Images, Video from Around the World of Asteroid 2005 YU55’s Close Pass

Animation showing Asteroid 2005 YU55 moving across the sky. Each image was a 2-second exposure, taken with the GRAS Observatory, near Mayhill, New Mexico. Credit: Ernesto Guido, Giovanni Sostero and Nick Howes

[/caption]

A 400-meter-wide asteroid created a lot of “buzz” as it buzzed by Earth, with its closest approach on November 08, 2011 at 23:28 Universal Time (UT). The Near-Earth Asteroid 2005 YU55 passed within 319,000 km (202,000 miles or 0.85 lunar distances, 0.00217 AU) from Earth’s surface. Later, it safely passed our moon at distance of 239,500 km (148,830 miles ). Astronomers from around the world trained their telescopes on this object, hoping to capture images and learn more about this dark space rock.

Above is an animation from the team of Ernesto Guido, Giovanni Sostero and Nick Howes, remotely using the the GRAS Observatory near Mayhill, New Mexico USA with a 0.25-meter telescope, f/3.4 reflector and a CCD camera. The trio said that at the moment of their observing session the asteroid was moving at about 260.07″/min and it was at magnitude ~11. You can see more images and details on their Remanzacco Observatory website. A single image they took is below, along with other observations from various points around the globe, including an infrared image taken with the Keck Observatory.

This first infrared image of asteroid 2005 YU55 was captured by the Keck II telescope. Credit: William Merline, SWRI / W.M. Keck Observatory

The Keck Observatory hosted a live webcast of their observations of the asteroid, hoping to get infrared images and perhaps a three-dimensional view of the asteroid with one of the world’s largest optical/infrared telescopes. They also hoped to be able to look for moons around the asteroid, as about 20% of asteroids have “moons” orbiting them. Battling delays from fog at the summit of Mauna Kea, they team had to wait until conditions cleared, which unfortunately meant the asteroid was farther away when they were able to take a one-second infrared observation. Principal Investigator Bill Merline said it may take days to process this raw data, so look for a more refined image from the team soon. The webcast was a lot of fun, as they showed the events going on insides the observing rooms on both the summit and Waimea, and answered questions from viewers.

This video above is from Jason Ware from Plano, Texas USA who observed Asteroid 2005 YU55 with a 12 inch telescope to create the video.

Near Earth Asteroid 2005 YU55 on 11-08-2011 07:18pm E.S.T., a 10 second exposure. Credit: John Chumack

John Chumack of Galactic Images in Ohio took this image of the asteroid on 11-08-2011 at 07:18pm E.S.T., a 10 second exposure using a 16″ telescope and a QHY8 CCD. John also created a video, which is available on Flickr.

Peter Lake from Australia, has a telescope in New Mexico. He took a series of images at around 03:00 UTC on Nov. 9, using a 20-inch Planewave with a FLI PL11002M. The image field is 4008 X 2675 pixels and about 0.91 arc secs per pixel, so it passed at about 500 arc sec per minute, Lake said.

This video was taken by Steven Conard at the Willow Oak Observatory in Gamber, Maryland USA, with observations on November 9, 11 with the WOO C-14 telescope. This one has a special bonus–a satellite passes through the field as well.

We’ll add more images and video as they become available. Add your images to our Flickr group and we’ll post them.

Asteroid 2005 YU55’s flyby is the closest approach by an object of this size for the next 16 years. In August 2027, AN 10 is going to come within about one lunar distance from Earth. Astronomers estimate this asteroid is anywhere from 1/2 to 2 kilometers in diameter.

Just six months later, 2001 WN5, a 700-meter-wide asteroid will fly between the Earth and the Moon in June 2028, followed by Apophis on April 13, 2029.

Live Webcast as Keck Telescope Attempts Images of Asteroid 2005 YU55

kecktelescopes-browse.thumbnail.jpg
The Keck telescopes, located atop Mauna Kea, Hawaii. Credit: W.M. Keck Observatory

Astronomers from the Keck Telescope in Hawaii will be trying to observe Asteroid 2005 YU55 as it flies away from Earth. A live webcast from Keck starts about the same time this article is being published, starting no later than 9 pm U.S. PST on Nov. 8, or Midnight EST/ 0500 UT on Wednesday, Nov. 9. Indications are the webcast might start a little late because of fog on Mauna Kea.

Their hope is to get infrared images and perhaps a three-dimensional view of the asteroid with one of the world’s largest optical/infrared telescopes. The observing run is being webcast live on UStream from the Keck II Remote Operations room in Kamuela, Hawaii. They also are hoping to be able to look for moons around the asteroid. About 20% of asteroids have “moons” orbiting them.

At the helm of the 10-meter Keck II telescope and using Keck’s pioneering adaptive optics to view YU55 will be asteroid investigators William Merline and Peter Tamblyn of Southwest Research Institute, in Boulder, Colorado, and Chris Neyman of Keck Observatory.

First Movie of Asteroid 2005 YU55’s Flyby

Here’s a short movie of Asteroid 2005 YU55, created from data collected from the 70-meter Deep Space Network antenna at Goldstone, California. The video was generated from six frames, and each of the six frames required 20 minutes of radar data collection. They are the highest-resolution images ever generated by radar of a near-Earth object.
Continue reading “First Movie of Asteroid 2005 YU55’s Flyby”

Just In: NASA’s Latest Image of Asteroid 2005 YU55

This radar image of asteroid 2005 YU55 was obtained on Nov. 7, 2011. Credit: NASA/JPL/Caltech.

[/caption]

NASA’s Deep Space Network antenna in Goldstone, California has captured new radar images of Asteroid 2005 YU55 as it begins its close pass by Earth. The image above was taken on Nov. 7 at 11:45 a.m. PST (2:45 p.m. EST/1945 UTC), when the asteroid was approximately 1.38 million kilometers (860,000 miles) or about 3.6 lunar distances away from Earth. It’s not a great image, but there should be better images available as the asteroid gets closer. Several telescopes will be tracking of the aircraft carrier-sized asteroid throughout the pass. Goldstone’s 230-foot-wide (70-meter) antenna has been keeping an eye on it since Nov. 4, and the Arecibo Planetary Radar Facility in Puerto Rico will begin observations on Nov. 8, as the asteroid will make its closest approach to Earth at 3:28 p.m. PST (6:28 p.m. EST/1128 UTC).

The Slooh telescope will be hosting a live webcast of the flyby on Nov. 8, 2011. Find out more at the Slooh Events page. Keep track of the latest images gathered by astronomers at the Asteroid and Comet Watch website.

Source: NASA

The Asteroid That Fell To Earth: Meteorites from 2008 TC3 Still Giving Up Their Secrets

Almahata Sitta 15. The black fragment of Almahata Sitta meteorite number 15 shows up black against the lighter coloured rocks of the Nubian desert in Northern Sudan. Image credit: Peter Jenniskens (SETI Institute/NASA Ames)

[/caption]

It was an unprecedented event: On October 6, 2008, asteroid 2008 TC3 was spotted by the Catalina Sky Survey Telescope in Arizona. Plotting its trajectory, astronomers knew the 80-ton rock was heading for a collision course with Earth. Just 19 hours later, 2008 TC3 streaked over skies of northern Sudan and then exploded about 37 km above the Nubian Desert. This was the first time an asteroid was predicted – and predicted correctly — to impact Earth. Luckily, it wasn’t big enough to cause any problems, and its path brought it over a remote area. But this presented scientists with an exciting and unparalleled opportunity to possibly study fragments of an asteroid that had been spectrally classified before striking Earth.

Shortly afterwards, expeditions led by Dr. Peter Jenniskens, a meteor astronomer from SETI and NASA’s Ames Research Center, and Mauwia Shaddad, a physicist at the University of Khartoum, collected nearly 600 pieces of the asteroid strewn over 29 kilometers of desert. Altogether the meteorites weighed less than 10 kilograms – all that was left of the 80-ton asteroid.

But these fragments that fell to Earth are revealing secrets about the asteroid belt and the early days of the solar system, says Dr. Jon Friedrich from Fordham University, one of the many different researchers who have been studying pieces of the fragments, now called the “Almahata Sitta” meteorites.

“We can now say the asteroid belt has lots of different types of materials that give little snapshots of conditions within the early solar system,” Friedrich told Universe Today. “We’ve seen that these asteroids haven’t changed a whole lot since the Solar System formed, so it speaks to the diversity of the chemistry and the processes that were acting on these small bodies in the early Solar System.”

Scientists agree that understanding the composition of the asteroid belt is crucial to how we might deal with a larger asteroid that might be heading directly towards Earth.

Discovery images of asteroid 2008 TC3, as it was seen on October 6, 2008, by the Catalina Sky Survey at Mount Lemmon in Arizona (Richard Kowalski).

Although scientists have been able to study and catalog many thousands of meteorites and have also analyzed hundreds of asteroids in space, this is the first time a “fresh” chunk of an asteroid that has fallen to Earth as a meteorite — and been analyzed through spectroscopy while it was still in space — has been found so quickly after hitting Earth. These meteorites are the first to be unequivocally connected with its parent asteroid.

“It is amazing to be able to finally positively link an asteroid to a certain type of meteorite,” said Friedrich. “When we look at asteroids in space we are only looking at the outside, and the asteroid’s surface has changed from being in the environment of space. For the first time we can study the interior of an object we have seen the exterior of in space. That knowledge gives us a map as to how the exteriors of asteroids change. We can have a better understanding of the population of objects in space and their distribution in the solar system.”

About three-quarters of meteorites that are found on Earth are an “ordinary” kind of stony meteorites called chondrites. Analysis of the Almahata Sitta meteorites revealed a rare, carbon-rich type of meteorite called an ureilite. Ureilites are believed to come from a large organic–rich, primitive asteroid that had melted sometime in its past.

“These are a strange type of meteorite which are rather odd in the sense that it is an igneous rock, much like a volcanic rock here on Earth,” Friedrich said, “so this meteorite’s origin is from a magma, so they were surely melted at one point. That also means they are like rocks you might pick up on Earth, but they also contain what we might call relatively primitive materials also, like graphite, organic compounds and other things.”

And so ureilites, and in particular the Almahata Sitta meteorites, contain material from both primitive and evolved types of asteroids.

There are few ureilites in meteorite collections, which is another reason the Almahata Sitta meteorites are so interesting. They have an unusually fine-grained and porous texture, making the meteorites extremely fragile. The researchers think that is why Asteroid 2008 TC3 shattered high in Earth’s atmosphere.

Friedrich and a student at Fordham, Julianna Troiano, studied fragments of the meteorites using an inductively coupled plasma mass spectrometer, which specializes in looking at inorganic composition of rock.

“We found chemically that all the different pieces were indeed ureilites,” Friedrich said, “but one other interesting thing was that these don’t seem to have any evidence of terrestrial contamination at all, which is what you would expect from such a ‘fresh’ fall. Most ureilite meteorites have been found in Antarctica, and oftentimes, the Antarctic samples seem to have concentrations that are somewhat elevated in certain elements, such are rare Earth elements like lanthanum, cerium. But the Almahata Sitta meteorites don’t seem to have an obvious contamination signature.”

Various meteorites from 2008 TC3. Credit: P. Jenniskens, et. al. Click image for full description

This allows the researchers to better explore the solar system’s makeup.

While chondrites normally have not been modified due to melting or differentiation of the parent asteroid — and researchers suspect they are not necessarily representative of typical asteroid parent bodies — ureilites normally do show signs of the parent body being melted.

So what has happened to an asteroid that is has somehow been heated to the point of “melting?”

The latest research on the Almahata Sitta meteorites reveal that the parent asteroid was probably formed through collisions of three different types of asteroids. This would also explain why the meteorites contain both evolved and primitive asteroid materials.

Dr. Julie Gayon-Markt from the Observatoire de la Cote d’Azur in France also recently provided more insight on the family of asteroids from which 2008 TC3 originated.

“Because falls of meteorites of different types are rare, the question of the origin of an asteroid harbouring both primitive and evolved characteristics is a challenging and intriguing problem,” said Gayon-Markt, who presented her findings at the Europlanet Science Conference in October. “A workable explanation for how asteroid 2008TC3 could have formed involves low velocity collisions between these asteroid fragments of very different mineralogies.

Gayon-Markt and her team also looked at the dynamics and spectroscopy of asteroids in the main asteroid belt to shed light on the origin of the Almahata Sitta fragments. “We show that the Nysa-Polana asteroid family, located in the inner Main Belt is a very good candidate for the origin of 2008 TC3,” she said.

Primitive asteroids, which are relatively unchanged since the birth of the Solar System, contain high proportions of hydrated minerals and organic materials. However, many other asteroids have undergone heating at some point, probably through the decay of radioactive materials, and the molten magma has separated into an iron core surrounded by a rocky mantle.

Friedrich and Gayton-Markt are just two of the researchers who are studying the Almahatta Sitta meteorites to try and garner a better understanding of our solar system, as well as figuring out more about the asteroid that fell to Earth in 2008.

“The study of these meteorites has been interdisciplinary and collaborative, and our work is just a small piece of a greater puzzle,” Friedrich said.

Sources: Interview with Jon Friedrich, Europlanet Conference

Note: Almahata Sitta, which is Arabic for “Station Six,” a train station between Wadi Halfa and Khartoum near where the fragments were found.

Dawn Discovers Surprise 2nd Giant South Pole Impact Basin at Strikingly Dichotomous Vesta

Southern Hemisphere of Vesta; Rheasilvia and Older Basin. Colorized shaded-relief map showing identification of older 375-kilometer-wide impact basin beneath and overlapping with the more recent Rheasilvia impact structure at asteroid Vesta’s South Pole. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

[/caption]

Scientists leading NASA’s Dawn mission have discovered a 2nd giant impact basin at the south pole of the giant asteroid Vesta, which has been unveiled as a surprisingly “dichotomous” and alien world. Furthermore, the cosmic collisions that produced these two basins shuddered through the interior and created vast Vestan troughs, a Dawn scientist told Universe Today.

The newly discovered impact basin, nicknamed ‘Older Basin’, is actually significantly older in age compared to the initially discovered South Pole basin feature named ‘Rheasilvia’ – perhaps by more than a billion years. And that is just one of the many unexplained mysteries yet to be reconciled by the team as they begin to sift through the millions of bits of new data streaming back daily to Earth.

Scientists speculate that ‘Older Basin’ is on the order of 3.8 Billion years old, whereas ‘Rheasilvia’ might be as young as about 2.5 Billion years, but those are just tentative estimates at this time and subject to change. Measurements so far indicate Rheasilvia is composed of basaltic material.

Shaded-relief topographic map of Vesta southern hemisphere showing two large impact basins - Rheasilvia and Older Basin.
Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

“We found many surprising things at Vesta, which is quite unique and the results have exceeded our expectations”, said Dr. Carol Raymond, Dawn deputy principal investigator, of NASA’s Jet Propulsion Laboratory, Pasadena, Calif.

Researchers presented the latest findings from Dawn’s initial science mapping orbit at a news briefing at the annual meeting of the Geological Society of America in Minneapolis, Minn., on Oct. 13.

The team considers Vesta to be the smallest terrestrial planet.

Since achieving orbit in July, Dawn’s Framing Cameras (FC) have imaged most of Vesta at about 250 meter resolution and the Visible and Infrared mapping spectrometer(VIR) at about 700 meter resolution. The measurements were collected at the survey orbit altitude of 2700 km. Before Dawn, Vesta was just a fuzzy blob in humankind’s most powerful telescopes.

Vesta from Hubble (top) as a fuzzy blob and from Dawn in orbit (bottom) in crystal clear high resolution.
Credit: NASA/JPL-Caltech/ UCLA/MPS/DLR/IDA

“There is a global dichotomy on Vesta and a fundamental difference between the northern and southern hemispheres”, said Raymond. “The northern hemisphere is older and heavily cratered in contrast to the brighter southern hemisphere where the texture is more smooth and there are lots of sets of grooves. There is a massive mountain at the South Pole. One of the more surprising aspects is the set of deep equatorial troughs.”

“There is also a tremendous and surprising diversity of surface color and morphology. The south is consistent with basaltic lithology and the north with impacts. We are trying to make sense of the data and will integrate that with the high resolution observations we are now collecting.”

Indeed Vesta’s completely unique and striking dichotomy can be directly traced back to the basins which were formed by ancient cataclysmic impacts resulting in shockwaves that fundamentally altered the surface and caused the formation of the long troughs that ring Vesta at numerous latitudes.

“The troughs extend across 240 degrees of longitude,” said Debra Buczkowski, Dawn participating scientist, of the Applied Physics Laboratory at Johns Hopkins University, Laurel, Md. “Their formation can be tied back to the two basins at the South Pole.”

Asteroid Vesta and Equatorial Grooves
This full view of the giant asteroid Vesta was taken by NASA’s Dawn spacecraft, as part of a rotation characterization sequence on July 24, 2011, at a distance of 3,200 miles (5,200 kilometers). A rotation characterization sequence helps the scientists and engineers by giving an initial overview of the character of the surface as Vesta rotated underneath the spacecraft. This view of Vesta shows impact craters of various sizes and grooves parallel to the equator. The resolution of this image is about 500 meters per pixel. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

In an exclusive follow up interview with Universe Today, Raymond said “We believe that the troughs formed as a direct result of the impacts,” said “The two sets of troughs are associated with the two large basins [Rheasilvia and Older Basin].”

“The key piece of evidence presented was that the set of troughs in the northern hemisphere, that look older (more degraded) are circumferential to the older impact basin,” Raymond told me.

“The equatorial set are circumferential to Rheasilvia. That Rheasilvia’s age appears in places to be much younger is at odds with the age of the equatorial troughs. An explanation for that could be resurfacing by younger mass wasting features (landslides, slumps). We will be working on clarifying all these relationships in the coming months with the higher resolution HAMO (High Altitude Mapping Orbit) data.”

Dawn has gradually spiraled down closer to Vesta using her exotic ion thrusters and began the HAMO mapping campaign on Sept. 29.

Surface features are dated by crater counting methodology.

“Preliminary crater counting age dates for the equatorial trough region yields a very old age (3.8 Billion years). So there is a discrepancy between the apparent younger age for the Rheasilvia basin and the old age for the troughs. These could be reconciled if Rheasilvia is also 3.8 Billion years old but the surface has been modified by slumping or other processes,” Raymond elaborated.

Time will tell as further data is analyzed.

Dawn launch on September 27, 2007 by a Delta II Heavy rocket from Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer

“Vesta is full of surprises, no more so than at the South Pole,” said Paul Schenk at the GSA briefing. Schenk is a Dawn participating scientist of the Lunar and Planetary Institute, Houston, Texas.

The ‘Rheasilvia’ basin was initially discovered in images of Vesta taken a decade ago by the Hubble Space Telescope which revealed it as a gaping hole in the southern hemisphere. But it wasn’t until Dawn entered orbit on July 16, 2011 after a nearly four year interplanetary journey that Earthlings got their first close up look at the mysterious polar feature and can now scrutinize it in detail to elucidate its true nature.

“The South Pole [Rheasilvia] basin is a roughly circular, impact structure and a deep depression dominated by a large central mound,” said Schenk. “It shows sharp scarps, smooth areas, landslide deposits, debris flows. It’s about 475 km in diameter and one of the deepest (ca. 20 -25 km) impact craters in the solar system.”

The central peak is an enormous mountain, about 22 km high and 180 km across- one of the biggest in the solar system. “It’s comparable in some ways to Olympus Mons on Mars,” Schenk stated.

“We were quite surprised to see a second basin in the mapping data outside of Rheasilvia. This was unexpected. It’s called ‘Older Basin’ for now.”

‘Older Basin’ is about 375 km in diameter. They overlap at the place where Rheasilvia has a missing rim.

“These basins are interesting because we believe Vesta is the source of a large number of meteorites, the HED meteorites that have a spread of ages,” Schenk explained.

Images showing key components of Rheasilvia impact basin on Vesta in high resolution ,referred to Shaded-relief topographic map. Credit: NASA/JPL-Caltech/ UCLA/MPS/DLR/IDA

Multiple large impacts over time may explain the source of the HED (Howardite, Eucrite and Diogenite) meteorites.

“We did expect large impacts on Vesta, likely associated with the late heavy bombardment recognized in the lunar impact record,” Raymond told Universe Today. “The surprising element is that the two apparently largest impacts – keeping in mind that other larger impact basins may be lurking under the regolith – are overlapping.”

Dawn’s VIR spectrometer has detected pyroxene bands covering Vesta’s surface, which is indicative of typical basaltic material, said Federico Tosi, a VIR team member of the Italian Space Agency, Rome. “Vesta has diverse rock types on its surface.”

“VIR measured surface temperatures from 220K to 270 K at the 5 micron wavelength. The illuminated areas are warmer.”

So far there is no clear indication of olivine which would be a marker for seeing Vesta’s mantle, Tossi elaborated.

The VIR spectrometer combines images, spectral information and temperature that will allow researchers to evaluate the nature, composition and evolutionary forces that shaped Vesta’s surface.

The team is absolutely thrilled to see a complicated geologic record that’s been preserved for study with lots of apparent surface layering and surprisingly strong and complex structural features with a large range of color and brightness.

Stay tuned for a year of Vestan delights !

Asteroid Vesta from Dawn
South Pole Rheasilvia basin is at lower right. NASA's Dawn spacecraft obtained this image of the giant asteroid Vesta with its framing camera on July 24, 2011 from a distance of about 3,200 miles (5,200 kilometers). Dawn entered orbit around Vesta on July 16, and will spend a year orbiting the body.
Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Read Ken’s continuing features about Dawn and Vesta starting here:
Amazing New View of the Mt. Everest of Vesta
Dramatic 3 D Imagery Showcases Vesta’s Pockmarked, Mountainous and Groovy Terrain
Rheasilvia – Super Mysterious South Pole Basin at Vesta
Space Spectacular — Rotation Movies of Vesta
3 D Alien Snowman Graces Vesta
NASA Unveils Thrilling First Full Frame Images of Vesta from Dawn
Dawn Spirals Down Closer to Vesta’s South Pole Impact Basin
First Ever Vesta Vistas from Orbit – in 2D and 3D
Dawn Exceeds Wildest Expectations as First Ever Spacecraft to Orbit a Protoplanet – Vesta

Human Mission to an Asteroid: Getting There With the New Space Launch System

The new SLS on the launchpad. Credit: NASA

[/caption]

With NASA’s announcement of its new, mammoth Space Launch System (SLS), preparations can begin in earnest for the first human mission to an asteroid. The SLS will take the Orion Multipurpose Crew Vehicle (MPCV) on the first human forays into deep space, out of the Earth/Moon system. “We are definitely excited about it,” Laurence Price, Lockheed Martin’s Orion deputy program manager told Universe Today during a briefing last week. “It is very good to get this baselined and be able to move forward.”

Lockheed Martin has been working on the Orion MPCV, which was originally part of the Constellation program to return to the Moon. But NASA has now been given a presidential directive to land astronauts on an asteroid by 2025, a mission that some say represents the most ambitious and audacious plan yet for the space agency. Orion will likely be re-worked and updated for potential “stepping stone” missions that will take humans to possible destinations such as lunar orbit, the Lagrange points, asteroids, and potentially the moons of Mars. The ultimate destination on this path is to send humans to the Red Planet.

Stepping stone destinations on the way to Mars. Credit: Lockheed Martin.

Billed as the biggest rocket ever built, the first incarnation of NASA’s SLS heavy-lift booster — which was unveiled on Sept. 14, 2011 — will stand over 30 stories tall, have a mass of 2.5 million kg (5.5 million pounds) and use a liquid hydrogen and liquid oxygen propulsion system, with 5 space shuttle main engines and an improved J-2X engine for the upper stage. (NASA just tested one of those engines). The SLS will have an initial lift capacity of 70 metric tons (mT), or about 69,853 kg (154,000 pounds) of payload into low Earth orbit. For reference, that’s more than double the lift capacity of any current launch vehicle, and it is estimated to be able to generate 10% more thrust than the Saturn 5 rockets produced at liftoff, the launchers that sent the Apollo missions to the Moon.

Later, to send the Orion and a service module out into space, the SLS would add two more RD-25D/E engines on the first stage, and the “evolved” architecture would be able to lift 130 metric tons, or 129,727 kg (286,000 pounds) of mass to low Earth orbit. This would increase the mass of the stack to 2.6 million kg (6.5 million pounds) and it would stand as tall as a 40-story building. This configuration would enable thrust of 4.2 million kg (9.2 million pounds), 20% more than the Saturn 5.

But Lockheed Martin is still in the initial stages of learning about the capabilities and timelines of the new launch system so they can produce the best version of Orion to pair with the SLS.

“While there are some challenges,” Price said, “we have been looking at various configurations of the architecture over the past year, so a lot of work has already been going on. So, any of the initial challenges, we have already worked toward mitigating.”

There are several differences between SLS and Constellation, Price said, with SLS having potentially a liquid booster with solid strap-ons instead of a solid first stage. “But we’ve been flying in space for 50 years and all the analytical tools to predict the environments, flight trajectories and flight conditions are all fairly straightforward, and we’re working to close on it. The launch vehicle design change is not a big perturbation on our ability to continue to mature the vehicle.”

In factoring the capability of how much mass the SLS can launch to deep space, Lockheed Martin can begin to work on how they would manifest the various parts of the mission.

“For example, would we launch the two spacecraft together on one rocket,” said Josh Hopkins from Lockheed Martin, in an interview with Universe Today, “and like Apollo, go to deep space quickly, or would we do what Constellation was planning, where you’d launch the larger pieces on the heavy lift vehicle and launch the crew separately on a second launch and connect them in Earth orbit?”

Hopkins is the Principal Investigator for Advanced Human Exploration Missions at Lockheed Martin, and leads a team of engineers who develop plans and concepts for a variety of future human exploration missions, including visits to asteroids.

The Orion casule in an Acoustic Chamber for testing at Lockheed Martin. Credit: Lockheed Martin

“If the two are launched separately,” Hopkins continued, “then you’d have to allocate a few days in orbit to have the two hook up, or one scrubbed launch could ruin the attempt. So those are the top level kinds of things we are looking forward to finding out from NASA. At the detailed level, we’re working on things like what the flight environments will be like, how much load will the spacecraft see. What we’ve inferred from the studies we’ve been doing is that we think that Orion is already designed to a pretty rigorous set of acoustics, dynamic pressure and G-loads during ascent.”

“We already know a lot about this vehicle, its environment, load conditions and trajectory,” Price said, “so we are accommodating the unique capability of the launch vehicle into the design of the Orion MPCV. We are already converging on how this vehicle will fly, and as soon as possible, we will transition to flying our test flights on early versions of the SLS.”

Lockheed Martin is targeting late 2013 or early 2014 for their first flight test of the Orion MPCV and they have reserved a Delta 4 Heavy for an unpiloted launch from Kennedy Space Center, but they are still evaluating what launcher would be best.

“We are identifying what the best test booster will be,” Price said, “and are trying to maximize the benefit to both programs, the launch system maturation and our spacecraft.”

An artist's concept shows the Orion Multipurpose Crew Vehicle and future destinations for human exploration beyond Earth orbit: the moon, an asteroid and Mars. Credit: NASA

As far as actually sending humans to an asteroid, there are many details to be worked out, and NASA and Lockheed Martin must allow for all the unknowns of flying humans in deep space, including a very important one of making sure humans can endure the radiation environment in space.

Hopkins said the robotic spacecraft that have flown to asteroids and Mars have tested the environment of deep space. “So, we have elegant models of how to design systems to withstand radiation shielding,” he said, “even though we don’t know the effect of deep space radiation on people, and what the environments around small asteroids actually like.” Hopkins added that redundant systems for keeping humans safe are an integral part of Orion’s design, but NASA might also first send a robotic scout mission to visit an asteroid.

Yes, there’s much to be worked out to actually send humans to an asteroid. But one initial item of importance is knowing the timing of when SLS will be ready to do a human deep space mission, as that would determine what asteroids we’d be able to go to.

And finding an asteroid that is just right is going to be a challenge, too. We’ll discuss that in the next in our series of articles on a human asteroid mission.

Previous articles in this series:

Human Mission to an Asteroid: Why Should NASA Go?

Human Mission to an Asteroid: The Orion MPCV

Dramatic 3 D Imagery Showcases Vesta’s Pockmarked, Mountainous and Groovy Terrain

3 D Anaglyph of Craters at Rheasilvia - the South Polar Region of Vesta. This 3-D image shows the topography, craters and grooves of Vesta’s south polar region obtained by the framing camera instrument aboard NASA’s Dawn spacecraft on Aug. 23 and 28, 2011. The image has a resolution of about 260 meters per pixel.

[/caption]

Try not to plummet off a steep crater cliff or be buried under a landslide while gazing at the irresistibly alluring curves of beautiful Rheasilvia – the mythical mother of Romulus and Remus – whose found a new home at the South Pole of the giant Asteroid Vesta.

3 D is undoubtedly the best way to maximize your pleasure. So whip out your cool red-cyan anaglyph glasses to enhance your viewing experience of Rheasilvia, the Snowman and more – and maximize your enjoyment of this new 3 D collection showcasing the heavily cratered, pockmarked, mountainous and groovy terrain replete at Vesta.

3D Details of Wave-Like Terrain in the South Pole of Vesta
This image was obtained by NASA’s Dawn spacecraft from an orbit of about 1,700 miles (2,700 kilometers) above the surface of the giant asteroid Vesta. Topography in the area surrounding Vesta's south pole area shows impact craters, ridges and grooves. These images in 3D provide scientists with a realistic impression of the solid surface of the celestial body.
Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Can you find the location of the 3 D image above in the 2 D South Pole image below?

Scientists and mortals have been fascinated by the enormous impact crater Rheasilvia and central mountain unveiled in detail by NASA’s Dawn Asteroid Orbiter recently arrived at Vesta, the 2nd most massive object in the main asteroid belt. Ceres is the largest object and will be Dawn’s next orbital target in 2015 after departing Vesta in 2012.

3D - A Big Mountain at Asteroid Vesta’s South Pole
Scientists were fascinated by this enormous mound inside a big circular depression at the south pole- dubbed Rheasilvia. This stereo image was recorded from an altitude of about 1,700 miles (2,700 kilometers) above the surface and shows the structure of the mountain, displayed in the right half of this 3D image. The base of the mountain has a diameter of about 125 miles (200 kilometers), and its altitude above the surroundings is about 9 miles (15 kilometers). The vicinity of the peak of the mountain shows landslides that occurred when material from the flanks of the mountain were slipping down. Also visible are tectonic structures from tension in Vesta's crust. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Vesta is the smallest terrestrial planet in our Solar System”, said Chris Russell in an interview with Universe Today. “We do not have a good analog to Vesta anywhere else in the Solar System.”

And the best is yet to come. In a few days, Dawn begins snapping images from a much lower altitude at the HAMO mapping orbit of ca. 685 km vs the initial survey orbit of ca, 2700 km. where most of these images were taken.

Can you find the location of the 3 D South Pole images above in the 2 D South Pole image below?

Topography of Densely Cratered Deformed Terrain
This 3 D anaglyph image shows the topography of Vesta's densely cratered terrain obtained by the framing camera instrument aboard NASA's Dawn spacecraft on August 6, 2011. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Anaglyph of the ‘Snowman' Crater. This anaglyph image shows the topography of Vesta's three craters, informally named the "Snowman," obtained by the framing camera instrument aboard Dawn on August 6, 2011. The camera has a resolution of about 260 meters per pixel. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Vesta's Ancient, Cratered Surface in 3D
This image of the giant asteroid Vesta obtained by NASA's Dawn spacecraft shows the surface of the asteroid from an orbit of about 1,700 miles (2,700 kilometers) above the surface. Numerous impact craters illustrate the asteroid's violent youth. By counting craters on distinct geological surfaces scientists can deduce relative ages of the asteroid's surface. This 3D view provides scientists the opportunity to learn more about the morphology of craters on asteroids and physical properties of the material at Vesta's surface.. Image resolution is about 260 meters per pixel. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Viewing the South Pole of Vesta and Rheasilvia Impact Basin
This image obtained by Dawns framing camera shows the south pole of the giant asteroid Vesta. Scientists are discussing whether the Rheasilvia circular structure that covers most of this image originated by a collision with another asteroid, or by internal processes early in the asteroid's history. Images in higher resolution from Dawn's next lowered orbit might help answer that question. The image was recorded from a distance of about 1,700 miles (2,700 kilometers). The image resolution is about 260 meters per pixel. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Rhea Silvia, torso from the amphitheatre at Cartagena in Spain that was rediscovered in 1988. Rhea Silvia was the mother of Romulus and Remus, the mythical founders of Rome. Source: Wikipedia

Read Ken’s continuing features about Dawn and Vesta

Rheasilvia – Super Mysterious South Pole Basin at Vesta
Space Spectacular — Rotation Movies of Vesta
3 D Alien Snowman Graces Vesta
NASA Unveils Thrilling First Full Frame Images of Vesta from Dawn
Dawn Spirals Down Closer to Vesta’s South Pole Impact Basin
First Ever Vesta Vistas from Orbit – in 2D and 3D
Dawn Exceeds Wildest Expectations as First Ever Spacecraft to Orbit a Protoplanet – Vesta
Dawn Closing in on Asteroid Vesta as Views Exceed Hubble
Dawn Begins Approach to Asteroid Vesta and Snaps First Images
Revolutionary Dawn Closing in on Asteroid Vesta with Opened Eyes

Finding NEEMO: NASA’s Underwater Simulations Focus on Human Asteroid Mission

NEEMO engineering crew diver simulates anchoring to an asteroid surface. Image credit: NASA

[/caption]
The sight of NASA mission specialists performing mission training underwater has been fairly common over the years. On October 15th, NASA astronaut and former ISS crew member Shannon Walker will lead a different kind of underwater training mission. Walker will be leading the 15th expedition of NASA Extreme Environment Mission Operations (NEEMO), and interestingly, the crew includes Steve Squyres, head of the Mars Rover Exploration Project.

What makes NEEMO different from the other NASA underwater training simulations we’ve seen in the past?

Think asteroid.

With manned exploration of an asteroid on NASA’s roadmap, new technologies and procedures need to be created in order to ensure astronaut safety and achieve mission science goals. The NEEMO program at NASA will be putting experts to the task of developing solutions to the new challenges presented with near-Earth asteroid exploration. During NEEMO 15, NASA will test new tools, techniques and communication technologies.

Before now, NASA hasn’t given much thought to the operations necessary for a manned mission to an asteroid. With the nearly non-existent surface gravity of an asteroid, astronauts won’t be able to walk on the surface. One idea being tested is for the astronauts to anchor themselves to the asteroid. One difficulty with using anchors is that not all asteroids are made of the same materials – some asteroids are mostly metal, others are loose rubble and some are a mix of rock, metal and dust. Underwater testing on the ocean floor provides an environment that is perfectly suited for the NEEMO 15 mission, allowing NASA to simulate an environment with weak gravity and diverse materials.

Artist's concept of anchoring to the surface of an asteroid. Image credit: NASA

There are three main goals for the NEEMO 15 mission. First NASA will test methods for anchoring to the surface of the asteroid. Moving on the surface of an asteroid will require a method of connecting multiple anchors. The second major goal of the mission is to determine the best way to connect the anchor system. The third major goal will explore methods of collecting samples on the surface of an asteroid.

In addition to mission leader Shannon Walker, and Steve Squyres, the crew of NEEMO 15 includes astronaut Takuya Onishi (Japan Aerospace Exploration Agency) and David Saint-Jacques (Canadian Space Agency). Also joining the astronauts on the NEEMO 15 crew are: James Talacek and Nate Bender (University of North Carolina). Squyres is principal investigator for the Mars Exploration Rover (Spirit and Opportunity) mission, while Talacek and Bender are professional aquanauts.

Serving as support crew, NASA astronauts Stan Love, Richard Arnold and Mike Gernhardt, will participate in the NEEMO mission from the DeepWorker submersible, which they will pilot. NASA is using the DeepWorker submarine as an underwater stand-in for the Space Exploration Vehicle (SEV) which NASA has been testing separately in the “Desert RATS” field trial mission.

If you’d like to learn more about NASA’s NEEMO field test mission, visit: http://www.nasa.gov/neemo

You can view information on the NEEMO 15 crew at: http://www.nasa.gov/mission_pages/NEEMO/NEEMO15/crew.html, and follow the mission on Twitter and Facebook

Source: NASA NEEMO Press Release