Scientists from the Kepler mission announced this morning the first confirmed exoplanet orbiting in the habitable zone of a Sun-like star, the region where liquid water could exist on the surface of a rocky planet like Earth. Evidence for others has already been found by Kepler, but this is the first confirmation. The planet, Kepler-22b, is also only about 2.4 times the radius of Earth — the smallest planet found in a habitable zone so far — and orbits its star, Kepler-22, in 290 days. It is about 600 light-years away from Earth, and Kepler-22 is only slightly smaller and cooler than our own Sun. Not only is the planet in the habitable zone, but astronomers have determined its surface temperature averages a comfortable 22 degrees C (72 degrees F). Since the planet’s mass is not yet known, astronomers haven’t determined if it is a rocky or gaseous planet. But this discovery is a major step toward finding Earth-like worlds around other stars. A very exciting discovery, but there’s more…
It was also announced that Kepler has found 1,094 more planetary candidates, increasing the number now to 2,326! That’s an increase of 89% since the last update this past February. Of these, 207 are near Earth size, 680 are super-Earth size, 1,181 are Neptune size, 203 are Jupiter size and 55 are larger than Jupiter. These findings continue the observational trend seen before, where smaller planets are apparently more numerous than larger gas giant planets. The number of Earth size candidates has increased by more than 200 percent and the number of super-Earth size candidates has increased by 140 percent.
According to Natalie Batalha, Kepler deputy science team lead at San Jose State University in San Jose, California, “The tremendous growth in the number of Earth-size candidates tells us that we’re honing in on the planets Kepler was designed to detect: those that are not only Earth-size, but also are potentially habitable. The more data we collect, the keener our eye for finding the smallest planets out at longer orbital periods.”
Regarding Kepler-22b, William Borucki, Kepler principal investigator at NASA Ames Research Center at Moffett Field, California stated: “Fortune smiled upon us with the detection of this planet. The first transit was captured just three days after we declared the spacecraft operationally ready. We witnessed the defining third transit over the 2010 holiday season.”
Previously there were 54 planetary candidates in habitable zones, but this was changed to 48, after the Kepler team redefined the definition of what constitutes a habitable zone in order to account for the warming effects of atmospheres which could shift the zone farther out from a star.
The announcements were made at the inaugural Kepler science conference which runs from December 5-9 at Ames Research Center.
See also the press release from the Carnegie Institution for Science here.
Conventional wisdom has long had it that carbon-based life, so common here on earth, must surely be abundant elsewhere; both in our galaxy and the universe as a whole.
This line of reasoning is founded on two major assumptions; the first being that complex carbon chain molecules, the building blocks of life as we know it, have been detected throughout the interstellar medium. Carbon’s abundance appears to stretch across much of cosmic time, since its production is thought to have peaked some 7 billion years ago, when the universe was roughly half its current age.
The other major assumption is that life needs an elixir, a solvent on which it can advance its unique complex chemistry. Water and carbon go hand in hand in making this happen.
While the world as we know it runs on carbon, science fiction’s long flirtation with silicon-based life — “It’s life, but not as we know it” — has become a familiar catchphrase. But life of any sort should evolve, eat, excrete, reproduce, and respond to stimulus.
And although non-carbon based life is a very long shot, we thought we’d broach the issue with one of the country’s top astrochemists — Max Bernstein, the Research Lead of the Science Mission Directorate at NASA headquarters in Washington,D.C.
Bruce Dorminey — IS IT WRONG TO ASSUME THAT LIFE COULD BE BASED ON SOMETHING OTHER THAN CARBON?
Max Bernstein — It’s important for us to keep an open mind about alien life, lest we come across it and miss it. On the other hand, carbon is much better than any other element in forming the main structures of living things. Carbon can form many stable complex structures of great diversity. When carbon forms molecules containing cxygen and nitrogen, the carbon bonds to nitrogen and oxygen are stable. But not so much so that they can’t be fairly easily undone, unlike silicon-oxygen bonds, for example.
Dorminey — DOES THE RECENT NASA-FUNDED RESEARCH AT MONO LAKE, CALIFORNIA WHICH TOUTED THE DISCOVERY OF BACTERIA WITH DNA THAT USES ARSENIC INSTEAD OF PHOSPHORUS RATTLE THE CURRENT PARADIGM?
Bernstein — That was a really cool result, but the basic structure was still carbon. The arsenic was said to have replaced phosphorus, not carbon. The discovery of this putative arsenic organism may prove to be incorrect, but it’s a hypothesis with science behind it, and not just someone tossing out an idea and leaving it at the level of what if you replaced carbon with silicon?
Dorminey — SILICON SEEMS TO BE THE MOST POPULAR NON-CARBON BASED CANDIDATE, ARE THERE OTHERS THAT ALSO MIGHT BE FEASIBLE?
Bernstein — It’s hard to imagine anything that would be more likely that silicon because there is nothing closer to carbon than silicon in terms of its chemistry. It’s in the right place on the periodic table, just below carbon. On the face of it, [silicon-based life] doesn’t seem too absurd since silicon, like carbon, forms four bonds. CH4 is methane and SiH4 is silane. They are analogous molecules so the basic idea is that perhaps silicon could form an entire parallel chemistry, and even life. But there are tons of problems with this idea. We don’t see a complex stable chemistry [solely] of silicon and hydrogen, as we see with carbon and hydrogen. We use hydrocarbon chains in our lipids (molecules that make up membranes), but the analogous silane chains would not be stable. Whereas carbon-oxygen bonds can be made and unmade — this goes on in our bodies all the time — this is not true for silicon. This would severely limit silicon’s life-like chemistry. Maybe you could have something silicon-based that’s sort of alive, but only in the sense that it passes on information.
Dorminey — IF SILICON-BASED LIFE IS OUT THERE, HOW COULD WE EVER DETECT IT REMOTELY?
Bernstein — We are seriously arguing about how we would remotely detect life just like us, so I really couldn’t say. Presumably technology-using organisms, whatever their biochemistry, will produce technology, so the Search for Extraterrestrial Intelligence (SETI) may be our best shot.
Dorminey— HOW WOULD YOU LOOK FOR SILICON-BASED LIFE HERE ON EARTH?
Bernstein — When seeking an alien organism its really tough because you just don’t know what molecules to look for. One would have to be satisfied by something a bit more ambiguous, like sets of molecules that should not be there. For example, if you were an alien Silicon organism, you might not be looking for our biochemistry, but the fact that you kept seeing exactly the same chain lengths over and over again might tip you off to the fact that those darn carbon chains might actually be the basis of an organism’s membranes.
Dorminey — WHERE ARE THE LARGEST CONCENTRATIONS OF SILICON HERE?
IN SAND?
Bernstein — In sand or rock. There are literally megatons of silicate minerals on Earth.
Dorminey — HAS ANYONE EVER CLAIMED DETECTION OF SELF-REPLICATING EXAMPLES OF SILICON HERE ON EARTH?
Bernstein — There have been ideas about minerals holding information just as DNA holds information. DNA holds information in a chain that is read from one end to the other. In contrast, a mineral could hold information in two dimensions [on its surface]. A crystal grows when new atoms arrive on the surface, building layer upon layer. So, if a crystal sheet cleaved off and then started to grow that would be like the birth of a new organism and would carry information from generation to generation. But is a replicating crystal alive? To date, I don’t think that there is actually any evidence that minerals pass information like this.
Dorminey — IS THE CRUX OF THE PROBLEM THAT SILICON-BASED LIFE WOULD BE SO SLOWLY REPLICATING THAT IT COULD NEVER MAKE IT IN A DYNAMIC UNIVERSE?
Bernstein — I don’t think that any Silicon life form could be a biological threat to us. If they were high tech, they might eat our buildings or shoot guns at us but I don’t see how they could infect us. We run hot and move fast. If we don’t, things will catch us and eat us.
If they are also tougher than we are and whatever feeds on them is also slow and Silicon based maybe being slow doesn’t matter.
Dorminey — WHAT WOULD BE THE SIGNATURES OF SILICON-BASED LIFE?
Bernstein — If they are not technological, they would be very tough to detect. We could look for unstable, unexpected silicon molecules; some high energy molecule that should not be there, or molecular chains of all the same length.
Dorminey — DO YOU THINK THAT SILICON-BASED LIFE MIGHT EXIST SOMEWHERE OUT THERE?
Bernstein — Maybe deep below the surface of a planet in some very hot hydrogen-rich, Oxygen-poor environment, you would have this complex silane chemistry. There, maybe silanes would form reversible silicon bonds with selenium or tellurium.
Dorminey — IF SUCH SILICON-BASED LIFE DID CROP UP, WHAT WOULD BE ITS EVOLUTIONARY ENDGAME?
Bernstein — If it could evolve past the protist [microorganism] stage, then I think it could evolve intelligence. I have no idea how likely it is for intelligence to evolve, but I can believe in silicon crystals passing information from layer to layer or in silicon artificial intelligence, but I don’t expect to see silicon apes playing their equivalent of “Angry Birds” on their Silicon-Phones.
Dorminey — IF SILICON-LIFE DID EVOLVE, WOULD ITS LIFESPAN BE MUCH LONGER THAN ITS CARBON-BASED ANALOGUES?
Bernstein — The replicating mineral that I described earlier would be living very, very slowly on Earth’s surface. But maybe somewhere very much hotter, its lifespan would be shorter. That’s because presumably lifespan is connected to the pace of your chemistry, which depends on temperature.
Dorminey — FINALLY, WHAT WOULD ENDANGER NON-CARBON-BASED LIFE?
Bernstein — Physical harm for sure. Presumably you could take a jackhammer to it?
But our biochemistry would not be pathogens to it; we could not “infect” them as was the case in “War of the Worlds.”
One of the most controversial and long-debated aspects of Mars exploration has been the results of the Viking landers’ life-detection experiments back in the 1970s. While the preliminary findings were consistent with the presence of bacteria (or something similar) in the soil samples, the lack of organics found by other instruments forced most scientists to conclude that the life-like responses were most likely the result of unknown chemical reactions, not life. Gilbert V. Levin, however, one of the primary scientists involved with the Viking experiments, has continued to maintain that the Viking landers did indeed find life in the Martian soil. He also now thinks that the just-launched Curiosity rover might be able to confirm this when it lands on Mars next summer.
Curiosity is not specifically a life-detection mission. Rather, it continues the search for evidence of habitability, both now and in the past. But is it possible that it could find evidence for life anyway? Levin believes it could, between its organics detection capability and its high-resolution cameras.
The major argument against the life-detection claims was the lack of organics found in the soil. How could there be life with no organic building blocks? It has since been thought that any organics were destroyed by the harsh ultraviolet radiation or other chemical compounds in the soil itself. Perchlorates could do that, and were later found in the soil by the Phoenix mission a few years ago, closer to the north pole of Mars. The experiments themselves, which included baking the soil at high heat, may have destroyed any organics present (part of the studies involved heating the soil to kill any organisms and then study the residual gases released as a result, as well as feeding nutrients to any putative organisms and analyzing the gases released from the soil). If Curiosity can find organics, either in the soil or by drilling into rocks, Levin argues, that would bolster the case for life being found in the original Viking experiments, as they were the “missing piece” to the puzzle.
So what about the cameras? Any life would have to be macro, of visible size, to be detected. Levin and his team had also found “greenish coloured patches” on some of the nearby rocks. (I still have a little booklet published by Levin at the time, “Color and Feature Changes at Mars Viking Lander Site” which describes these in more detail). When as a test, lichen-bearing rocks on Earth were viewed with the same camera system using visible and infrared spectral analysis, the results were remarkably similar to what was seen on Mars. Again, since then though, those results have been widely disputed, with most scientists thinking the patches were mineral coatings similar to others seen since then. Of course, there is also the microscopic imager, similar to that on the Spirit and Opportunity rovers, although microorganisms would still be too small to be seen directly.
Regardless, Levin feels that Curiosity just might be able to vindicate his earlier findings, stating “This is a very exciting time, something for which I have been waiting for years. At the very least, the Curiosity results may bring about my long-requested re-evaluation of the Viking LR results. The Viking LR life detection data are the only data that will ever be available from a pristine Mars. They are priceless, and should be thoroughly studied.”
Ever since a study conducted back in 1993, it has been proposed that in order for a planet to support more complex life, it would be most advantageous for that planet to have a large moon orbiting it, much like the Earth’s moon. Our moon helps to stabilize the Earth’s rotational axis against perturbations caused by the gravitational influence of Jupiter. Without that stabilizing force, there would be huge climate fluctuations caused by the tilt of Earth’s axis swinging between about 0 and 85 degrees.
But now that belief is being called into question thanks to newer research, which may mean that the number of planets capable of supporting complex life could be even higher than previously thought.
Since planets with relatively large moons are thought to be fairly rare, that would mean most terrestrial-type planets like Earth would have either smaller moons or no moons at all, limiting their potential to support life. But if the new research results are right, the dependence on a large moon might not be as important after all. “There could be a lot more habitable worlds out there,” according to Jack Lissauer of NASA’s Ames Research Center in Moffett Field, California, who leads the research team.
It seems that the 1993 study did not take into account how fast the changes in tilt would occur; the impression given was that the axis fluctuations would be wild and chaotic. Lissauer and his team conducted a new experiment simulating a moonless Earth over a time period of 4 billion years. The results were surprising – the axis tilt of the Earth varied only between about 10 and 50 degrees, much less than the original study suggested. There were also long periods of time, up to 500 million years, when the tilt was only between 17 and 32 degrees, a lot more stable than previously thought possible.
So what does this mean for planets in other solar systems? According to Darren Williams of Pennsylvania State University, “Large moons are not required for a stable tilt and climate. In some circumstances, large moons can even be detrimental, depending on the arrangement of planets in a given system. Every system is going to be different.”
Apparently the assumption that a planet needs a large moon in order to be capable of supporting life was a bit premature. The results so far from the Kepler mission and other telescopes have shown that there is a wide variety of planets orbiting other stars, and so probably also moons, which we are now also on the verge of being able to detect. It’s nice to think that more of the terrestrial-type rocky planets, with or without moons, might be habitable after all.
New research on Jupiter’s ice-covered moon Europa indicates the presence of a subsurface lake buried beneath frozen mounds of huge jumbled chunks of ice. While it has long been believed that Europa’s ice lies atop a deep underground ocean, these new findings support the possibility of large pockets of liquid water being much closer to the moon’s surface — as well as energy from the Sun — and ultimately boosting the possibility it could contain life.
During a press conference today, November 16 at 1 p.m. EST, researchers Britney Schmidt, Tori Hoeler, Louise Prockter and Tom Wagner presented new theories concerning the creation of “chaos terrain” on Europa.
Chaos terrain is exactly what it sounds like: irregularly-shaped landforms and surface textures on a world. In the case of Europa, the terrain is made of water ice that evidence shows has been loosened by the motion of liquid water beneath, expanded, and then has refrozen into hills and jagged mounds.
These mounds are visible in topographic data acquired by the Galileo spacecraft in 1998.
During the presentation a good analogy for the processes at work on Europa was made by Britney Schmidt, a postdoctoral fellow at the Institute for Geophysics, University of Texas at Austin and lead author of the paper. She demonstrated the formation of Europa’s “mosh pit of icebergs” using a drinking glass partially filled with ice cubes. When water was added to the glass, the ice cubes naturally rose up and shifted orientation. Should the water beneath them refreeze, as it would in the frigid environments found in the Jovian system, the ice cubes would be held fast in their new expanded, “chaotic” positions.
“Now we see evidence that it’s a thick ice shell that can mix vigorously, and new evidence for giant shallow lakes. That could make Europa and its ocean more habitable.”
– Britney Schmidt, lead author
Similar processes have also been seen occurring on Earth, both in Antarctica along the edges of ice shelves and in Greenland, where glaciers continually break apart and flow into the sea – often rolling over themselves and each other in the process.
The importance of these findings is that scientists finally have a model that demonstrates how Europa’s deep liquid ocean interacts with the ice near its surface in such a way as to allow for the transportation of energy and nutrients.
“This is the first time that anyone has come up with an end-to-end model that explains what we see on the surface,” said APL senior planetary scientist Louise Prockter.
With such strong evidence for this process, the likelihood that Europa could harbor environments friendly to life goes up dramatically.
“The potential for exchange of material between the surface and subsurface is a big key for astrobiology,” said Wes Patterson, a planetary scientist at the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., and a co-author of the study. “Europa’s subsurface harbors much of what we believe is necessary for life but chemical nutrients found at the surface are likely vital for driving biology.”
Although the research favors the existence of these lakes, however, confirmation of such has not yet been found. That will require a future mission to Europa and the direct investigation of its icy surface – and what lies beneath.
Luckily a Europa mission was recently rated as one of the highest priority flagship missions by the National Research Council’s Planetary Science Decadal Survey and is currently being studied by NASA.
“If we’re ever to send a landed mission to Europa, these areas would be great places to study,” Prockter said.
Read more about this discovery in the Johns Hopkins University Applied Physics Laboratory press release, or in the NASA news release here. Also, watch the full conference recorded on Ustream below:
For a long time now, we have heard the mantra “follow the water” when it comes to searching for life elsewhere. Life as we know it here on Earth requires liquid water, whether it is tiny microbes or elephants. It has thus been assumed that carbon-based life somewhere else that is basically similar to ours in its chemical makeup (another assumption) would also require water for its survival and growth. But is that necessarily true? In recent years, more consideration has been given to the possibility that life could develop in other mediums as well, besides water. A liquid is still ideal, for allowing the necessary molecules to bond together. So what are the alternatives? Well, one of the most interesting possibilities is something we have already seen now elsewhere in our solar system – liquid methane.
It should be noted that the importance of water cannot be overlooked. According to Chris McKay, an astrobiologist and planetary scientist at NASA’s Ames Research Center, “We live on a planet where water is a liquid and we have adapted and evolved to work with that liquid. Life has very cleverly used the properties of water to do things not just in terms of solution, but in using the strong polarity of that solution to its advantage in terms of hydrophobic and hydrophilic bonds, and using the very structure of water to help align molecules.”
But McKay also published a paper In the journal Planetary and Space Science last April, postulating how life on some worlds could use liquid methane in place of water. There could be planets orbiting red dwarf stars, which are smaller and cooler than our Sun, and could have a “liquid methane habitable zone” where methane could exist as a liquid on the surface of planets orbiting within that zone. They could also exist around Sun-like stars, although they would be easier to detect around the smaller, dimmer red dwarf stars. But there is already one methane world that we know of, much closer to home…
Orbiting the sixth planet out from the Sun, Saturn, is a moon which in some ways is eerily Earth-like, with rain, rivers, lakes and seas – Titan. It is the first world we’ve found so far that has liquid on its surface like Earth does. But there is one major difference; the liquid is not water, it is liquid methane/ethane. With temperatures far colder than anywhere on Earth at –179 degrees Celsius, water cannot exist as a liquid, it is frozen as hard as rock. But methane can exist as a liquid under those conditions and indeed does on Titan. Beneath an atmosphere that is thicker than ours (but also made primarily of nitrogen), the surface of Titan has been modified in much the same way as Earth’s; liquid methane plays the same role there as water does here, with a complete hydrological cycle. It is like a familiar-looking but colder version of our planet, which has raised the question of whether an environment like this could even support life of some kind.
McKay had also previously suggested that methane-based life could consume hydrogen, acetylene and ethane, and exhale methane instead of carbon-dioxide. This would result in a depletion of hydrogen, acetylene and ethane on the surface of Titan. Interestingly, this is just what has been found by the Cassini spacecraft, although McKay is quick to caution that there could still be other more likely explanations. There is still a lot we don’t know about Titan. Whatever the explanation, there is some interesting chemistry going on.
At the very least, Titan is thought to represent conditions similar to those on the early Earth, a sort of primordial Earth in deep-freeze. That alone could provide vital clues as to how to life took hold on our planet. If there are other planets or moons out there that are similar, as now seems likely, they could also reveal valuable insights into the question of the origin of life, whether there is anything swimming in those cold lakes and seas or not. While water is still considered the primary liquid medium of choice, liquid methane could be the next best thing, and if we have learned anything, it is how amazingly adaptive and resourceful life can be, perhaps even more than we think.
Astrobiologists have discovered regions in our galaxy which might have the greatest potential for producing very complex organic molecules, the starting point for the development of life. We’ve heard before about “follow the water” in the search for life; in this case it may be “follow the methanol”…
The scientists involved, from Rensselaer Polytechnic Institute in Troy, New York, began a search for methanol, a key ingredient in the synthesis of organic molecules. According to Douglas Whittet, lead researcher of the study, “Methanol formation is the major chemical pathway to complex organic molecules in interstellar space.” The idea is to look for areas where there is rich methanol production occurring. In the large clouds of dust and gas that give birth to new stars, there are simpler organic molecules like carbon monoxide. Under the right conditions, carbon monoxide on the surfaces of dust grains can interact with hydrogen, also found in the clouds, to create methanol. Methanol can then become a steppingstone to create the more complex organic molecules, the types needed for life itself. But how much methanol is out there, and where?
It appears to be most abundant around a small number of newly-formed stars, where it makes up to 30 percent of the material around those stars. In other areas though, it is in much smaller amounts, or none at all. In the cold dust and gas clouds that will eventually produce new stars, it was found to exist in the 1 to 2 percent range. Hence, there appear to be “sweet spots” where conditions are suitable for the chain reactions to occur, depending on how fast the needed molecules can reach the dust grains. It can mean the difference between a “dead end” for additional development or an “organic bloom.” As described by Whittet: “If the carbon monoxide molecules build up too quickly on the surfaces of the dust grains, they don’t get the opportunity to react and form more complex molecules. Instead, the molecules get buried in the ices and add up to a lot of dead weight. If the buildup is too slow, the opportunities for reaction are also much lower.”
So some places may be much more likely to have the conditions necessary for the development of life than others. What about our own solar system? How does it compare? By studying the methanol amounts in comets, relics from the beginning of the solar system, the scientists have concluded that the methanol abundance back then was about average. Not a dearth of the stuff, but not a “sweet spot” really, either. Yet here we are… or, as Whittet put it, “This means that our solar system wasn’t particularly lucky and didn’t have the large amounts of methanol that we see around some other stars in the galaxy. But, it was obviously enough for us to be here.”
The paper, titled “Observational constraints on methanol production in interstellar and preplanetary ices,” will be published in the Nov. 20 edition of The Astrophysical Journal and is a collaboration between Rensselaer, NASA Ames Research Center, the SETI Institute and Ohio State University.
One of the most vocal and ardent critics of the so-called ‘arsenic life’ experiment which was published in December 2010 was biologist Rosie Redfield from the University of British Columbia in Vancouver. The science paper by NASA astrobiologist Felisa Wolfe-Simon and her team reported that a type of bacteria in Mono Lake in California can live and grow almost entirely on arsenic, a poison, and incorporates it into its DNA. Redfield called the paper “lots of flim-flam, but very little reliable information.” Her opinion was quickly seconded by many other biologists/bloggers.
Redfield has been working on replicating the experiment done by Wolfe-Simon, and doing in her work in front of the world, so to speak. She is detailing her work in an open lab notebook on her blog. So far, she reports that her results contradict Wolfe-Simon et al.’s observations.
To date, Redfield is finding that the bacteria, called GFAJ-1, is not living and growing in arsenic, but dying. Redfield says her work refutes that cells from the GFAJ-1 could use arsenic for growth in place of phosphorus, and when arsenic was added to the low-phosphorus medium in which the bacteria was living, the bacteria was killed. Additionally, in other test viles, the growth properties Redfield is finding for GFAJ-1 don’t match those reported by Wolfe-Simon and her team, which claimed that the bacteria could not grow on a low concentration of phosphorus, and that the bacteria could grow on arsenic in the absence of phosphorus.
Redfield’s two major early criticisms of the original paper were that the authors had not ruled out the possibility that the bacteria were feeding on phosphorus contaminating their growth medium; and that the bacterial DNA was not properly purified, so that the arsenic detected might not actually have been in DNA.
An article in Nature reports that other researchers also working on replicating the experiment with GFAJ-1 laud Redfield’s efforts, but say it is too early to conclude that she has debunked the original work.
Additionally, one problem is that Redfield she did not replicate the experiment exactly, as she had to add one nutrient not used by the authors of the original arsenic life paper in order for the bacteria to grow.
This is not the first time scientists have written open notebooks during the replication of controversial findings, but it might be one of the more notable, given the amount of media attention the arsenic life paper received.
Redfield is also hoping that her work will highlight the benefits of open notebook-type research.
In a news conference today, NASA announced discoveries that provide additional evidence of seasonal water flows on Mars. Using data collected by the Mars Reconnaissance Orbiter, the MRO team presented images of dark lines that form on slopes during the martian spring/summer and fade in winter.
During the news conference, HIRISE principal investigator Alfred McEwen (University of Arizona), discussed that these “finger-like” features were found in Mars’ mid-southern latitudes. “The best explanation for these observations so far is the flow of briny water,” he said.
McEwen based his explanation on several key facts: First, salt lowers the freezing point of water (“plain” water would simply stay frozen on Mars) Secondly, the temperature on Mars during these flows ranges from -23 to +27 degrees Celsius, which rules out CO2. While there is significant evidence of flowing water, the team did state that there is no direct detection of water since it evaporates quickly on Mars.
Regarding the dark color of the flows, McEwen added, “The flows are not dark because of being wet, they are dark for some other reason.” McEwen also mentioned that researchers will need to re-create Mars-like conditions in the lab to better understand these flows, stating, “It’s a mystery now, but I think it’s a solvable mystery with further observations and laboratory experiments.”
MRO Project Scientist Richard Zurek (JPL) offered his thoughts as well. “These dark lineations are different from other types of features on Martian slopes,” he said, “and repeated observations show they extend ever farther downhill with time during the warm season.”
What also proves intriguing to the team is that while gullies are very abundant on colder slopes that face the poles, the dark flows discussed in today’s news conference are found on warmer slopes which face the equator.
During the conference, Philip Christensen (Arizona State University) presented a map showing concentrations of “salts” in the same locations that the dark, “finger-like” flows were found.
McEwen reiterated during the Q&A session that the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), hasn’t detected any signs of water and that laboratory simulations will be necessary to gain a better understanding of these features – basically the team is seeing signs of flowing water, but not the water itself.
If you’d like to learn more about the Mars Reconnaissance Orbiter and today’s announcement, you can visit: http://www.nasa.gov/mro
Researchers on the Cassini mission team have identified large salt grains in the plumes emanating from Saturn’s icy satellite Enceladus, making an even stronger case for the existence of a salty liquid ocean beneath the moon’s frozen surface.
Cassini first discovered the jets of water ice particles in 2005; since then scientists have been trying to learn more about how they behave, what they are made of and – most importantly – where they are coming from. The running theory is that Enceladus has a liquid subsurface ocean of as-of-yet undetermined depth and volume, and pressure from the rock and ice layers above combined with heat from within force the water up through surface cracks near the moon’s south pole. When this water reaches the surface it instantly freezes, sending plumes of ice particles hundreds of miles into space.
Much of the ice ends up in orbit around Saturn, creating the hazy E ring in which Enceladus resides.
Although the discovery of the plumes initially came as a surprise, it’s the growing possibility of liquid water that’s really intriguing – especially that far out in the Solar System and on a little 504-km-wide moon barely the width of Arizona. What’s keeping Enceladus’ water from freezing as hard as rock? It could be tidal forces from Saturn, it could be internal heat from its core, a combination of both – or something else entirely… astronomers are still hard at work on this mystery.
Now, using data obtained from flybys in 2008 and 2009 during which Cassini flew directly through the plumes, researchers have found that the particles in the jets closest to the moon contain large sodium- and potassium-rich salt grains. This is the best evidence yet of the existence of liquid salt water inside Enceladus – a salty underground ocean.
“There currently is no plausible way to produce a steady outflow of salt-rich grains from solid ice across all the tiger stripes other than salt water under Enceladus’s icy surface.”
– Frank Postberg, Cassini team scientist, University of Heidelberg, Germany
If there indeed is a reservoir of liquid water, it must be pretty extensive since the numerous plumes are constantly spraying water vapor at a rate of 200 kg (400 pounds) every second – and at several times the speed of sound! The plumes are ejected from points within long, deep fissures that slash across Enceladus’ south pole, dubbed “tiger stripes”.
Recently the tiger stripe region has also been found to be emanating a surprising amount of heat, even further supporting a liquid water interior – as well as an internal source of energy. And where there’s liquid water, heat energy and organic chemicals – all of which seem to exist on Enceladus – there’s also a case for the existence of life.
“This finding is a crucial new piece of evidence showing that environmental conditions favorable to the emergence of life can be sustained on icy bodies orbiting gas giant planets.”
– Nicolas Altobelli, ESA project scientist for Cassini
Enceladus has intrigued scientists for many years, and every time Cassini takes a closer look some new bit of information is revealed… we can only imagine what other secrets this little world may hold. Thankfully Cassini is going strong and more than happy to keep on investigating!
“Without an orbiter like Cassini to fly close to Saturn and its moons — to taste salt and feel the bombardment of ice grains — scientists would never have known how interesting these outer solar system worlds are.”
– Linda Spilker, Cassini project scientist at JPL
The findings were published in this week’s issue of the journal Nature.
Image credits: NASA / JPL / Space Science Institute
__________________
Jason Major is a graphic designer, photo enthusiast and space blogger. Visit his website Lights in the Dark and follow him on Twitter @JPMajor or on Facebook for the most up-to-date astronomy awesomeness!