If we are indeed stardust, then what will our future hold? And what happened to all that other dust that isn’t in people or planets? These are pretty heady questions perhaps best left for late at night. Since the age of Galileo and perhaps even beforehand these inquisitive night goers have sought an understanding of “What’s out there?” Paul Murdin in his book “Rock Legends – the Asteroids and Their Discoverers” doesn’t answer the big questions directly but he does shed some capricious light upon what the night time reveals and what the future may hold.
We’re pretty confident that our solar system evolved from a concentration of dust. Let’s leave aside the question about where the dust came from and assume that, at a certain time and place, there was enough free dust that our Sun was made and so too all the planets. In a nice, orderly universe all the dust would have settled out. However, as we’ve discovered since at least the time of Galileo this didn’t happen. There are a plethora of space rocks — asteroids — out wandering through our solar system.
And this is where Murdin’s book steps up. Once people realized that there more than just a few asteroids out there, they took to identifying and classifying them. The book takes a loosely chronological look at this classification and at our increasing knowledge of the orbits, sizes, densities and composition of these space wanderers.
Fortunately this book doesn’t just simply list discovery dates and characteristics. Rather, it includes significant amounts of its contents on the juicy human story that tags along, especially with the naming. It shows that originally these objects were considered special and refined and thus deserved naming with as much aplomb as the planets; i.e. using Greek and Roman deities. Then the number of discovered asteroids outpaced the knowledge of ancient lore, so astronomers began using the names of royalty, friends and eventually pets. Today with well over a million asteroids identified setting a name to an asteroid doesn’t quite have the same lustre, as the author is quick to point out with his own asteroid (128562) Murdin. Yet perhaps there’s not much else to do while waiting for a computer program to identify a few hundred more accumulations of dust, so naming some of the million nameless asteroids could happily fill in some time.
With the identifying of the early asteroid discoverers and the fun names they chose, this part of the book is quite light and simple. It expands the fun by wandering a bit just like the asteroids. From it you learn of the discovery of palladium, the real spelling of Spock’s name and the meaning of YORP. Sometimes the wandering is quite far, as with the origins of the Palladium Theatre, the squabbling surrounding the naming of Ceres and the status of the Cubewanos. Yet it is this capriciousness that gives the book its flavour and makes it great for a budding astronomer or a reference for a generalist. The occasional bouts of reflection on the future of various asteroids and even of the Earth add a little seriousness to an otherwise pleasant prose.
So if you’re wondering about the next occultation of Eris or the real background of the name (3512) Eriepa then you’re into asteroids. And perhaps you’re learning how to survive on a few hours of sleep so you can search for one more faint orbiting mote. Whether that’s the case or you’re just interested in how such odd names came to represent these orbiting rocks then Paul Murdin’s book “Rock Legends – the Asteroids and Their Discoverers” will be a treat. Read it and maybe you can use it to place your own curve upon an asteroid’s name.
Everyone knows it was a large asteroid striking Earth that led to the demise of the dinosaurs. But how many near misses were there? Modern humans have been around for about 225,000 years, so we must have come close to death by asteroid more than once in our time. We would have had no clue.
Of course, it’s the actual strikes that are cause for concern, not near misses. Efforts to predict asteroid strikes, and to catalogue asteroids that come close to Earth, have reached new levels. NASA’s newest tool in the fight against asteroids is called Scout. Scout is designed to detect asteroids approaching Earth, and it just passed an important test. Scout was able to give us 5 days notice of an approaching asteroid.
Here’s how Scout works. A telescope in Hawaii, the Panoramic Survey Telescope & Rapid Response System (Pan-STARRS) detected the asteroid, called 2016 UR36, and then alerted other ‘scopes. Three other telescopes confirmed 2016 UR36 and were able to narrow down its trajectory. They also learned its size, about 5 to 25 meters across.
After several hours, we knew that UR 36 would come close to us, but was not a threat to impact Earth. UR 36 would pass Earth at a distance of about 498,000 km. That’s about 1.3 times further away than the Moon.
The key part of this is that we had 5 days notice. And five days notice is a lot more than the few hours that we usually have. The approach of 2016 UR36 was the first test for the Scout system, and it passed the test.
Asteroids that come close to Earth are called Near Earth Objects (NEOs) and finding them and tracking them has become a growing concern for NASA. In fact NASA has about 15,000 NEOs catalogued, and they’re still finding about 5 more every night.
Not only does NASA have the Scout system, whose primary role is to speed up the confirmation process for approaching asteroids, but they also have the Sentry program. Sentry’s role is a little different.
Sentry’s job is to focus on asteroids that are large enough to wipe out a city and cause widespread destruction. That means NEOs that are larger than about 140 metres. Sentry has over 600 large NEOs catalogued, and astronomers think there are a lot more of them out there.
NASA also has the Planetary Defense Coordination Office (PDCO), which has got to be the greatest name for an office ever. (Can you imagine having that on your business card?) Anyway, the PDCO has the over-arching role of preparing for asteroid impacts. The Office is there to make emergency plans to deal with the impact aftermath.
5 days notice for a small asteroid striking Earth is a huge step for preparedness. Resources can be mobilized, critical infrastructure can be protected, maybe things like atomic power plants can be shut down if necessary. And, of course, people can be evacuated.
We haven’t always had any notice for approaching asteroids. Look at the Chelyabinsk meteor from 2013. It was a 10,000 ton meteor that exploded over the Chelyabinsk Oblast, injuring 1500 people and damaging an estimated 3,000 building in 6 cities. If it had been a little bigger, and reached the surface of the Earth, the damage would have been widespread. 5 days notice would likely have saved a lot of lives.
Smaller asteroids may be too small to detect when they’re very far away. But larger ones can be detected when they’re still 10, 20, even 30 years away. That’s enough time to figure out how to stop them. And if you can reach them when they’re that far away, you only need to nudge them a little to deflect them away from Earth, and maybe to the Sun to be destroyed.
Large asteroids with the potential to cause widespread destruction are the attention-getters. Hollywood loves them. But it may be more likely that we face numerous impacts from smaller asteroids, and that they could cause more damage overall. Scout’s ability to detect these smaller asteroids, and give us several days notice of their approach, could be a life-saver.
Water has been showing up in all sorts of unexpected places in our Solar System, such as the Moon, Mercury and Jupiter’s moon Ganymede. Add one more place to the list: Asteroid 16 Psyche. This metal-rich asteroid may have traces of water molecules on its surface that shouldn’t be there, researchers say.
Psyche is thought to be the largest metallic asteroid in the Solar System, at 300 km (186 miles) across and likely consists of almost pure nickel-iron metal. Scientists had thought Psyche was made up of the leftover core of a protoplanet that was mostly destroyed by impacts billions of years ago, but they may now be rethinking that.
“The detection of a 3 micron hydration absorption band on Psyche suggests that this asteroid may not be metallic core, or it could be a metallic core that has been impacted by carbonaceous material over the past 4.5 Gyr,” the team said in their paper.
While previous observations of Psyche had shown no evidence for water on its surface, new observations with the NASA Infrared Telescope Facility found evidence for volatiles such as water or hydroxyl on the asteroid’s surface. Hydroxyl is a free radical consisting of one hydrogen atom bound to one oxygen atom.
“We did not expect a metallic asteroid like Psyche to be covered by water and/or hydroxyl,” said Vishnu Reddy, from the University of Arizona’s Lunar and Planetary Laboratory, a co-author of the new paper about Psyche. “Metal-rich asteroids like Psyche are thought to have formed under dry conditions without the presence of water or hydroxyl, so we were puzzled by our observations at first.”
Asteroids usually fall into two categories: those rich in silicates, and those rich in carbon and volatiles. Metallic asteroids like Psyche are extremely rare, making it a laboratory to study how planets formed.
For now, the source of the water on Psyche remains a mystery. But Redddy and his colleagues propose a few different explanations. One is, again, Psyche may not be as metallic as previously thought. Another option is that the water or hydroxyl could be the product of solar wind interacting with silicate minerals on Psyche’s surface, such as what is occurring on the Moon.
The most likely explanation, however is that the water seen on Psyche might have been delivered by carbonaceous asteroids that impacted Psyche in the distant past, as is thought to have occurred on early Earth.
“Our discovery of carbon and water on an asteroid that isn’t supposed to have those compounds supports the notion that these building blocks of life could have been delivered to our Earth early in the history of our solar system,” said Reddy.
If we’re lucky, we won’t have to wait too long to find out more about Psyche. A mission to Psyche is on the short list of mission proposals being considered by NASA, with a potential launch as early as 2020. Reddy and team said an orbiting spacecraft could explore this unique asteroid and determine if whether there is water or hydroxyl on the surface.
Mars and Earth have several things in common. Like Earth, Mars is a terrestrial planet (i.e. composed of silicate rock and minerals). It also has polar ice caps, a tilted axis, and evidence of liquid water on its surface. On top of that, Mars and Earth are the only terrestrial planets in the Solar System to have natural satellites.
In fact, Mars has two satellites, which are appropriately named Phobos and Deimos (named after the Greek gods of horror and terror, respectively). Of the two, Deimos is the smaller moon and orbits at a greater distance from the planet. And like Deimos, it has the characteristics of an asteroid, which is a strong indication of where it may have come from.
Discovery and Naming:
Deimos was discovered in 1877 by American astronomer Asaph Hall, who was deliberately searching for Martian moons at the United States Naval Observatory (USNO). Its name was suggested shortly thereafter by Henry Madan, the Science Master of Eton College, and was derived from Homer’s The Iliad.
Size, Mass and Orbit:
Deimos has a mean radius of between 6 and 6.38 km (3.73 – 3.96 mi). However, the moon is not a round body, and measures roughly 15 × 12.2 × 11 km (9.32 x 7.58 x 6.835 mi), making it 0.56 times the size of Phobos. At 1.4762 × 1015 kg, or 1.4762 trillion metric tons, Deimos is 1/49,735,808 times as massive as the Moon. As a result, Deimos’ surface gravity is very weak, just 0.003 m/s – or 0.000306 g.
Deimos’ orbit is nearly circular, ranging from 23455.5 km at periapsis (closest) to 23470.9 km at apoapsis (farthest) – which works out to an average distance (semi-major axis) of 23,463.2 km. With an average orbital speed of 1.3513 km/s, it takes 30 hours, 18 minutes and 43.2 seconds to complete a single orbit (or 1.263 days).
Composition and Surface Features:
Deimos, like Phobos, is similar in composition to carbonaceous chondrite and silicate/carbon-rich (C- and D-type) asteroids. Though the surface is cratered, it is considerably smoother than Phobos’ surface, which is due to its craters being filled with regolith.
Only two geological features on Deimos have been given names – the craters of Voltaire and Swift. These features take their names from the famous 17th/18th century French and English writers who speculated about the existence of two Martian moons before they were even discovered.
Origin:
The origin of Mars’ moons remains unknown, but some hypotheses exist. The most widely-accepted theory states that, based on their similarity to C- or D-type asteroids, they are objects that were kicked out of the Asteroid Belt by Jupiter’s gravity. They were then captured by Mars’ and fell into their current orbits due to atmospheric drag or tidal forces.
However, this theory remains controversial since Mars’ current atmosphere is too thin. As such, it is highly unlikely that it would have been able to cause enough drag to slow either moon down enough for them to have achieved their current orbits. A modified version of this hypothesis is that Phobos and Deimos were once a binary asteroid, which was then captured and separated by tidal forces.
Other popular hypotheses include that they were formed by accretion in their current orbits, or that Mars was once surrounded by many large asteroids which were ejected into orbit it after a collision with a planetesimal – like the one that formed Earth’s Moon. Over time, these would have fallen back to the surface until only Phobos and Deimos remained.
Exploration:
Overall, Deimos history of exploration is tied to that of Mars and Phobos. While no landings have been made on its surface, several have been proposed in the past. The first of these were made as part of the Soviet Phobos (Fobos) program, which involved two probes – Fobos 1 and 2 – that were launched in July of 1988.
If the first proved successful in landing on Phobos, the second would been diverted to make a landing on Deimos. However, the first probe was lost en route to Mars while the second managed to returned some data and images of Phobos surface before contact was lost.
In 1997-1998, NASA selected the proposed Aladdin mission as a finalist for its Discovery Program. The plan was to visit both Phobos and Deimos with sample return missions involving an orbiter and lander. After reaching the surface, the landers would collect samples and then launch them back to the orbiters (which would return them to Earth). However, the mission was passed over in favor of the MESSENGER probe, which was sent to study Mercury.
Other missions have been proposed with are still under study. These include the “Hall” concept proposed in 2008, which calls for a probe that relies on solar-electric propulsion (SEP) to reach Mars and return with samples to Earth. Another was the Gulliver mission, a concept proposed in 2010 which would attempt to retrieve 1 kg (2.2 lbs) of material from Deimos’ surface.
The planners behind the OSIRIS-REx mission have also proposed mounting a second mission that would return samples from Phobos and Deimos. And at the 2014 Lunar and Planetary Science Conference, a proposal was made for a low-cost mission based on the Lunar Atmosphere Dust and Environment Explorer. It is named the Phobos and Deimos & Mars Environment(PADME) mission, and would involve an orbiter being sent to Mars by 2021.
Deimos has been photographed from the surface of Mars by both the Opportunity and Curiosity rovers. And someday, actual astronauts may be able to look up at it from the Martian surface. From their point of view, Deimos would appear like a star to the unaided eye. At its brightest, it might look like Venus does from here on Earth.
For those watching over an extended period of time, Deimos would pass directly in front of the Sun quite regularly. It’s too small to cause a total eclipse, it would look like a black dot moving across the face of the Sun.
If you’ve seen at least one other episode of the Guide to Space, you know I’m obsessed about the Fermi Paradox. This idea that the Universe is big and old, and should be teeming with life. And yet, we have no evidence that it exists out there. We wonder, where are all the aliens?
Ah well, maybe we’re in a cosmic zoo, or maybe the Universe is just too big, or the laws of physics prevent any kind of meaningful travel or communications. Fine. I doubt it, but fine.
KENNEDY SPACE CENTER, FL – Bound for Bennu, NASA’s OSIRIS-REx robotic explorer began a trailblazing 7 year round trip sampling sortie on Sept. 8 in search of the origin of life with a spectacular sky show – thrilling spectators ringing the Florida Space Coast.
Hordes of space enthusiasts from all across the globe descended on the Kennedy Space Center and Cape Canaveral region for the chance of a lifetime to witness a once in a lifetime liftoff to the carbon rich asteroid – which could potentially bring back samples infused with the organic chemicals like amino acids that are the building blocks of life as we know it.
NASA’s Origins, Spectral Interpretation, Resource Identification, Security – Regolith Explorer (OSIRIS-REx) spacecraft departed Earth with an on time engine ignition of a United Launch Alliance Atlas V rocket under crystal clear skies on Thursday, September 8 at 7:05 p.m. EDT from Space Launch Complex 41 at Cape Canaveral Air Force Station.
Everything went exactly according to plan for the daring mission bolding seeking to gather rocks and soil from Bennu – using an ingenious robotic arm named TAGSAM – and bring at least a 60-gram (2.1-ounce) sample back to Earth in 2023 for study by scientists using the world’s most advanced research instruments.
“We got everything just exactly perfect,” said Dante Lauretta, the principal investigator for OSIRIS-REx at the University of Arizona, at the post launch briefing at the Kennedy Space Center. “We hit all our milestone within seconds of predicts.
The space rock measures about the size of a small mountain at about a third of a mile in diameter.
And the picture perfect near sunset launch rewarded photographers from near and far with a spectacular series of richly hued photo and video recordings.
So I’ve gathered here a variety of launch imagery from multiple vantage points shot by friends, colleagues and myself – for the enjoyment of readers of Universe Today and Beyond!
As you’ll see and hear the ULA Atlas V rocket integrated with OSIRIS-Rex on top thundered off the Cape’s pad 41 and shot skyward straight up along an equatorial path into Florida’s sun.
From every vantage point the rocket and its ever expanding vapor trail were visible for some 4 or 5 minutes or more. From my location on the roof of NASA’s Vehicle Assembly Building (VAB) the rocket finally arched over nearly straight above us and the sun produced a magnificent thin and nearly straight shadow of the vapor trail on the ground running out to the Atlantic Ocean towards Africa.
It was truly an unforgettable sight to behold. And folks at Playalinda Beach, the best public viewing spot just a few miles north of pad 40 had an uninhibited view of the rocket to the base of the pad – while they waded and swam in the oceans waters with waves crashing on shore as the Atlas rocket blasted to space.
OSIRIS-REx separated as planned from the Atlas V rockets liquid oxygen and liquid hydrogen fueled second stage rocket to fly free at 8:04 p.m. on Sept. 8 – 55 minutes after launch.
The pair of solar arrays deployed as planned to provide the probes life giving power.
The spacecraft was built by prime contractor Lockheed.
“The spacecraft is healthy and functioning properly,” Richard Kuhns, Lockheed Martin OSIRIS-REx program manager, told me in an interview at the post-launch briefing.
“The primary objective of the OSIRIS-Rex mission is to bring back pristine material from the surface of the carbonaceous asteroid Bennu, OSIRIS-Rex Principal Investigator Dante Lauretta told Universe Today in a prelaunch interview in the KSC cleanroom with the spacecraft as the probe was undergoing final preparations for shipment to the launch pad.
“We are interested in that material because it is a time capsule from the earliest stages of solar system formation.”
“It records the very first material that formed from the earliest stages of solar system formation. And we are really interested in the evolution of carbon during that phase. Particularly the key prebiotic molecules like amino acids, nucleic acids, phosphates and sugars that build up. These are basically the biomolecules for all of life.”
The asteroid is 1,614-foot (500 m) in diameter and crosses Earth’s orbit around the sun every six years.
After a two year flight through space, including an Earth swing by for a gravity assisted speed boost in 2017, OSIRIS-REx will reach Bennu in Fall 2018 to begin about 2 years of study in orbit to determine the physical and chemical properties of the asteroid in extremely high resolution.
While orbiting Bennu starting in 2018 it will move in close to explore the asteroid for about two years with its suite of science instruments, scanning in visible and infrared light. After a thorough site selection, it will move carefully towards the surface and extend the 11 foot long TAGSAM robotic arm and snatch pristine soil samples containing organic materials from the surface using the TAGSAM collection dish over just 3 to 5 seconds.
Once a good sample collection is confirmed, the dish will then be placed inside the Earth return canister and be brought back to Earth for study by researchers using all of the most sophisticated science instruments available to humankind.
Using the 11 foot long TAGSAM robotic arm that functions somewhat like a pogo stick, OSIRIS-REx will gather rocks and soil and bring at least a 60-gram (2.1-ounce) sample back to Earth on Sept 24, 2023. It has the capacity to scoop up to about 2 kg or more.
The two stage ULA Atlas V performed flawlessly and delivered OSIRIS-Rex into a hyperbolic trajectory away from Earth.
The 189 foot tall ULA Atlas V rocket launched in the rare 411 configuration for only the 3rd time on this mission – which is the 65th for the Atlas V.
The Atlas 411 vehicle includes a 4-meter diameter large Payload Fairing (PLF) and one solid rocket booster that augments the first stage. The Atlas booster for this mission is powered by the RD AMROSS RD-180 engine and the Centaur upper stage was powered by the Aerojet Rocketdyne RL10A.
The RD-180 burns RP-1 (Rocket Propellant-1 or highly purified kerosene) and liquid oxygen and delivers 860,200 lb of thrust at sea level.
The strap on solid delivers approximately 348,500 pounds of thrust.
The Centaur delivers 22, 230 lbf of thrust and burns liquid oxygen and liquid hydrogen.
The solid was jettisoned at 139 seconds after liftoff.
This is ULA’s eighth launch in 2016 and the 111th successful launch since the company was formed in December 2006.
OSIRIS-REx will return the largest sample from space since the American and Soviet Union’s moon landing missions of the 1970s.
Watch these pair of up close videos (from myself and Jeff Seibert) captured directly at the pad with the sights and sounds of the fury of launch:
Video Caption: ULA Atlas V rocket lifts off on September 8, 2016 from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s OSIRIS-REx asteroid sampling spacecraft, in this remote camera view taken from inside the launch pad perimeter. Credit: Ken Kremer/kenkremer.com
Video Caption: Compilation of my launch videos from the ULA Atlas 5 launch in support of the NASA OSIRIS_REx asteroid sample return mission to the asteroid Bennu (#101955). It was launched on September 8th, 2016 from Pad 41 of CCAFS. It is scheduled to land in UTAH with asteroid samples on September 24, 2023. Credit: Jeff Seibert
OSIRIS-REx is the third mission in NASA’s New Frontiers Program, following New Horizons to Pluto and Juno to Jupiter, which also launched on Atlas V rockets.
NASA’s Goddard Space Flight Center in Greenbelt, Maryland, is responsible for overall mission management.
OSIRIS-REx complements NASA’s Asteroid Initiative – including the Asteroid Redirect Mission (ARM) which is a robotic spacecraft mission aimed at capturing a surface boulder from a different near-Earth asteroid and moving it into a stable lunar orbit for eventual up close sample collection by astronauts launched in NASA’s new Orion spacecraft. Orion will launch atop NASA’s new SLS heavy lift booster concurrently under development.
Watch for Ken’s continuing OSIRIS-REx mission and launch reporting from on site at the Kennedy Space Center and Cape Canaveral Air Force Station, FL.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
As NASA prepares to send a spacecraft to a distant asteroid, another space rock made a surprise visit to Earth’s vicinity. The newly discovered small asteroid, named 2016 RB1, passed safely by Earth, coming within approximately 23,900 miles (38,463 km) of our planet, or just outside the orbit of many communications satellites.
The asteroid passed by Earth at 1:28 p.m. Eastern Time (1728 UT).
Click on the image if it is not animating in your browser.
The asteroid was discovered on Monday, September 5 by the Mt. Lemmon Survey telescope in Tucson, Arizona. 2016 RB1 is estimated to be between 24 to 52 feet (7.3 – 16 meters) across, which is just a bit smaller than the Chelyabinsk meteor that exploded over northern Russian in February 2013, which was estimated to be around 56 ft (17 meters) wide.
On Thursday, September 8, NASA hopes to launch its OSIRIS-ReX mission to study asteroid Bennu and conduct a sample return, with the sample coming back to Earth by 2023. With the mission, scientists hope to learn more about the formation and evolution asteroids and of the Solar System as a whole.
Here’s a graphic comparing the small asteroid 2016 RB1 to other objects, compiled by Mikko Tuomela and Massimo Orgiazzi.
2016 RB1 is the third asteroid so far in September 2016 that traveled between the Earth and the Moon. Asteroid 2016 RR1 passed by at 0.32 lunar distances on September 2, and just a few hours later, asteroid 2016 RS1 passed by at 0.48 times the Earth-moon distance. But this latest asteroid pass is the closest, at 0.10 lunar distances.
From its orbit, astronomers have determined 2016 RB1 is likely an Aten asteroid, a group of Near-Earth Objects that cross the orbits of Earth, Venus and even Mercury.
KENNEDY SPACE CENTER, FL – OSIRIS-Rex, NASA’s first mission to retrieve and return samples of “pristine materials” from the surface of an asteroid and return them to Earth for high powered analysis by the world’s most advanced science instruments is encapsulated in the nose cone that’s bolted atop its Atlas rocket that has just been rolled out to its Earth departure launch pad.
It’s a groundbreaking mission that could inform us about astrobiology and yield significant clues to help determine the ‘Origin of Life’ on Earth.
NASA’s Origins, Spectral Interpretation, Resource Identification, Security – Regolith Explorer (OSIRIS-REx) spacecraft will launch from Space Launch Complex 41 at Cape Canaveral Air Force Station on a United Launch Alliance Atlas V rocket on September 8 at 7:05 p.m. EDT.
The United Launch Alliance Atlas V rocket and OSIRIS-REx spacecraft were moved about 1800 feet from the Vertical Integration Facility (VIF) – where the rocket is assembled- to launch pad 41 starting at about 9 a.m. this morning September 7, 2018.
Watch this Atlas V rocket roll video:
The ULA, NASA and science team conducted a launch readiness review yesterday and gave the GO for launch with all systems passing the stringent rocket and safety review. The even search for signs of any debris from last week’s SpaceX Falcon 9 explosion at the adjacent pad 40 located about a mile south. No signs of any debris or damage were found at pad 40 or the rocket and spacecraft.
The weather forecast is currently 80% GO for favorable conditions. The only concern is for cumulus clouds.
There are 3 opportunities in a row to launch OSIRIS-Rex.
In case of a delay 24 or 48 hour delay, the forecast drops only slightly to 70% GO.
OSIRIS-REx goal is to fly on a roundtrip seven-year journey of some 4.5 billion miles to the near-Earth asteroid target named Bennu and back.
Watch this mission video:
Video Caption: This video describes the seven-year journey of NASA’s OSIRIS-Rex mission from launch and cruising through space to asteroid Bennu and back. The probe will study Bennu, grab a 2 ounce or more sample from the surface and bring it back to Earth for lab study by researchers. Credit: Lockheed Martin/NASA
101955 Bennu is a near Earth asteroid discovered in 1999. It was selected specifically because it is a carbon-rich asteroid.
While orbiting Bennu starting in 2018 it will move in close and snatch pristine soil samples containing organic materials from the surface using the TAGSAM collection dish, and bring them back to Earth for study by researchers using all of the most sophisticated science instruments available to humankind.
The asteroid is 1,614-foot (500 m) in diameter and crosses Earth’s orbit around the sun every six years.
“The primary objective of the OSIRIS-Rex mission is to bring back pristine material from the surface of the carbonaceous asteroid Bennu, OSIRIS-Rex Principal Investigator Dante Lauretta told Universe Today in the PHSF, as the probe was undergoing final preparation for shipment to the launch pad.
“It records the very first material that formed from the earliest stages of solar system formation. And we are really interested in the evolution of carbon during that phase. Particularly the key prebiotic molecules like amino acids, nucleic acids, phosphates and sugars that build up. These are basically the biomolecules for all of life.”
OSIRIS-REx will gather rocks and soil and bring at least a 60-gram (2.1-ounce) sample back to Earth in 2023. It has the capacity to scoop up to about 1 kg or more.
The mission will help scientists investigate how planets formed and how life began. It will also improve our understanding of asteroids that could impact Earth by measuring the Yarkovsky effect.
I asked Lauretta to explain in more detail why was Bennu selected as the target to answer fundamental questions related to the origin of life ?
“We selected asteroid Bennu as the target for this mission because we feel it has the best chance of containing those pristine organic compounds from the early stage of solar system formation,” Lauretta told me.
And that information is based on our ground based spectral characterization using telescopes here on Earth. Also, space based assets like the Hubble Space Telescope and the Spitzer Space Telescope.
What is known about the presence of nitrogen containing compounds like amino acids and other elements on Bennu that are the building blocks of life?
“When we look at the compounds that make up these organic materials in these primitive asteroidal materials, we see a lot of carbon,” Lauretta explained.
“But we also see nitrogen, oxygen, hydrogen, sulfur and phosphorous. We call those the CHONPS. Those are the six elements we really focus on when we look at astrobiology and prebiotic chemistry and how those got into the origin of life.”
The OSIRIS-REx spacecraft was built for NASA by prime contractor Lockheed Martin at their facility near Denver, Colorado and flown to the Kennedy Space Center on May 20.
It will map the chemistry and mineralogy of the primitive carbonaceous asteroid. The team will initially select about 10 target areas for further scrutiny as the sampling target. This will be whittled down to two, a primary and backup, Enos told me.
After analyzing the data returned, the science team then will select a site where the spacecraft’s robotic sampling arm will grab a sample of regolith and rocks. The regolith may record the earliest history of our solar system.
Engineers will command the spacecraft to gradually move on closer to the chosen sample site, and then extend the arm to snatch the pristine samples with the TAGSAM sample return arm.
PI Lauretta will make the final decision on when and which site to grab the sample from.
“As the Principal Investigator for the mission I have responsibility for all of the key decisions during our operations,” Lauretta replied. “So we will be deciding on where we want to target our high resolution investigations for sample site evaluation. And ultimately what is the one location we want to send the spacecraft down to the surface of the asteroid to and collect that sample.”
“And then we have to decide like if we collected enough sample and are we ready to stow it in the sample return capsule. Or are we going to use one of our 2 contingency bottles of gas to go for a second attempt.”
“The primary objective is one successful sampling event. So when we collect 60 grams or 2 ounces of sample then we are done!”
“In the event that we decide to collect more, it will be intermixed with anything we collected on the first attempt.”
The priceless sample will then be stowed in the on board sample return capsule for the long journey back to Earth.
Bennu is an unchanged remnant from the collapse of the solar nebula and birth of our solar system some 4.5 billion years ago, little altered over time.
Bennu is a near-Earth asteroid and was selected for the sample return mission because it could hold clues to the origin of the solar system and host organic molecules that may have seeded life on Earth.
OSIRIS-REx will return the largest sample from space since the American and Soviet Union’s moon landing missions of the 1970s.
OSIRIS-REx is the third mission in NASA’s New Frontiers Program, following New Horizons to Pluto and Juno to Jupiter, which also launched on Atlas V rockets.
NASA’s Goddard Space Flight Center in Greenbelt, Maryland, is responsible for overall mission management.
OSIRIS-REx complements NASA’s Asteroid Initiative – including the Asteroid Redirect Mission (ARM) which is a robotic spacecraft mission aimed at capturing a surface boulder from a different near-Earth asteroid and moving it into a stable lunar orbit for eventual up close sample collection by astronauts launched in NASA’s new Orion spacecraft. Orion will launch atop NASA’s new SLS heavy lift booster concurrently under development.
Watch for Ken’s continuing OSIRIS-REx mission and launch reporting from on site at the Kennedy Space Center and Cape Canaveral Ait Force Station, FL.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Learn more about OSIRIS-REx, InSight Mars lander, SpaceX missions, Juno at Jupiter, SpaceX CRS-9 rocket launch, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:
Sep 7-9: “OSIRIS-REx lainch, SpaceX missions/launches to ISS on CRS-9, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings
Freddie Mercury, the frontman from the rock band Queen, is getting his name etched in the night sky. No, they’re not naming another planet after him. That would be confusing. Instead, an asteroid will bear the name of the iconic singer.
If you don’t know much about the band Queen, there’s a connection between them and astronomy. Brian May, the band’s guitarist, holds a PhD. in astrophysics. He studied reflected light from interplanetary dust and the velocity of dust in the plane of the Solar System. But when Queen became mega-popular in the 70’s, he abandoned astrophysics, for the most part.
Brian May is still involved with space, and has an interest in asteroids. He helped the ESA launch Asteroid Day in June 2016, to raise awareness of the threat that asteroids pose to Earth. So there’s the connection.
As for the asteroid that will bear Freddie Mercury’s name, it was previously named Asteroid 17473, but will now be known as Asteroid FreddieMercury 17473. It’s a rock about 3.5 km in diameter in the asteroid belt between Mars and Jupiter.
Today would have been Freddie’s 70th birthday, if he were still alive. So this naming is a fitting commemorative gesture. According to the International Astronomical Union, who handles the naming of objects in space, the naming of the asteroid is in honour of “Freddie’s outstanding influence in the world.”
Brian May explains things in this video:
We’re mostly science-minded people, so you may be skeptical of Freddie’s influence in the world. He was no scientist, that’s for sure. But if you lived through Queen’s heyday, as I did, you can sort of see it.
Freddie Mercury was a very polished entertainer, with a great voice and fantastic stage presence. He mastered the theatrical side of performing as a rock frontman, and his voice spanned four octaves. The music he made with his band-members in Queen was very original. Mercury was a creative force, that’s for sure.
Check out “Killer Queen” from 1974.
Plus, William Shatner (aka Captain James Tiberius Kirk) clearly had a warm spot in his heart for Freddie and the rest of Queen. How else to explain his version of Queen’s timeless tune “Bohemian Rhapsody?”
If that isn’t a ringing endorsement of Freddie Mercury and Queen, I don’t know what is.
The asteroid that will bear Freddie Mercury’s name was discovered by Belgian astronomer Henri Debehogne in 1991. It travels an elliptical path around the Sun, and never comes closer than 350 million km to Earth. It isn’t very reflective, so only powerful telescopes can see it. But there it’ll be, for anyone with a powerful enough telescope to look with, as long as human civilization lasts.
Freddie Mercury isn’t the first entertainer to have something in space bear his name. In fact, he’s not even the first member of Queen to have that honor. An asteroid first seen in 1998 now bears the name Asteroid 52665 Brianmay, in honor of the guitarist from Queen.
Other musicians and singers who’ve had space rocks named after them include the Beatles, Enya, Frank Zappa, David Bowie, Aretha Franklin, Yes, and Bruce Springsteen. Authors Kurt Vonnegut, Vladimir Nabokov, and Douglas Adams and the characters Don Quixote, James Bond, Sherlock Holmes and Dr Watson also have the honor.
As for the rock itself, Oxford astrophysics professor Chris Lintott told the Guardian, “I think it’s wonderful to name an asteroid after Freddie Mercury. Pleasingly, it’s on a slightly eccentric orbit about the sun, just as the man himself was.”
Freddie died in 1991 from complications from AIDS, but his music still lives on. Maybe Asteroid FreddieMercury 17473 will help us remember him.
KENNEDY SPACE CENTER, FL – OSIRIS-Rex, the first American sponsored probe aimed at retrieving “pristine materials” from the surface of an asteroid and returning them to Earth has been fully assembled at its Florida launch base and is ready to blastoff ten days from today on Sep. 8. It’s a groundbreaking mission that could inform us about astrobiology and the ‘Origin of Life.’
“We are interested in that material because it is a time capsule from the earliest stages of solar system formation,” said Dante Lauretta, principal investigator for OSIRIS-REx at the University of Arizona, Tucson, in an interview with Universe Today beside the completed spacecraft inside the Payloads Hazardous Servicing Facility, or PHSF, clean room processing facility at NASA’s Kennedy Space Center in Florida.
With virtually all prelaunch processing complete, leading members of the science, engineering and launch team including Lauretta met with several members of the media, including Universe Today, inside the clean room for a last and exclusive up-close look and briefing with the one-of-its-kind $800 million Asteroid sampling probe last week.
OSIRIS-REx goal is to fly on a roundtrip seven-year journey to the near-Earth asteroid target named Bennu and back. 101955 Bennu is a near Earth asteroid and was selected specifically because it is a carbon-rich asteroid.
While orbiting Bennu it will move in close and snatch pristine soil samples containing organic materials from the surface using the TAGSAM collection dish, and bring them back to Earth for study by researchers using all of the most sophisticated science instruments available to humankind.
“The primary objective of the OSIRIS-Rex mission is to bring back pristine material from the surface of the carbonaceous asteroid Bennu, OSIRIS-Rex Principal Investigator Dante Lauretta told Universe Today in the PHSF, as the probe was undergoing final preparation for shipment to the launch pad.
“It records the very first material that formed from the earliest stages of solar system formation. And we are really interested in the evolution of carbon during that phase. Particularly the key prebiotic molecules like amino acids, nucleic acids, phosphates and sugars that build up. These are basically the biomolecules for all of life.”
OSIRIS-REx will gather rocks and soil and bring at least a 60-gram (2.1-ounce) sample back to Earth in 2023. It has the capacity to scoop up to about 1 kg or more.
The mission will help scientists investigate how planets formed and how life began. It will also improve our understanding of asteroids that could impact Earth by measuring the Yarkovsky effect.
I asked Lauretta to explain in more detail why was Bennu selected as the target to answer fundamental questions related to the origin of life?
“We selected asteroid Bennu as the target for this mission because we feel it has the best chance of containing those pristine organic compounds from the early stage of solar system formation,” Lauretta told me.
“And that information is based on our ground based spectral characterization using telescopes here on Earth. Also, space based assets like the Hubble Space Telescope and the Spitzer Space Telescope.”
What is known about the presence of nitrogen containing compounds like amino acids and other elements on Bennu that are the building blocks of life?
“When we look at the compounds that make up these organic materials in these primitive asteroidal materials, we see a lot of carbon,” Lauretta explained.
“But we also see nitrogen, oxygen, hydrogen, sulfur and phosphorous. We call those the CHONPS. Those are the six elements we really focus on when we look at astrobiology and prebiotic chemistry and how those got into the origin of life.”
The OSIRIS-REx spacecraft was built for NASA by prime contractor Lockheed Martin at their facility near Denver, Colorado and flown to the Kennedy Space Center on May 20.
For the past three months it has undergone final integration, processing and testing inside the PHSF under extremely strict contamination control protocols to prevent contamination by particle, aerosols and most importantly organic residues like amino acids that could confuse researchers seeking to discover those very materials in the regolith samples gathered for return to Earth.
The PHFS clean room was most recently used to process the Orbital ATK Cygnus space station resupply vehicles. It has also processed NASA interplanetary probes such as the Curiosity Mars Science Laboratory and MAVEN Mars orbiter missions.
The spacecraft will reach Bennu in 2018. Once within three miles (5 km) of the asteroid, the spacecraft will begin at least six months of comprehensive surface mapping of the carbonaceous asteroid, according to Heather Enos, deputy principal investigator, in an interview with Universe Today.
“We will then move the spacecraft to within about a half kilometer or so to collect further data,” Enos elaborated.
It will map the chemistry and mineralogy of the primitive carbonaceous asteroid. The team will initially select about 10 target areas for further scrutiny as the sampling target. This will be whittled down to two, a primary and backup, Enos told me.
After analyzing the data returned, the science team then will select a site where the spacecraft’s robotic sampling arm will grab a sample of regolith and rocks. The regolith may record the earliest history of our solar system.
Engineers will command the spacecraft to gradually move on closer to the chosen sample site, and then extend the arm to snatch the pristine samples the TAGSAM sample return arm.
PI Lauretta will make the final decision on when and which site to grab the sample from.
“As the Principal Investigator for the mission I have responsibility for all of the key decisions during our operations,” Lauretta replied. “So we will be deciding on where we want to target our high resolution investigations for sample site evaluation. And ultimately what is the one location we want to send the spacecraft down to the surface of the asteroid to and collect that sample.”
“And then we have to decide like if we collected enough sample and are we ready to stow it in the sample return capsule. Or are we going to use one of our 2 contingency bottles of gas to go for a second attempt.”
“The primary objective is one successful sampling event. So when we collect 60 grams or 2 ounces of sample then we are done!”
“In the event that we decide to collect more, it will be intermixed with anything we collected on the first attempt.”
The priceless sample will then be stowed in the on board sample return capsule for the long journey back to Earth.
Bennu is an unchanged remnant from the collapse of the solar nebula and birth of our solar system some 4.5 billion years ago, little altered over time.
Bennu is a near-Earth asteroid and was selected for the sample return mission because it could hold clues to the origin of the solar system and host organic molecules that may have seeded life on Earth.
OSIRIS-REx will return the largest sample from space since the American and Soviet Union’s moon landing missions of the 1970s.
Watch this USLaunchReport video shot during media visit inside the PHSF on Aug. 20, 2016:
Video caption: Our first introduction to the OSIRIS-REx asteroid bound mission in search of the origins of life, from inside the Payloads Hazardous Servicing Facility at NASA’s Kennedy Space Center on Aug. 20, 2016. Credit: USLaunchReport
OSIRIS-REx is the third mission in NASA’s New Frontiers Program, following New Horizons to Pluto and Juno to Jupiter, which also launched on Atlas V rockets.
NASA’s Goddard Space Flight Center in Greenbelt, Maryland, is responsible for overall mission management.
OSIRIS-REx complements NASA’s Asteroid Initiative – including the Asteroid Redirect Mission (ARM) which is a robotic spacecraft mission aimed at capturing a surface boulder from a different near-Earth asteroid and moving it into a stable lunar orbit for eventual up close sample collection by astronauts launched in NASA’s new Orion spacecraft. Orion will launch atop NASA’s new SLS heavy lift booster concurrently under development.
Watch for Ken’s continuing OSIRIS-REx mission and launch reporting from on site at the Kennedy Space Center and Cape Canaveral Ait Force Station, FL.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.