gravity to form a planet. As such, these objects would continue to orbit the Sun as they had before, with only one object (Ceres) having accumulated enough mass to undergo hydrostatic equilibrium. On occasion, they would collide to produce smaller fragments and dust.
The asteroids also melted to some degree during this time, allowing elements within them to be partially or completely differentiated by mass. However, this period would have been necessarily brief due to their relatively small size. It likely ended about 4.5 billion years ago, a few tens of millions of years after the Solar System’s formation.
Though they are dated to the early history of the Solar System, the asteroids (as they are today) are not samples of its primordial self. They have undergone considerable evolution since their formation, including internal heating, surface melting from impacts, space weathering from radiation, and bombardment by micrometeorites. Hence, the Asteroid Belt today is believed to contain only a small fraction of the mass of the primordial belt.
Computer simulations suggest that the original asteroid belt may have contained mass equivalent to the Earth. Primarily because of gravitational perturbations, most of the material was ejected from the belt a million years after its formation, leaving behind less than 0.1% of the original mass. Since then, the size distribution of the asteroid belt is believed to have remained relatively stable.
When the asteroid belt was first formed, the temperatures at a distance of 2.7 AU from the Sun formed a “snow line” below the freezing point of water. Essentially, planetesimals formed beyond this radius were able to accumulate ice, some of which may have provided a water source of Earth’s oceans (even more so than comets).
Distance from the Sun:
Located between Mars and Jupiter, the belt ranges in distance between 2.2 and 3.2 astronomical units (AU) from the Sun – 329 million to 478.7 million km (204.43 million to 297.45 million mi). It is also an estimated to be 1 AU thick (149.6 million km, or 93 million mi), meaning that it occupies the same amount of distance as what lies between the Earth to the Sun.
The distance of an asteroid from the Sun (its semi-major axis) depends upon its distribution into one of three different zones based on the Belt’s “Kirkwood Gaps”. Zone I lies between the 4:1 resonance and 3:1 resonance Kirkwood gaps, which are roughly 2.06 and 2.5 AUs (3 to 3.74 billion km; 1.86 to 2.3 billion mi) from the Sun, respectively.
Zone II continues from the end of Zone I out to the 5:2 resonance gap, which is 2.82 AU (4.22 billion km; 2.6 mi) from the Sun. Zone III, the outermost section of the Belt, extends from the outer edge of Zone II to the 2:1 resonance gap, located some 3.28 AU (4.9 billion km; 3 billion mi) from the Sun.
While many spacecraft have been to the Asteroid Belt, most were passing through on their way to the outer Solar System. Only in recent years, with the Dawn mission, that the Asteroid Belt has been a focal point of scientific research. In the coming decades, we may find ourselves sending spaceships there to mine asteroids, harvest minerals and ices for use here on Earth.
Okay, so this article is Colonizing the Outer Solar System, and is actually part 2 of our team up with Fraser Cain of Universe Today, who looked at colonizing the inner solar system. You might want jump over there now and watch that part first, if you are coming in from having seen part 1, welcome, it is great having you here.
Without further ado let us get started. There is no official demarcation between the inner and outer solar system but for today we will be beginning the outer solar system at the Asteroid Belt.
The Asteroid Belt is always of interest to us for colonization. We have talked about mining them before if you want the details on that but for today I’ll just remind everyone that there are very rich in metals, including precious metals like gold and platinum, and that provides all the motivation we need to colonize them. We have a lot of places to cover so we won’t repeat the details on that today.
You cannot terraform asteroids the way you could Venus or Mars so that you could walk around on them like Earth, but in every respect they have a lot going for them as a candidate. They’ve got plenty for rock and metal for construction, they have lots of the basic organic elements, and they even have some water. They also get a decent amount of sunlight, less than Mars let alone Earth, but still enough for use as a power source and to grow plants.
But they don’t have much gravity, which – pardon the pun – has its ups and downs. There just isn’t much mass in the Belt. The entire thing has only a small fraction of the mass of our moon, and over half of that is in the four biggest asteroids, essentially dwarf planets in their own right. The remainder is scattered over millions of asteroids. Even the biggest, Ceres, is only about 1% of 1% of Earth’s mass, has a surface gravity of 3% Earth-normal, and an escape velocity low enough most model rockets could get into orbit. And again, it is the biggest, most you could get away from by jumping hard and if you dropped an object on one it might take a few minutes to land.
You can still terraform one though, by definition too. The gentleman who coined the term, science fiction author Jack Williamson, who also coined the term genetic engineering, used it for a smaller asteroid just a few kilometers across, so any definition of terraforming has to include tiny asteroids too.
Of course in that story it’s like a small planet because they had artificial gravity, we don’t, if we want to fake gravity without having mass we need to spin stuff around. So if we want to terraform an asteroid we need to hollow it out and fill it with air and spin it around.
Of course you do not actually hollow out the asteroid and spin it, asteroids are loose balls of gravel and most would fly apart given any noticeable spin. Instead you would hollow it out and set a cylinder spinning inside it. Sort of like how a good thermos has an outside container and inside one with a layer of vacuum in between, we would spin the inner cylinder.
You wouldn’t have to work hard to hollow out an asteroid either, most aren’t big enough to have sufficient gravity and pressure to crush an empty beer can even at their center. So you can pull matter out from them very easily and shore up the sides with very thin metal walls or even ice. Or just have your cylinder set inside a second non-spinning outer skin or superstructure, like your washer or dryer.
You can then conduct your mining from the inside, shielded from space. You could ever pressurize that hollowed out area if your spinning living area was inside its own superstructure. No gravity, but warmth and air, and you could get away with just a little spin without tearing it apart, maybe enough for plants to grow to normally.
It should be noted that you can potentially colonize even the gas giants themselves, even though our focus today is mostly on their moons. That requires a lot more effort and technology then the sorts of colonies we are discussing today, Fraser and I decided to keep things near-future and fairly low tech, though he actually did an article on colonizing Jupiter itself last year that was my main source material back before got to talking and decided to do a video together.
Hydrogen is plentiful on Jupiter itself and floating refineries or ships that fly down to scoop it up might be quite useful, but again today we are more interested in its moons. The biggest problem with colonizing the moons of Jupiter is all the radiation the planet gives off.
Europa is best known as a place where the surface is covered with ice but beneath it is thought to be a vast subsurface ocean. It is the sixth largest moon coming right behind our own at number five and is one of the original four moons Galileo discovered back in 1610, almost two centuries before we even discovered Uranus, so it has always been a source of interest. However as we have discovered more planets and moons we have come to believe quite a few of them might also have subsurface oceans too.
Now what is neat about them is that water, liquid water, always leaves the door open to the possibility of life already existing there. We still know so little about how life originally evolved and what conditions permit that to occur that we cannot rule out places like Europa already having their own plants and animals swimming around under that ice.
They probably do not and obviously we wouldn’t want to colonize them, beyond research bases, if they did, but if they do not they become excellent places to colonize. You could have submarine cities in such places floating around in the sea or those buried in the surface ice layer, well shielded from radiation and debris. The water also geysers up to the surface in some places so you can start off near those, you don’t have to drill down through kilometers of ice on day one.
Water, and hydrogen, are also quite uncommon in the inner solar system so having access to a place like Europa where the escape velocity is only about a fifth of our own is quite handy for export. Now as we move on to talk about moons a lot it is important to note that when I say something has a fifth of the escape velocity of Earth that doesn’t mean it is fives time easier to get off of. Energy rises with the square of velocity so if you need to go five times faster you need to spend 5-squared or 25 times more energy, and even more if that place has tons of air creating friction and drag, atmospheres are hard to claw your way up through though they make landing easier too. But even ignoring air friction you can move 25 liters of water off of Europa for every liter you could export from Earth and even it is a very high in gravity compared to most moons and comets. Plus we probably don’t want to export lots of water, or anything else, off of Earth anyway.
We should start by noting two things. First, the Asteroid Belt is not the only place you find asteroids, Jupiter’s Trojan Asteroids are nearly as numerous, and every planet, including Earth, has an equivalent to Jupiter’s Trojan Asteroids at its own Lagrange Points with the Sun. Though just as Jupiter dwarfs all the other planets so to does its collection of Lagrangian objects. They can quite big too, the largest 624 Hektor, is 400 km across, and has a size and shape similar to Pennsylvania.
And as these asteroids are at stable Lagrange Points, they orbit with Jupiter but always ahead and behind it, making transit to and from Jupiter much easier and making good waypoints.
Before we go out any further in the solar system we should probably address how you get the energy to stay alive. Mars is already quite cold compared to Earth, and the Asteroids and Jupiter even more so, but with thick insulation and some mirrors to bounce light in you can do fairly decently. Indeed, sunlight out by Jupiter is already down to just 4% of what Earth gets, meaning at Jovian distances it is about 50 W/m²
That might not sound like much but it is actually almost a third of what average illumination is on Earth, when you factor in atmospheric reflection, cloudy days, nighttime, and higher, colder latitudes. It is also a good deal brighter than the inside of most well-lit buildings, and is enough for decently robust photosynthesis to grow food. Especially with supplemental light from mirrors or LED growth lamps.
But once you get out to Saturn and further that becomes increasingly impractical and a serious issue, because while food growth does not show up on your electric bill it is what we use virtually all our energy for. Closer in to the sun we can use solar panels for power and we do not need any power to grow food. As we get further out we cannot use solar and we need to heat or cold habitats and supply lighting for food, so we need a lot more power even as our main source dries up.
So what are our options? Well the first is simple, build bigger mirrors. A mirror can be quite large and paper thin after all. Alternatively we can build those mirrors far away, closer to the sun, and and either focus them on the place we want illuminated or send an energy beam, microwaves perhaps or lasers, out to the destination to supply energy.
We also have the option of using fission, if we can find enough Uranium or Thorium. There is not a lot of either in the solar system, in the area of about one part per billion, but that does amount to hundreds of trillions of tons, and it should only take a few thousand tons a year to supply Earth’s entire electric grid. So we would be looking at millions of years worth of energy supply.
Of course fusion is even better, particularly since hydrogen becomes much more abundant as you get further from the Sun. We do not have fusion yet, but it is a technology we can plan around probably having inside our lifetimes, and while uranium and thorium might be counted in parts per billion, hydrogen is more plentiful than every other element combines, especially once you get far from the Sun and Inner Solar System.
So it is much better power source, an effectively unlimited one except on time scales of billions and trillion of years. Still, if we do not have it, we still have other options. Bigger mirrors, beaming energy outwards from closer to the Sun, and classic fission of Uranium and Thorium. Access to fusion is not absolutely necessary but if you have it you can unlock the outer solar system because you have your energy supply, a cheap and abundant fuel supply, and much faster and cheaper spaceships.
Of course hydrogen, plain old vanilla hydrogen with one proton, like the sun uses for fusion, is harder to fuse than deuterium and may be a lot longer developing, we also have fusion using Helium-3 which has some advantages over hydrogen, so that is worth keeping in mind as well as we proceed outward.
Okay, let’s move on to Saturn, and again our focus is on its moons more than the planet itself. The biggest of those an the most interesting for colonization is Titan.
Titan is aptly named, this titanic moon contains more mass than than all of Saturn’s sixty or so other moons and by an entire order of magnitude at that. It is massive enough to hold an atmosphere, and one where the surface pressure is 45% higher than here on Earth. Even though Titan is much smaller than Earth, its atmosphere is about 20% more massive than our own. It’s almost all nitrogen too, even more than our own atmosphere, so while you would need a breather mask to supply oxygen and it is also super-cold, so you’d need a thick insulated suit, it doesn’t have to be a pressure suit like it would on Mars or almost anyplace else.
There’s no oxygen in the atmosphere, what little isn’t nitrogen is mostly methane and hydrogen, but there is plenty of oxygen in the ice on Titan which is quite abundant. So it has everything we need for life except energy and gravity. At 14% of earth normal it is probably too low for people to comfortably and safely adapt to, but we’ve already discussed ways of dealing with that. It is low enough that you could probably flap your arms and fly, if you had wing attached.
It needs some source of energy though, and we discussed that. Obviously if you’ve got fusion you have all the hydrogen you need, but Titan is one of those places we would probably want to colonize early on if we could, it is something you need a lot of to terraform other places, and is also rich in a lot of the others things we want. So we often think of it as a low-tech colony since it is one we would want early on.
In an scenario like that it is very easy to imagine a lot of local transit between Titan and its smaller neighboring moons, which are more rocky and might be easier to dig fissile materials like Uranium and Thorium out of. You might have a dozen or so small outposts on neighboring moons mining fissile materials and other metals and a big central hub on Titan they delivered that too which also exported Nitrogen to other colonies in the solar system.
Moving back and forth between moons is pretty easy, especially since things landing on Titan can aerobrake quite easily, whereas Titan itself has a pretty strong gravity well and thick atmosphere to climb out of but is a good candidate for a space elevator, since it requires nothing more sophisticated than a Lunar Elevator on our own moon and has an abundant supply of the materials needed to make Zylon for instance, a material strong enough to make an elevator there and which we can mass manufacture right now.
Titan might be the largest and most useful of Saturn’s moons, but again it isn’t the only one and not all of the other are just rocks for mining. At last count it has over sixty and many of them quite large. One of those, Enceladus, Saturn’s sixth largest moon, is a lot like Jupiter’s Moon Europa, in that we believe it has a large and thick subsurface ocean. So just like Europa it is an interesting candidate for Colonization. So Titan might be the hub for Saturn but it wouldn’t be the only significant place to colonize.
While Saturn is best known for its amazing rings, they tend to be overlooked in colonization. Now those rings are almost all ice and in total mass about a quarter as much as Enceladus, which again is Saturn’s Sixth largest moon, which is itself not even a thousandth of the Mass of Titan.
In spite of that the rings are not a bad place to set up shop. Being mostly water, they are abundant in hydrogen for fusion fuel and have little mass individually makes them as easy to approach or leave as an asteroid. Just big icebergs in space really, and there are many moonlets in the rings that can be as large as half a kilometer across. So you can burrow down inside one for protection from radiation and impacts and possibly mine smaller ones for their ice to be brought to places where water is not abundant.
In total those rings, which are all frozen water, only mass about 2% of Earth’s oceans, and about as much as the entire Antarctic sheet. So it is a lot of fresh water that is very easy to access and move elsewhere, and ice mines in the rings of Saturn might be quite useful and make good homes. Living inside an iceball might not sound appealing but it is better than it sounds like and we will discuss that more when we reach the Kupier Belt.
But first we still have two more planets to look at, Uranus and Neptune.
Uranus, and Neptune, are sometimes known as Ice Giants instead of Gas Giants because it has a lot more water. It also has more ammonia and methane and all three get called ices in this context because they make up most of the solid matter when you get this far out in the solar system.
While Jupiter is over a thousand times the mass of Earth, Uranus weighs in at about 15 times the Earth and has only about double the escape velocity of Earth itself, the least of any of the gas giants, and it’s strange rotation, and its strange tilt contributes to it having much less wind than other giants. Additionally the gravity is just a little less than Earth’s in the atmosphere so we have the option for floating habitats again, though it would be a lot more like a submarine than a hot air balloon.
Like Venus, Uranus has very long days, at least in terms of places receiving continual sunlight, the poles get 42 years of perpetual sunlight then 42 of darkness. Sunlight being a relative term, the light is quite minimal especially inside the atmosphere. The low wind in many places makes it a good spot for gas extraction, such as Helium-3, and it’s a good planet to try to scoop gas from or even have permanent installations.
Now Uranus has a large collection of moons as well, useful and colonizable like the other moons we have looked at, but otherwise unremarkable beyond being named for characters from Shakespeare, rather than the more common mythological names. None have atmospheres though there is a possibility Oberon or Titania might have subsurface oceans.
Neptune makes for a brief entry, it is very similar to Uranus except it has the characteristically high winds of gas giants that Uranus’s skewed poles mitigate, meaning it has no advantages over Uranus and the disadvantages of high wind speeds everywhere and being even further from the Sun. It too has moons and one of them, Triton, is thought to have subsurface oceans as well. Triton also presumably has a good amount of nitrogen inside it since it often erupts geysers of nitrogen from its surface.
Triton is one of the largest moons in the solar system, coming in seventh just after our Moon, number 5, and Europa at number 6. Meaning that were it not a moon it would probably qualify as a Dwarf Planet and it is often thought Pluto might be an escaped moon Neptune. So Triton might be one that didn’t escape, or didn’t avoid getting captured. In fact there are an awful lot of bodies in this general size range and composition wandering about in the outer regions of our solar system as we get out into the Kuiper Belt.
The Kuiper Belt is one of those things that has a claim on the somewhat arbitrary and hazy boundary marking the edge of the Solar System. It extends from out past Neptune to beyond Pluto and contains a good deal more mass than the asteroid Belt. It is where a lot of our comets come from and while there is plenty of rocks out there they tend to be covered in ice. In other words it is like our asteroid belt only there’s more of it and the one thing the belt is not very abundant in, water and hydrogen in general, is quite abundant out there. So if you have a power source life fusion they can be easily terraformed and are just as attractive as a source of minerals as the various asteroids and moons closer in.
We mentioned the idea of living inside hollowed out asteroids earlier and you can use the same trick for comets. Indeed you could shape them to be much bigger if you like, since they would be hollow and ice isn’t hard to move and shape especially in zero gravity. Same trick as before, you place a spinning cylinder inside it. Not all the objects entirely ice and indeed your average comet is more a frozen ball of mud then ice with rocky cores. We think a lot of near Earth Asteroids are just leftover comets. So they are probably pretty good homes if you have fusion, lots of fuel and raw materials for both life and construction.
This is probably your cheapest interstellar spacecraft too, in terms of effort anyway. People often talk about re-directing comets to Mars to bring it air and water, but you can just as easily re-direct it out of the solar system entirely. Comets tend to have highly eccentric orbits, so if you capture one when it is near the Sun you can accelerate it then, actually benefiting from the Oberth Effect, and drive it out of the solar system into deep space. If you have a fusion power source to live inside one then you also have an interstellar spaceship drive, so you just carve yourself a small colony inside the comet and head out into deep space.
You’ve got supplies that will last you many centuries at least, even if it were home to tens of thousand of people, and while we think of smaller asteroids and comets as tiny, that’s just in comparison to planets. These things tend to be the size of mountain so there is plenty of living space and a kilometer of dirty ice between you and space makes a great shield against even the kinds of radiation and collisions you can experience at relativistic speeds.
Now the Oort Cloud is much like the Kupier Belt but begins even further out and extends out probably an entire light year or more. We don’t have a firm idea of its exact dimensions or mass, but the current notion is that it has at least several Earth’s worth of mass, mostly in various icy bodies. These will be quite numerous, estimates usually assumes at least trillion icy bodies a kilometer across or bigger, and even more smaller ones. However the volume of space is so large that those kilometer wide bodies might each be a around a billion kilometers distant from neighbors, or about a light hour. So it is spread out quite thinly, and even the inner edge is about 10 light days away.
That means that from a practical standpoint there is no source of power out there, the sun is simply too diffuse for even massive collections of mirrors and solar panels to be of use. It also means light-speed messages home or to neighbors are quite delayed. So in terms of communication it is a lot more like pre-modern times in sparsely settled lands where talking with your nearest neighbors might require an hour long walk over to their farm, and any news from the big cities might take months to percolate out to you.
There’s probably uranium and thorium out there to be found, maybe a decent amount of it, so fission as a power source is not ruled out. If you have fusion instead though each of these kilometer wide icy bodies is like a giant tank of gasoline, and as with the Kupier Belt, ice makes a nice shield against impacts and radiation.
And while there might be trillions of kilometer wide chunks of ice out there, and many more smaller bodies, you would have quite a few larger ones too. There are almost certainly tons of planets in the Pluto size-range out these, and maybe even larger ones. Even after the Oort cloud you would still have a lot of these deep space rogue planets which could bridge the gap to another solar system’s Oort Cloud. So if you have fusion you have no shortage of energy, and could colonize trillions of these bodies. There probably is a decent amount of rock and metal out there too, but that could be your major import/export option shipping home ice and shipping out metals.
That’s the edge of the Solar System so that’s the end of this article. If you haven’t already read the other half, colonizing the inner Solar System, head on over now.
Between the orbits of Mars and Jupiter lies the Solar System’s Main Asteroid Belt. Consisting of millions of objects that range in size from hundreds of kilometers in diameter (like Ceres and Vesta) to one kilometer or more, the Asteroid Belt has long been a source of fascination for astronomers. Initially, they wondered why the many objects that make it up did not come together to form a planet. But more recently, human beings have been eyeing the Asteroid Belt for other purposes.
Whereas most of our efforts are focused on research – in the hopes of shedding additional light on the history of the Solar System – others are looking to tap for its considerable wealth. With enough resources to last us indefinitely, there are many who want to begin mining it as soon as possible. Because of this, knowing exactly how long it would take for spaceships to get there and back is becoming a priority.
Distance from Earth:
The distance between the Asteroid Belt and Earth varies considerably depending on where we measure to. Based on its average distance from the Sun, the distance between Earth and the edge of the Belt that is closest to it can be said to be between 1.2 to 2.2 AUs, or 179.5 and 329 million km (111.5 and 204.43 million mi).
However, at any given time, part of the Asteroid Belt will be on the opposite side of the Sun, relative to Earth. From this vantage point, the distance between Earth and the Asteroid Blt ranges from 3.2 and 4.2 AU – 478.7 to 628.3 million km (297.45 to 390.4 million mi). To put that in perspective, the distance between Earth and the Asteroid Belt ranges between being slightly more than the distance between the Earth and the Sun (1 AU), to being the same as the distance between Earth and Jupiter (4.2 AU) when they are at their closest.
But of course, for reasons of fuel economy and time, asteroid miners and exploration missions are not about to take the long way! As such, we can safely assume that the distance between Earth and the Asteroid Belt when they are at their closest is the only measurement worth considering.
Past Missions:
The Asteroid Belt is so thinly populated that several unmanned spacecraft have been able to move through it on their way to the outer Solar System. In more recent years, missions to study larger Asteroid Belt objects have also used this to their advantage, navigating between the smaller objects to rendezvous with bodies like Ceres and Vesta. In fact, due to the low density of materials within the Belt, the odds of a probe running into an asteroid are now estimated at less than one in a billion.
The first spacecraft to make a journey through the asteroid belt was the Pioneer 10 spacecraft, which entered the region on July 16th, 1972 (a journey of 135 days). As part of its mission to Jupiter, the craft successfully navigated through the Belt and conducted a flyby of Jupiter (in December of 1973) before becoming the first spacecraft to achieve escape velocity from the Solar System.
For the most part, these missions were part of missions to the outer Solar System, where opportunities to photograph and study asteroids were brief. Only the Dawn, NEAR and JAXA’s Hayabusamissions have studied asteroids for a protracted period in orbit and at the surface. Dawn explored Vesta from July 2011 to September 2012, and is currently orbiting Ceres (and sending back gravity data on the dwarf planet’s gravity) and is expected to remain there until 2017.
Fastest Mission to Date:
The fastest mission humanity has ever mounted was the New Horizons mission, which was launched from Earth on Jan. 19th, 2006. The mission began with a speedy launch aboard an Atlas V rocket, which accelerated it to a a speed of about 16.26 km per second (58,536 km/h; 36,373 mph). At this speed, the probe reached the Asteroid Belt by the following summer, and made a close approach to the tiny asteroid 132524 APL by June 13th, 2006 (145 days after launching).
However, even this pales in comparison to Voyager 1, which was launched on Sept. 5th, 1977 and reached the Asteroid Belt on Dec. 10th, 1977 – a total of 96 days. And then there was the Voyager 2 probe, which launched 15 days after Voyager 1 (on Sept. 20th), but still managed to arrive on the same date – which works out to a total travel time of 81 days.
Not bad as travel times go. At these speed, a spacecraft could make the trip to the Asteroid Belt, spend several weeks conducting research (or extracting ore), and then make it home in just over six months time. However, one has to take into account that in all these cases, the mission teams did not decelerate the probes to make a rendezvous with any asteroids.
Ergo, a mission to the Asteroid Belt would take longer as the craft would have to slow down to achieve orbital velocity. And they would also need some powerful engines of their own in order to make the trip home. This would drastically alter the size and weight of the spacecraft, which would inevitably mean it would be bigger, slower and a heck of a lot more expensive than anything we’ve sent so far.
Another possibility would be to use ionic propulsion (which is much more fuel efficient) and pick up a gravity assist by conducting a flyby of Mars – which is precisely what the Dawn mission did. However, even with a boost from Mars’ gravity, the Dawn mission still took over three years to reach the asteroid Vesta – launching on Sept. 27th, 2007, and arriving on July 16th, 2011, (a total of 3 years, 9 months, and 19 days). Not exactly good turnaround!
Proposed Future Methods:
A number of possibilities exist that could drastically reduce both travel time and fuel consumption to the Asteroid Belt, many of which are currently being considered for a number of different mission proposals. One possibility is to use spacecraft equipped with nuclear engines, a concept which NASA has been exploring for decades.
In a Nuclear Thermal Propulsion (NTP) rocket, uranium or deuterium reactions are used to heat liquid hydrogen inside a reactor, turning it into ionized hydrogen gas (plasma), which is then channeled through a rocket nozzle to generate thrust. A Nuclear Electric Propulsion (NEP) rocket involves the same basic reactor converting its heat and energy into electrical energy, which would then power an electrical engine.
In both cases, the rocket would rely on nuclear fission or fusion to generates propulsion rather than chemical propellants, which has been the mainstay of NASA and all other space agencies to date. According to NASA estimates, the most sophisticated NTP concept would have a maximum specific impulse of 5000 seconds (50 kN·s/kg).
Using this engine, NASA scientists estimate that it would take a spaceship only 90 days to get to Mars when the planet was at “opposition” – i.e. as close as 55,000,000 km from Earth. Adjusted for a distance of 1.2 AUs, that means that a ship equipped with a NTP/NEC propulsion system could make the trip in about 293 days (about nine months and three weeks). A little slow, but not bad considering the technology exists.
Another proposed method of interstellar travel comes in the form of the Radio Frequency (RF) Resonant Cavity Thruster, also known as the EM Drive. Originally proposed in 2001 by Roger K. Shawyer, a UK scientist who started Satellite Propulsion Research Ltd (SPR) to bring it to fruition, this drive is built around the idea that electromagnetic microwave cavities can allow for the direct conversion of electrical energy to thrust.
According to calculations based on the NASA prototype (which yielded a power estimate of 0.4 N/kilowatt), a spacecraft equipped with the EM drive could make the trip to Mars in just ten days. Adjusted for a trip to the Asteroid Belt, so a spacecraft equipped with an EM drive would take an estimated 32.5 days to reach the Asteroid Belt.
Impressive, yes? But of course, that is based on a concept that has yet to be proven. So let’s turn to yet another radical proposal, which is to use ships equipped with an antimatter engine. Created in particle accelerators, antimatter is the most dense fuel you could possibly use. When atoms of matter meet atoms of antimatter, they annihilate each other, releasing an incredible amount of energy in the process.
According to the NASA Institute for Advanced Concepts (NIAC), which is researching the technology, it would take just 10 milligrams of antimatter to propel a human mission to Mars in 45 days. Based on this estimate, a craft equipped with an antimatter engine and roughly twice as much fuel could make the trip to the Asteroid Belt in roughly 147 days. But of course, the sheer cost of creating antimatter – combined with the fact that an engine based on these principles is still theoretical at this point – makes it a distant prospect.
Basically, getting to the Asteroid Belt takes quite a bit of time, at least when it comes to the concepts we currently have available. Using theoretical propulsion concepts, we are able to cut down on the travel time, but it will take some time (and lots of money) before those concepts are a reality. However, compared to many other proposed missions – such as to Europa and Enceladus – the travel time is shorter, and the dividends quite clear.
As already stated, there are enough resources – in the form of minerals and volatiles – in the Asteroid Belt to last us indefinitely. And, should we someday find a way to cost-effective way to send spacecraft there rapidly, we could tap that wealth and begin to usher in an age of post-scarcity! But as with so many other proposals and mission concepts, it looks like we’ll have to wait for the time being.
We continue our “Definitive Guide to Terraforming” series with a look at another body in our Solar System – the dwarf planet Ceres. Like many moons in the outer Solar System, Ceres is a world of ice and rock, and is the largest body in the Asteroid Belt. Humans beings could one day call it home, but could its surface also be made “Earth-like”?
In the Solar System’s Main Asteroid Belt, there are literally millions of celestial bodies to be found. And while the majority of these range in size from tiny rocks to planetesimals, there are also a handful of bodies that contain a significant percentage of the mass of the entire Asteroid Belt. Of these, the dwarf planet Ceres is the largest, constituting of about a third of the mass of the belt and being the sixth-largest body in the inner Solar System by mass and volume.
In addition to its size, Ceres is the only body in the Asteroid Belt that has achieved hydrostatic equilibrium – a state where an object becomes rounded by the force of its own gravity. On top of all that, it is believed that this dwarf planet has an interior ocean, one which contains about one-tenth of all the water found in the Earth’s oceans. For this reason, the idea of colonizing Ceres someday has some appeal, as well as terraforming.
Continuing with our “Definitive Guide to Terraforming“, Universe Today is happy to present our guide to terraforming Saturn’s Moons. Beyond the inner Solar System and the Jovian Moons, Saturn has numerous satellites that could be transformed. But should they be?
Around the distant gas giant Saturn lies a system of rings and moons that is unrivaled in terms of beauty. Within this system, there is also enough resources that if humanity were to harness them – i.e. if the issues of transport and infrastructure could be addressed – we would be living in an age a post-scarcity. But on top of that, many of these moons might even be suited to terraforming, where they would be transformed to accommodate human settlers.
As with the case for terraforming Jupiter’s moons, or the terrestrial planets of Mars and Venus, doing so presents many advantages and challenges. At the same time, it presents many moral and ethical dilemmas. And between all of that, terraforming Saturn’s moons would require a massive commitment in time, energy and resources, not to mention reliance on some advanced technologies (some of which haven’t been invented yet).
Continuing with our “Definitive Guide to Terraforming“, Universe Today is happy to present to our guide to terraforming Jupiter’s Moons. Much like terraforming the inner Solar System, it might be feasible someday. But should we?
Fans of Arthur C. Clarke may recall how in his novel, 2010: Odyssey Two (or the movie adaptation called 2010: The Year We Make Contact), an alien species turned Jupiter into a new star. In so doing, Jupiter’s moon Europa was permanently terraformed, as its icy surface melted, an atmosphere formed, and all the life living in the moon’s oceans began to emerge and thrive on the surface.
As we explained in a previous video (“Could Jupiter Become a Star“) turning Jupiter into a star is not exactly doable (not yet, anyway). However, there are several proposals on how we could go about transforming some of Jupiter’s moons in order to make them habitable by human beings. In short, it is possible that humans could terraform one of more of the Jovians to make it suitable for full-scale human settlement someday.