NASA’s OSIRIS-REx Asteroid Sampler Slingshots Around Earth Friday, Sept. 22 – Catch It If You Can!

Artist's concept shows the OSIRIS-REx spacecraft passing by Earth on Sept. 22, 2017. Credits: NASA's Goddard Space Flight Center/University of Arizona
Artist’s concept shows the OSIRIS-REx spacecraft passing by Earth on Sept. 22, 2017. Credits: NASA’s Goddard Space Flight Center/University of Arizona

KENNEDY SPACE CENTER, FL – Barely a year after NASA’s OSIRIS-REx robotic asteroid sampler launched on a trailblazing mission to snatch a soil sample from a pristine asteroid and return it to Earth for research analysis, the probe is speeding back home for a swift slingshot around our home planet on Friday Sept. 22 to gain a gravity assist speed boost required to complete its journey to the carbon rich asteroid Bennu and back.

As it swings by Earth NASA’s first ever asteroid sample return mission, OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security – Regolith Explorer), will pass only 11,000 miles (17,000 kilometers) above Earth just before 12:52 p.m. EDT on Friday.

And NASA is asking the public to try and ‘Catch It If You Can’ – by waving hello and/or taking snapshots during and after the probes high speed flyby.

Plus you can watch NASA Facebook Live event at Noon Friday: https://www.facebook.com/NASAGoddard/

OSIRIS-REx will be approaching Earth at a velocity of about 19,000 mph on Friday as it begins flying over Australia during the Earth Gravity Assist (EGA) maneuver.

Since blastoff from the Florida Space Coast on Sept. 8, 2016 the probe has already racked up almost 600 million miles on its round trip journey from Earth and back to set up Friday’s critical gravity assist maneuver to Bennu and back.

As OSIRIS-REx continues along its flight path the spacecraft will reach its closest point to Earth over Antarctica, just south of Cape Horn, Chile. It will gain a velocity boost of about 8400 mph.

The spacecraft will also conduct a post flyby science campaign by collecting images and science observations of Earth and the Moon four hours after closest approach to calibrate its five science instruments.

NASA’s OSIRIS-REx asteroid sampling spacecraft, return capsule and payload fairings inside the Payloads Hazardous Servicing Facility high bay at NASA’s Kennedy Space Center is being processed for Sep. 8, 2016 launch to asteroid Bennu from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

The allure of Bennu is that it is a carbon rich asteroid – thus OSIRIS-REx could potentially bring back samples infused with the organic chemicals like amino acids that are the building blocks of life as we know it.

“We are interested in that material because it is a time capsule from the earliest stages of solar system formation,” OSIRIS-Rex Principal Investigator Dante Lauretta told Universe Today in a prelaunch interview with the spacecraft in the cleanroom at NASA’s Kennedy Space Center.

The do or die gravity assist plunge is absolutely essential to set OSIRIS-REx on course to match the asteroid’s path and speed when it reaches the vicinity of asteroid Bennu a year from now in October 2018.

“The Earth Gravity Assist is a clever way to move the spacecraft onto Bennu’s orbital plane using Earth’s own gravity instead of expending fuel,” says Lauretta, of the University of Arizona, Tucson.

Just how close to Earth will OSIRIS-REx be during its flyby on Friday? The spacecraft will come within 11,000 miles (17,000 km) of the Earth’s surface as it passes over Antarctica at 12:52 a.m. EDT. on Sept. 22, 2017. Credits: NASA’s Goddard Space Flight Center/University of Arizona

Bennu’s orbit around the Sun is tilted at a six-degree inclination with respect to Earth’s orbital plane.

The asteroid is 1,614-foot (500 m) in diameter and crosses Earth’s orbit around the sun every six years.

Numerous NASA spacecraft – including NASA’s just completed Cassini mission to Saturn – utilize gravity assists around a variety of celestial bodies to gain speed and change course to save vast amounts of propellant and time in order to accomplish science missions and visit additional target objects that would otherwise be impossible.

The flyby will be a nail-biting time for NASA and the science team because right afterwards the refrigerator sized probe will be out of contact with engineers – unable to receive telemetry for about an hour.

“For about an hour, NASA will be out of contact with the spacecraft as it passes over Antarctica,” said Mike Moreau, the flight dynamics system lead at Goddard, in a statement.

“OSIRIS-REx uses the Deep Space Network to communicate with Earth, and the spacecraft will be too low relative to the southern horizon to be in view with either the Deep Space tracking station at Canberra, Australia, or Goldstone, California.”

NASA says the team will regain communication with OSIRIS-REx roughly 50 minutes after closest approach over Antarctica at about 1:40 p.m. EDT.

The post flyby science campaign is set to begin at 4:52 p.m. EDT, Friday, Sept. 22.

United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT on September 8, 2016 in this remote camera view taken from inside the launch pad perimeter. Note the newly install crew access arm and white room for astronaut flights atop Atlas starting in early 2018. Credit: Ken Kremer/kenkremer.com

The OSIRIS-Rex spacecraft originally departed Earth atop a United Launch Alliance Atlas V rocket under crystal clear skies on September 8, 2016 at 7:05 p.m. EDT from Space Launch Complex 41 at Cape Canaveral Air Force Station, Florida.

Everything with the launch went exactly according to plan for the daring mission boldly seeking to gather rocks and soil from carbon rich Bennu.

View of science instrument suite and TAGSAM robotic sample return arm on NASA’s OSIRIS-REx asteroid sampling spacecraft inside the Payloads Hazardous Servicing Facility at NASA’s Kennedy Space Center. Probe is slated for Sep. 8, 2016 launch to asteroid Bennu from Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

OSIRIS-Rex is equipped with an ingenious robotic arm named TAGSAM designed to collect at least a 60-gram (2.1-ounce) sample and bring it back to Earth in 2023 for study by scientists using the world’s most advanced research instruments.

“The primary objective of the OSIRIS-Rex mission is to bring back pristine material from the surface of the carbonaceous asteroid Bennu,” OSIRIS-Rex Principal Investigator Dante Lauretta told me in the prelaunch interview in the KSC cleanroom with the spacecraft as the probe was undergoing final launch preparations.

“We are interested in that material because it is a time capsule from the earliest stages of solar system formation.”

“It records the very first material that formed from the earliest stages of solar system formation. And we are really interested in the evolution of carbon during that phase. Particularly the key prebiotic molecules like amino acids, nucleic acids, phosphates and sugars that build up. These are basically the biomolecules for all of life.”

1 day to Earth flyby for OSIRIS-Rex

NASA and the mission team is also inviting the public to get engaged by participating in the Wave to OSIRIS-REx social media campaign.

“Individuals and groups from anywhere in the world are encouraged to take photos of themselves waving to OSIRIS-REx, share them using the hashtag #HelloOSIRISREx and tag the mission account in their posts on Twitter (@OSIRISREx) or Instagram (@OSIRIS_REx).

Participants may begin taking and sharing photos at any time—or wait until the OSIRIS-REx spacecraft makes its closest approach to Earth at 12:52p.m. EDT on Friday, Sept. 22.”

The probe’s flight path during the flyby will pass through the ring of numerous satellites orbiting in geosynchronous orbit, but none are expected to be within close range.

Members of the OSIRIS-REx mission team celebrate the successful spacecraft launch on Sept. 8, 2016 atop ULA Atlas V at the post-launch briefing at the Kennedy Space Center, FL. Principal Investigator Dante Lauretta is 4th from right, NASA Planetary Science Director Jim Green is center, 5th from left. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing onsite NASA mission and launch reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Dr Dante Lauretta, principal investigator for OSIRIS-REx at the University of Arizona, Tucson, and Dr. Ken Kremer, Universe Today point to NASA’s OSIRIS-REx asteroid sampling spacecraft inside the Payloads Hazardous Servicing Facility at the Kennedy Space Center on Aug. 20, 2016. Credit: Ken Kremer/kenkremer.com

300 Asteroids to be Explored by a Fleet of Nanosatellites

Artist’s concept of the spacecraft. Credit: FMI

The more that planetary astronomers study asteroids, they more they’re realizing just how varied and different they can be. Some, like 16 Psyche are made of solid nickel and iron, while others are made of rock. Some asteroids have been found with moons, rings, and some icy objects really blur the line between comet and asteroid. In order to truly understand their nature, it would take dozens or maybe hundreds of individual missions on the scale of Rosetta or New Horizons.

Or maybe not.

Asteroid 1998 QE2 and its moon
Asteroid 1998 QE2 and its moon

A team of researchers with the Finnish Meteorological Institute announced today that the best way to explore the varied objects in the asteroid belt would be with a fleet of tiny nanosatellites – 50 ought to do the trick to explore 300 separate asteroids, bringing the individual costs down to a few hundred thousand dollars per asteroid. During a presentation they made at the European Planetary Science Congress (EPSC) 2017 in Riga on Tuesday, the researchers showed how these tiny satellites could travel out to the asteroid belt, gather data on individual asteroids, and return to Earth to download their data.

The 50 satellites could be launched together in a single vehicle, and then separate once in space, or they could fill extra space in existing launches. The exact launch orbit doesn’t matter, as long as the spacecraft can get outside the Earth’s protective magnetosphere, where they can catch a ride on the solar wind.

Once in space, 5-kg spacecraft would deploy a 20 km-long wire tether that would catch the solar wind; the constantly flowing particles coming off the Sun, imparting a tiny thrust. This is known as an “E-sail” or electric sail. Unlike a solar sail, which depends on the momentum of photons coming from the Sun, electric sails harvest the momentum of charged protons.

Artist's illustration of the Heliopause Electrostatic Rapid Transit System.
Artist’s illustration of the Heliopause Electrostatic Rapid Transit System.

Researchers are still figuring out if this is an effective propulsion system for spacecraft. An Estonian prototype satellite was launched back in 2015, but its onboard motor failed to reel out its tether. The Finnish Aalto-1 satellite launched in June, 2017, and will test out a prototype electric sail in addition to several other experiments over the course of the next year. Even more advanced versions have been proposed, such as Heliopause Electrostatic Rapid Transit System (or HERTS), a mission which could reach 100 astronomical units in 10-15 years by deploying a huge electrified net in space.

In the case of this asteroid mission, each satellite’s electric sail would only give it a change in velocity of only one millimeter per second, but over the course of a 3.2 year mission, it would allow the spacecraft to reach the asteroid belt and return to Earth.

Mission trajectory. The spacecraft would take 3.2 years to reach the asteroid belt and return.
Mission trajectory. The spacecraft would take 3.2 years to reach the asteroid belt and return.
In fact, the spacecraft would use their tethers to maneuver within the asteroid belt, flying past as many targets as they can with this minuscule thrust. Each satellite should be able to reach at least 6-7 numbers asteroids, and maybe even more smaller ones.

Each satellite would be equipped with a telescope with only a 40 mm aperture. That’s the size of a small spotting scope or half a pair of binoculars, but it would be enough to resolve features on the surface of an asteroid as large as 100 meters across from 1,000 km away. In addition to taking visual images of the asteroid targets, the spacecraft would be equipped with an infrared spectrometer to determine its meteorology.

Because the spacecraft are so small, they won’t be capable of carrying a transmitter to send their data back to Earth. Instead, they’d store all their scientific findings on a memory card, and then dump their data when their orbit brings them back close to Earth.

The researchers estimate that development of the mission would probably cost about 60 million Euros, or $70 million dollars, bringing the cost per asteroid down to about 200,000 Euros or $240,000.

Further Reading: Europlanet, Science Daily

Large Near-Earth Asteroid Will Pass Earth by This September

Artist's impression of a Near-Earth Asteroid passing by Earth. Credit: ESA

Within Earth’s orbit, there are literally thousands of what are known as Near-Earth Objects (NEOs), more than fourteen thousands of which are asteroids that periodically pass close to Earth. Since the 1980s, these objects have become a growing source of interest to astronomers, due to the threat they sometimes represent. But as ongoing studies and decades of tracking the larger asteroids has shown, they usually just pass Earth by.

More importantly, it is only on very rare occasions (i.e. over the course of millions of years) that a larger asteroid will come close to colliding with Earth. For example, this September 1st, the Near-Earth Asteroid (NEA) known as 3122 Florence, will pass by Earth, but poses no danger of hitting us. Good thing too, since this Near-Earth Asteroid is one of the largest yet to be discovered, measuring about 4.4 km (2.7 mi) in diameter!

To put that in perspective, the asteroid which is thought to have killed the dinosaurs roughly 65 million years ago (aka. the Cretaceous–Paleogene extinction event) is believed to have measured 10 km (6 mi) in diameter. This impact also destroyed three-quarters of the plant and animal species on Earth, hence why organizations like NASA’s Center for Near-Earth Object Studies (CNEOS) is in he habit of tracking the larger NEAs.

Asteroid Florence, a large near-Earth asteroid, will pass safely by Earth on Sept. 1, 2017, at a distance of about 7 million km (4.4 million mi). Credits: NASA/JPL-Caltech

Once again, NASA has determined that this particular asteroid will sail harmlessly by, passing Earth at a minimum distance of over 7 million km (4.4 million mi), or about 18 times the distance between the Earth and the Moon. As Paul Chodas – NASA’s manager of CNEOS at the Jet Propulsion Laboratory in Pasadena, California – said in a NASA press statement:

“While many known asteroids have passed by closer to Earth than Florence will on September 1, all of those were estimated to be smaller. Florence is the largest asteroid to pass by our planet this close since the NASA program to detect and track near-Earth asteroids began.”

Rather than being a threat, the flyby of this asteroid will be an opportunity for scientists to study it up close. NASA is planning on conducting radar studies of Florence using the Goldstone Solar System Radar in California, and the National Science Foundation’s (NSF) Arecibo Observatory in Peurto Rico. These studies are expected to yield more accurate data on its size, and reveal surface details at resolutions of up to 10 m (30 feet).

This asteroid was originally discovered on March 2nd, 1981, by American astronomer Schelte Bus at the Siding Spring Observatory in southwestern Australia. It was named in honor of Florence Nightingale (1820-1910) the founder of modern nursing. Measurements obtained by NASA’s Spitzer Space Telescope and the NEOWISE mission are what led to the current estimates on its size – about 4.4 km (2.7 mi) in diameter.

Artist’s rendition of how far Florence will pass by Earth. Credits: NASA/JPL-Caltech

The upcoming flyby will be the closest this asteroid has passed to Earth since August 31st, 1890, where it passed at a distance of 6.7 million km (4.16 million mi). Between now and then, it also flew by Earth on August 29th, 1930, passing Earth at a distance of about 7.8 million km (4.87 million mi). While it will pass Earth another seven times over the course of the next 500 years, it will not be as close as it will be this September until after 2500.

For those interesting into doing a little sky watching, Florence will be brightening substantially by late August and early September. During this time, it will be visible to those using small telescopes for several nights as it moves through the constellations of Piscis Austrinus, Capricornus, Aquarius and Delphinus.

Be sure to check out these animations of Florence’s orbit and its close flyby to Earth:

https://echo.jpl.nasa.gov/asteroids/Florence/Florence_orbit.mov

https://echo.jpl.nasa.gov/asteroids/Florence/Florence_Earth_flyby.mov

Further Reading: NASA

Watch Live 24-Hour Webcast for International Asteroid Day

Picture of the asteroid that exploded over Cherlyabinsk on Feb 15, 2013. Credit: Tuvix/Youtube

Every day, Earth is hit by 60 to 300 metric tons of space dust and smaller meteoroids. But sometimes, larger and more dangerous space rocks plummet to Earth, such as on June 30, 1908 when an estimated 40 meter-wide meteoroid exploded over the Tunguska, Siberia region in Russia, devastating 2000 sq. kilometers (770 square miles) of forest. As the 2013 Chelyabinsk meteor event attests, the likelihood of a similar event happening again is not an “if” but a “when.”

To raise public awareness about asteroid impact hazards and to urge political leaders to work together to be prepared, the United Nations proclaimed June 30 as International Asteroid Day.

A first-ever 24-hour Asteroid Day program will be feature nearly 1,000 events around the world. It starts at 9 p.m. EDT on June 29 (1 a.m. June 30 GMT), streaming online at the Asteroid Day webcast.

The events start in Tucson, Arizona with an event hosted by our friend, Meteorite Man and Action Scientist Geoff Notkin speaking with Dante Lauretta and Heather Enos from the OSIRIS-REx mission to asteroid Bennu, Eric Christensen, director, Catalina Sky Survey for Near-Earth Objects and many more.

Other events around the world feature Brian Cox, Neil deGrasse Tyson, Brian May, Peter Gabriel, as well as dozens of expert scientists, technologists and researchers in planetary science, NASA astronauts Rusty Schweickart, Ed Lu and Nicole Stott, ESA astronauts Michel Tognini, Jean-François Clervoy; and Romanian astronaut Dorin Prunariu.

NASA and ESA are both hosting events as well. You can see the entire lineup of events here (Google document) and find additional information at the Asteroid Day Live website.

In addition, the Discovery Channel, has produced two specials about asteroids and Asteroid Day to air June 30 around the world: “How to Survive an Asteroid Impact” and a three-minute Virtual Reality video that re-enacts the Tunguska event, provides viewers with an insight into the risks of asteroids, how scientists are trying to protect our planet, and what viewers should do if an asteroid is about to impact their city.

There is also a seven-part series called “Scientists Rock” that introduces you to the people working to protect us from Asteroids.

According to a press release from Asteroid Day, central to Asteroid Day is the 100x Declaration, calling for the 100-fold increase in the detection and monitoring of asteroids. Signed to date by more than 60,000 people around the world, the Declaration resolves to “solve humanity’s greatest challenges to safeguard our families and quality of life on Earth in the future. The Declaration is available online for the signature of anyone concerned about advancing asteroid research and technology.

Astronomy Cast Ep. 452: Summer Observing Challenges

Summer is almost here, and for the northern hemisphere, that means warm nights for observing. But what to observe? We’re here with a list of events and targets for you to enjoy over the summer. Get your calendars handy, and start organizing some events with your friends, and then get out there!

Visit the Astronomy Cast Page to subscribe to the audio podcast!

We usually record Astronomy Cast as a live Google+ Hangout on Air every Friday at 1:30 pm Pacific / 4:30 pm Eastern. You can watch here on Universe Today or from the Astronomy Cast Google+ page.

Dinosaur Killing Asteroid Hit in Exactly the Wrong Place

When an asteroid struck the Yucatan region about 66 million years ago, it triggered the extinction of the dinosaurs. ESA's Hera mission is visiting the smallest spacerock ever as part of our effort to not get creamed by an asteroid. Credit: NASA/Don Davis
When an asteroid struck the Yucatan region about 66 million years ago, it triggered the extinction of the dinosaurs. ESA's Hera mission is visiting the smallest spacerock ever as part of our effort to not get creamed by an asteroid. Credit: NASA/Don Davis

The asteroid that struck Earth about 66 million years ago and led to the mass extinction of dinosaurs may have hit one of the worst places possible as far as life on Earth was concerned. When it struck, the resulting cataclysm choked the atmosphere with sulphur, which blocked out the Sun. Without the Sun, the food chain collapsed, and it was bye-bye dinosaurs, and bye-bye most of the other life on Earth, too.

But, as it turns out, if it had struck a few moments earlier or later, it would not have hit the Yucatan, and things may have turned out differently. Why? Because of the concentration of the mineral gypsum in that area.

The place where the asteroid hit Earth is called the Chicxulub Crater, and scientists have been studying that area to try to learn more about the impact event that altered the course of life on Earth. An upcoming BBC documentary called “The Day The Dinosaurs Died,” focuses on what happened when the asteroid struck. Drill-core samples from the Yucatan area help explain the events that followed the impact.

The drilling rig off the coast of the Yucatan. The rig was there in the Spring of 2016 obtaining samples from the seafloor. Image: BBC/Barcroft Productions.
The drilling rig off the coast of the Yucatan. The rig was there in the Spring of 2016 obtaining samples from the seafloor. Image: BBC/Barcroft Productions.

The core samples, which are from as deep as 1300 m beneath the Gulf of Mexico, are from a feature called the peak ring.

When the asteroid struck Earth, it excavated a crater 100 km across and 30 km deep. This crater collapsed into a wider but shallower crater 200 km across and a few km deep. Then the center of the crater rebounded, and collapsed again, leaving the peak ring feature. The Chicxulub crater is now partly under water, and that’s where a drilling rig was set up to take samples.

The peak ring is at the center of the crater, offshore of the Yucatan Peninsula. Image: NASA/BBC
The peak ring is at the center of the crater, offshore of the Yucatan Peninsula. Image: NASA/BBC

The core samples revealed rock that has been heavily fractured and altered by immense pressures. The same impact that altered those rocks would have generated an enormous amount of heat, and that heat created an enormous cloud of sulphur from the vaporized gypsum. That cloud persisted, which led to a global winter. Temperatures dropped, plant growth came to a standstill, and the course of events on Earth were altered forever.

“Had the asteroid struck a few moments earlier or later, rather than hitting shallow coastal waters it might have hit deep ocean,” documentary co-presenter Ben Garrod told the BBC.

“This is where we get to the great irony of the story – because in the end it wasn’t the size of the asteroid, the scale of blast, or even its global reach that made dinosaurs extinct – it was where the impact happened,” said Ben Garrod, who presents “The Day The Dinosaurs Died” with Alice Roberts.

“An impact in the nearby Atlantic or Pacific oceans would have meant much less vaporised rock – including the deadly gypsum. The cloud would have been less dense and sunlight could still have reached the planet’s surface, meaning what happened next might have been avoided,” said Garrod.

In the documentary, host Alice Roberts will also visit a quarry in New Jersey, where fossil evidence shows a massive die-off in a very short period of time. In fact, these creatures could have died on the very day that the asteroid struck.

The core samples from the drilling rig show rocks that were subjected to immense heat and pressure at the time of the impact. Image: Barcroft Productions/BBC
The core samples from the drilling rig show rocks that were subjected to immense heat and pressure at the time of the impact. Image: Barcroft Productions/BBC

“All these fossils occur in a layer no more than 10cm thick,” palaeontologist Ken Lacovara tells Alice. “They died suddenly and were buried quickly. It tells us this is a moment in geological time. That’s days, weeks, maybe months. But this is not thousands of years; it’s not hundreds of thousands of years. This is essentially an instantaneous event.”

There’s lots of evidence showing that an asteroid struck Earth about 66 million years ago, causing widespread extinction. NASA satellite images clearly show crater features, now obscured by 66 million years of geological activity, but still visible.

There’s also what’s called the K-T Boundary, or Cretaceous-Tertiary Boundary. It’s a geological signature dating to 66 million years ago, which marks the end of the Cretaceous Period. In that boundary is a layer of iridium at very high concentrations, much higher than is normally present in the Earth’s crust. Since iridium is much more abundant in asteroids, the conclusion is that it was probably deposited by an asteroid.

But this is the first evidence that shows how critical the actual location of the event may have been. If it had not struck where it had, dinosaurs may never have gone extinct, you and I would not be here, and things on Earth could look much different.

It might sound like the stuff of science fiction, but who knows? Maybe a race of intelligent lizards might already have mastered interstellar travel.

Weekly Space Hangout – April 14, 2017: Brad Peterson and LUVOIR

Host: Fraser Cain (@fcain)

Special Guest:
This week’s special guest is Brad Peterson. Brad is a returning guest, and since his last appearance, he has been asked by NASA to serve as a community co-chair, with Debra Fischer of Yale, for the Science and Technology Definition Team for the Large Ultraviolet, Optical, and Infrared Surveyor (LUVOIR).

Brad has carried out research on active galactic nuclei for his entire career. He has been developing the technique of reverberation mapping for over 25 years. He is currently on appointment at STScI as Distinguished Visiting Astronomer, after retiring from the faculty of The Ohio State University in 2015 with 35 years of service, the last nine as chair of the Department of Astronomy. He is also a member of the NASA Advisory Council, for which he chairs the Science Committee. He was recently named chair-elect for the Astronomy Section of the AAAS.

Guests:

Morgan Rehnberg (MorganRehnberg.com / @MorganRehnberg ChartYourWorld.org)

Their stories this week:

Updates on ocean worlds

A half-trillion dollar trip to Mars?

Could an asteroid strike be the source of RNA?

We use a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!

Announcements:
On Friday, May 12, the WSH will welcome authors Michael Summers and James Trefil to the show to discuss their new book, Exoplanets: Diamond Worlds, Super Earths, Pulsar Planets and the New Search for Life Beyond Our Solar System. In anticipation of their appearance, the WSH Crew is pleased to offer our viewers a chance to win one of two hard cover copies of Exoplanets. Two winners will be drawn live by @fraser during our show on May 12th. To enter for a chance to win a copy of Exoplanets, send an email to: [email protected] with the Subject: Exoplanets. Be sure to include your name and email address in the body of your message so that we can contact the winners afterward. All entries must be electronically postmarked by 23:59 EST on May 10, 2017, in order to be eligible. No purchase necessary. Two winners will be selected at random from all eligible entries. Good luck!

If you’d like to join Fraser and Paul Matt Sutter on their tour to Iceland in February 2018, you can find the information at astrotouring.com.

If you would like to sign up for the AstronomyCast Solar Eclipse Escape, where you can meet Fraser and Pamela, plus WSH Crew and other fans, visit our site linked above and sign up!

If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Universe Today, or the Universe Today YouTube page<

Confirmed: Ceres Has a Transient Atmosphere

This image of Ceres approximates how the dwarf planet's colors would appear to the eye. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Sometimes they see it, sometimes they don’t. That’s why scientists have never been completely sure if Ceres has an atmosphere or not. But now data from the Dawn spacecraft — in orbit of Ceres — confirms the dwarf planet really does have a very weak atmosphere, but it comes and goes.

The on-again-off-again nature of Ceres’ atmosphere appears to be linked to solar activity. When energetic particles from the Sun hit exposed ice within the craters on Ceres, the ice can sublimate and create an “exosphere” that lasts for a week or so.

Michaela Villarreal from UCLA, lead author of the new study, and her team wrote in their paper that the “atmosphere appeared shortly after the passage of a large enhancement in the local flux of high-energy solar protons,” and explained that when energetic particles from the Sun hit exposed ice and ice near the surface of the dwarf planet, it transfers energy to the water molecules as they collide. This frees the water molecules from the ground, allowing them to escape and create a tenuous atmosphere.

NASA’s Dawn spacecraft determined the hydrogen content of the upper yard, or meter, of Ceres’ surface. Blue indicates where hydrogen content is higher, near the poles, while red indicates lower content at lower latitudes. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA/PSI

A process like this could also be taking place on the Moon, and is likely similar to the process similar to what takes place on comets.

“Our results also have implications for other airless, water-rich bodies of the solar system, including the polar regions of the moon and some asteroids,” said Chris Russell, principal investigator of the Dawn mission, also at UCLA. “Atmospheric releases might be expected from their surfaces, too, when solar activity erupts.”

There have been hints of an atmosphere at Ceres since the early 1990’s. In 1991, the International Ultraviolet Explorer satellite detected hydroxyl emission from Ceres, but not in 1990. Then, in 2007, the European Southern Observatory’s Very Large Telescope searched for a hydroxide emission, but came up empty. The European Space Agency’s Herschel Space Observatory detected water vapor as a possible weak atmosphere, on three occasions, but did not on a fourth attempt.

Dwarf planet Ceres is located in the asteroid belt, between the orbits of Mars and Jupiter. Observations by ESA’s Herschel space observatory between 2011 and 2013 find that the dwarf planet has a thin water-vapour atmosphere. It is the first unambiguous detection of water vapour around an object in the asteroid belt. The inset shows the water absorption signal detected by Herschel on 11 October 2012. Copyright ESA/ATG medialab/Küppers et al.

The Dawn spacecraft itself saw evidence of a transient atmosphere when it arrived at Ceres in March 2015, with data from its Gamma Ray and Neutron Detector instrument. It also has found ample evidence for water in the form of ice, found just underground at higher latitudes, where temperatures are lower. Ice has been detected directly at the small bright crater called Oxo and in at least one of the craters that are persistently in shadow in the northern hemisphere. Other research has suggested that persistently shadowed craters are likely to harbor ice. Additionally, the shapes of craters and other features are consistent with significant water-ice content in the crust.

The team’s research shows the atmosphere doesn’t necessarily show up when Ceres is close to the Sun or when sunlight hits the ice directly, but from energetic particles released by the Sun when its activity level is high. For example, the best detections of Ceres’ atmosphere did not occur at its closest approach to the Sun.

Also, the times where no atmosphere was detected coincided with lower solar activity, so the researchers say this suggests that solar activity, rather than Ceres’ proximity to the Sun, is a more important factor in generating an exosphere.

Ceres actually is now getting closer to the Sun. However, since the Sun appears to be in a very quiet period, Villarreal, Russell and team predict an atmosphere won’t show up, that the dwarf planet will have little to no atmosphere for some time. However, they said both Dawn and other observatories should keep an eye on what’s happening at Ceres.

Paper: The Dependence of the Cerean Exosphere on Solar Energetic Particle Events

JPL press release

Mars’ Trojans Show Remains Of Ancient Planetoid

A new study led by researchers from OU indicates that the outer planets could be why Mars is significantly smaller than Earth. Credit: NASA

Trojan asteroids are a fascinating thing. Whereas the most widely known are those that orbit Jupiter (around its L4 and L5 Lagrange Points), Venus, Earth, Mars, Uranus and Neptune have populations of these asteroids as well. Naturally, these rocky objects are a focal point for a lot of scientific research, since they can tell us much about the formation and early history of the Solar System.

And now, thanks to an international team of astronomers, it has been determined that the Trojan asteroids that orbit Mars are likely the remains of a mini-planet that was destroyed by a collision billions of years ago. Their findings are detailed in a paper that will be published in The Monthly Notices of the Royal Astronomical Society later this month.

For the sake of their study, the team – which was led by Galin Borisov and Apostolos Christou of the Armagh Observatory and Planetarium in Northern Ireland, examined the composition of Marian Trojans. This consisted of using spectral data obtained by the XSHOOTER spectrograph on the Very Large Telescope (VLT) and photometric data from the National Astronomical Observatory‘s two-meter telescope, and the William Herschel Telescope.

Diagram of Jupiter and the inner Solar System, showing the Jupiter and Martian Trojans (light green) and the Main Belt (teal). Credit: Wikipedia Commons/AndrewBuck

Specifically, they examined two members of the Eureka family – a group of Martian Trojans located at the planet’s L5 point. It is here that eight of Mars’ nine known Trojans exist in stable orbits (the other being at L4), and which are named after the first Martian Trojan ever discovered – 5261 Eureka. Like all Trojans, the Eurekas are thought to have orbited Mars ever since the formation of the Solar System.

In fact, astronomers have suspected for some time that the Martian Trojans could be the survivors of an early generation of planetesimals from which the inner Solar System formed. As Dr. Christou told Universe Today via email:

“[The Trojan family] is unique in the Solar System, in more ways than one. Unlike every other family that exists in the Main Asteroid Belt between Mars and Jupiter, it is made up of olivine-rich asteroids. Also, the asteroids are < 2km across, much smaller than we can see at other families, basically because they are much closer to the Earth than other asteroids. Finally, it is the closest family we know to the Sun, and this has implications on how it formed in that the tiny but continuous action of sunlight may have played a role.”

After combining spectrographic and photometric data on these asteroids, the team found that they were rich in the mineral olivine – a magnesium iron silicate that is a primary component of the Earth’s mantle and (it is believed) other terrestrial planets. This was unusual find as far as asteroids go, but it was even more interesting when compared to 5261 Eureka itself – which also has an olivine-rich composition.

The first X-ray view of Martian soil by Curiosity rover at the “Rocknest” (October 17, 2012),  showing traces of feldspar, pyroxenes, and olivine. Credit: NASA/JPL-Caltech/Ames

Given that the Eureka asteroids also have similar orbits, the team concluded that every member of this family is likely to have a common composition – and hence, a common origin. These findings could have drastic implications for both the origin of Martian Trojans, and the origin of the inner Solar System. As Dr. Christou explained:

“The presence of asteroids with exposed olivine on their surfaces constrains the sequence of events that led to Mars’ formation. Olivine forms within objects that grew large enough to differentiate into a crust, mantle and core. Therefore, these objects must have formed before Mars did and were available to participate in Mars’ formation. To expose the olivine, it is necessary to break these objects up through collisions. Our ongoing work indicates that this is unlikely to have happened after the Solar System settled down in its current configuration, therefore there must have been period of intense collisional evolution during the planet formation process.”

In other words, if Mars formed from several types of material that was mixed together, these asteroids would be samples of the original source – i.e. planetesimals. By examining these asteroids further, scientists will be able to learn more about the process through which Mars came to be and (as Christou says) help us “unscramble the Martian omelette.”

This research is also likely to reveal much about the formation of Earth and the other terrestrial planets of the Solar System. Similar efforts will be made with NASA’s upcoming Lucy mission, which is scheduled to launch in October of 2021. Between 2027 and 2033, this probe will study Jupiter’s Trojan population, obtaining information on six of the asteroid’s geology, surface features, compositions, masses and densities to learn more about their origins.

Further Reading: MNRAS, Armagh Observatory

This Asteroid Broke In Half, and Then Both Halves Grew Tails Like Comets

Images from the Hubble Space Telescope of activated asteroid P/2013P5 where the dust tail can be seen. Source: NASA/ESA.

In the 18th and 19th centuries, astronomers made some profound discoveries about asteroids and comets within our Solar System. From discerning the true nature of their orbits to detecting countless small objects in the Main Asteroid Belt, these discoveries would inform much of our modern understanding of these bodies.

A general rule about comets and asteroids is that whereas the former develop comas or tails as they undergo temperature changes, the latter do not. However, a recent discovery by an international group of researchers has presented another exception to this rule. After viewing a parent asteroid in the Main Belt that split into a pair, they noted that both fragments formed tails of their own.

The reason asteroids do not do behave like comets has a lot to do with where they are situated. Located predominantly in the Main Belt, these bodies have relatively circular orbits around the Sun and do not experience much in the way of temperature changes. As a result, they do not form tails (or halos), which are created when volatile compounds (i.e. nitrogen, hydrogen, carbon dioxide, methane, etc.) sublimate and form clouds of gas.

Images of the P/2016 J1 asteroid pair taken on May 15th, 2016. They show a central region, the asteroid, and a diffuse blot corresponding to the dust tail. Credit: IAA

As astronomical phenomena go, asteroid pairs are quite common. They are created when an asteroid breaks in two, which can be the result of excess rotational speed, impact with another body, or because of the destabilization of binary systems (i.e. asteroid that orbit each other). Once this happens, these two bodies will orbit the Sun rather than being gravitational bound to each other, and progressively drift farther apart.

However, when monitoring the asteroid P/2016 J1, an international team from the Institute of Astrophysics in Andalusia (IAA-CSIC) noticed something interesting. Apparently, both fragments in the pair had become “activated” – that is to say, they had formed tails. As Fernando Moreno, a researcher at IAA-CSIC who led the project, said in an Institute press release:

“Both fragments are activated, i.e., they display dust structures similar to comets. This is the first time we observe an asteroid pair with simultaneous activity… In all likelihood, the dust emission is due to the sublimation of ice that was left exposed after the fragmentation.”

While this is not the first instance where asteroids proved to be an exception to the rule and began forming clouds of sublimated gas around them, this is the first time it was observed happening with an asteroid pair. And it seems that the formation of this tail was in response to the breakup, which is believed to have happened six years ago, during the previous orbit of the asteroid.

An artist’s conception of two tidally locked objects orbiting the Sun from afar (2010 WG9). Credit: zmescience

In 2016, the research team used the Great Telescope of the Canary Islands (GTC) on the island of La Palma and the Canada-France-Hawaii Telescope (CFHT) at Mauna Kea to confirm that the asteroid had formed a pair. Further analysis revealed that the asteroids were activated between the end of 2015 and the beginning of 2016, when they reached the closest point in their orbit with the Sun (perihelion).

This analysis also revealed that the fragmentation of the asteroid and the bout of activity were unrelated. In other words, the sublimation has happened since the breakup and was not the cause of it. Because of this, these objects are quite unique as far as Solar System bodies go.

Not only are they two more exceptions to the rule governing comets and asteroids (there are only about twenty known cases of asteroids forming tales), the timing of their breakup also means that they are the youngest asteroid pair in the Solar System to date. Not bad for a bunch of rocks!

Further Reading: IAA