Organic Molecules Detected in Exoplanet Atmosphere

Artist concept of exoplanet HD 209458b. Credit: NASA/JPL-Caltech/T. Pyle (SSC)

[/caption]

The basic chemistry for life has been detected the atmosphere of a second hot gas planet, HD 209458b. Data from the Hubble and Spitzer Space Telescopes provided spectral observations that revealed molecules of carbon dioxide, methane and water vapor in the planet’s atmosphere. The Jupiter-sized planet – which occupies a tight, 3.5-day orbit around a sun-like star — is not habitable but it has the same chemistry that, if found around a rocky planet in the future, could indicate the presence of life. Astronomers are excited about the detection, as it shows the potential of being able to characterize planets where life could exist.

HD 209458b is in the constellation Pegasus.

“It’s the second planet outside our solar system in which water, methane and carbon dioxide have been found, which are potentially important for biological processes in habitable planets,” said researcher Mark Swain of JPL. “Detecting organic compounds in two exoplanets now raises the possibility that it will become commonplace to find planets with molecules that may be tied to life.”

Over a year ago, astronomers detected these same organic molecules in the atmosphere of another hot, giant planet, called HD 189733b, using the same two space telescopes. Astronomers can now begin comparing the chemistry and dynamics of these two planets, and search for similar measurements of other candidate exoplanets.

The detections were made through spectroscopy, which splits light into its components to reveal the distinctive spectral signatures of different chemicals. Data from Hubble’s near-infrared camera and multi-object spectrometer revealed the presence of the molecules, and data from Spitzer’s photometer and infrared spectrometer measured their amounts.

“This demonstrates that we can detect the molecules that matter for life processes,” said Swain. Astronomers can now begin comparing the two planetary atmospheres for differences and similarities. For example, the relative amounts of water and carbon dioxide in the two planets is similar, but HD 209458b shows a greater abundance of methane than HD 189733b. “The high methane abundance is telling us something,” said Swain. “It could mean there was something special about the formation of this planet.”

Rocky worlds are expected to be found by NASA’s Kepler mission, which launched earlier this year, but astronomers believe we are a decade or so away from being able to detect any chemical signs of life on such a body.

If and when such Earth-like planets are found in the future, “the detection of organic compounds will not necessarily mean there’s life on a planet, because there are other ways to generate such molecules,” Swain said. “If we detect organic chemicals on a rocky, Earth-like planet, we will want to understand enough about the planet to rule out non-life processes that could have led to those chemicals being there.”

“These objects are too far away to send probes to, so the only way we’re ever going to learn anything about them is to point telescopes at them. Spectroscopy provides a powerful tool to determine their chemistry and dynamics.”

For more information about exoplanets and NASA’s planet-finding program, check out PlanetQuest.

Source: Spitzer

Where Could Humans Survive in our Solar System?

Habitability in our solar system. Credit: UPR Arecibo, NASA PhotoJournal

[/caption]
If humans were forced to vacate Earth, where is the next best place in our solar system for us to live? A study by the University of Puerto Rico at Arecibo has provided a quantitative evaluation of habitability to identify the potential habitats in our solar system. Professor Abel Mendez, who produced the study also looked at how the habitability of Earth has changed in the past, finding that some periods were even better than today.

Mendez developed a Quantitative Habitability Theory to assess the current state of terrestrial habitability and to establish a baseline for relevant comparisons with past or future climate scenarios and other planetary bodies including extrasolar planets.

“It is surprising that there is no agreement on a quantitative definition of habitability,” said Mendez, a biophysicist. “There are well-established measures of habitability in ecology since the 1970s, but only a few recent studies have proposed better alternatives for the astrobiology field, which is more oriented to microbial life. However, none of the existing alternatives from the fields of ecology to astrobiology has demonstrated a practical approach at planetary scales.”

His theory is based on two biophysical parameters: the habitability (H), as a relative measure of the potential for life of an environment, or habitat quality, and the habitation (M), as a relative measure of biodensity, or occupancy. Within the parameters are physiological and environmental variables which can be used to make predictions about the distribution, and abundance of potential food (both plant and microbial life), environment and weather.

The image above shows a comparison of the potential habitable space available on Earth, Mars, Europa, Titan, and Enceladus. The green spheres represent the global volume with the right physical environment for most terrestrial microorganisms. On Earth, the biosphere includes parts of the atmosphere, oceans, and subsurface (here’s a biosphere definition). The potential global habitats of the other planetary bodies are deep below their surface.

Enceladus has the smallest volume but the highest habitat-planet size ratio followed by Europa. Surprisingly, Enceladus also has the highest mean habitability in the Solar System, even though it is farther from the sun, and Earth, making it harder to get to. Mendez said Mars and Europa would be the best compromise between potential for life and accessibility.

n Oct. 5, 2008.  Image credit: NASA/JPL/Space Science Institute  Cassini came within 25 kilometers (15.6 miles) of the surface of Enceladus o
n Oct. 5, 2008. Image credit: NASA/JPL/Space Science Institute Cassini came within 25 kilometers (15.6 miles) of the surface of Enceladus o

“Various planetary models were used to calculate and compare the habitability of Mars, Venus, Europa, Titan, and Enceladus,” Mendez said. “Interestingly, Enceladus resulted as the object with the highest subsurface habitability in the solar system, but too deep for direct exploration. Mars and Europa resulted as the best compromise between habitability and accessibility. In addition, it is also possible to evaluate the global habitability of any detected terrestrial-sized extrasolar planet in the future. Further studies will expand the habitability definition to include other environmental variables such as light, carbon dioxide, oxygen, and nutrients concentrations. This will help expand the models, especially at local scales, and thus improve its application in assessing habitable zones on Earth and beyond.”

Studies about the effects of climate change on life are interesting when applied to Earth itself. “The biophysical quantity Standard Primary Habitability (SPH) was defined as a base for comparison of the global surface habitability for primary producers,” Mendez said. “The SPH is always an upper limit for the habitability of a planet but other factors can contribute to lower its value. The current SPH of our planet is close to 0.7, but it has been up to 0.9 during various paleoclimates, such as during the late Cretaceous period when the dinosaurs went extinct. I’m now working on how the SPH could change under global warming.”

The search for habitable environments in the universe is one of the priorities of the NASA Astrobiology Institute and other international organizations. Mendez’s studies also focus on the search for life in the solar system, as well as extrasolar planets.

“This work is important because it provides a quantitative measure for comparing habitability,” said NASA planetary scientists Chris McKay. “It provides an objective way to compare different climate and planetary systems.”

“I was pleased to see Enceladus come out the winner,” McKay said. “I’ve thought for some time that it was the most interesting world for astrobiology in the solar system.”

Mendez presented his results at the Division for Planetary Sciences of the American Astronomical Society meeting earlier this month.

Source: AAS DPS

Searching for Life As We Don’t Know It

Artist's impression of exoplanets around other stars. Credits: ESA/AOES Medialab

[/caption]
When discussing the possibility of finding life on other worlds, we usually add the phrase “life – as we know it.” But we’ve been surprised at exotic forms of life even on our own world and we need figure out how life might evolve elsewhere with foreign biochemistry in alien environments. Scientists at a new interdisciplinary research institute in Austria are working to understand exotic life and how we might find it.

Traditionally, planets that might sustain life are looked for in the ‘habitable zone’, the region around a star in which Earth-like planets with carbon dioxide, water vapor and nitrogen atmospheres could maintain liquid water on their surfaces. Consequently, scientists have been looking for biomarkers produced by extraterrestrial life with metabolisms resembling the terrestrial ones, where water is used as a solvent and the building blocks of life, amino acids, are based on carbon and oxygen. However, these may not be the only conditions under which life could evolve.

The University of Vienna established a research group for Alternative Solvents as a Basis for Life Supporting Zones in (Exo-)Planetary Systems in May 2009, under the leadership of Maria Firneis.

“It is time to make a radical change in our present geocentric mindset for life as we know it on Earth,” said Dr. Johannes Leitner, from the research group. “Even though this is the only kind of life we know, it cannot be ruled out that life forms have evolved somewhere that neither rely on water nor on a carbon and oxygen based metabolism.”

One requirement for a life-supporting solvent is that it remains liquid over a large temperature range. Water is liquid between 0°C and 100°C, but other solvents exist which are liquid over more than 200 °C. Such a solvent would allow an ocean on a planet closer to the central star. The reverse scenario is also possible. A liquid ocean of ammonia could exist much further from a star. Furthermore, sulphuric acid can be found within the cloud layers of Venus and we now know that lakes of methane/ethane cover parts of the surface of the Saturnian satellite Titan.

Consequently, the discussion on potential life and the best strategies for its detection is ongoing and not only limited to exoplanets and habitable zones. The newly established research group at the University of Vienna, together with international collaborators, will investigate the properties of a range of solvents other than water, including their abundance in space, thermal and biochemical characteristics as well as their ability to support the origin and evolution of life supporting metabolisms.

“Even though most exoplanets we have discovered so far around stars are probably gas planets, it is a matter of time until smaller, Earth-size exoplanets are discovered,” said Leitner.

The research group discussed their initial investigations at the European Planetary Science Conference in Potsdam, Germany.

Source: Europlanet

A New “Drake” Equation for Potential of Life

An image showing microbes living in sandstone in Antarctica (credit: C Cockell)

[/caption]
The famed Drake equation estimates the number of technologically advanced civilizations that might exist in our Galaxy. But is there a way to mathematically quantify a habitat’s potential for hosting life?
“At present, there is no easy way of directly comparing the suitability of different environments as a habitat for life” said Dr. Axel Hagermann, who is proposing a method to find a “habitability index” at the European Planetary Science Congress.

“The classical definition of a habitable environment,” said Hagermann, “is one that has the presence of a solvent, for example water, availability of the raw materials for life, clement conditions and some kind of energy source, so we tend to define a place as ‘habitable’ if it falls into the area where these criteria overlap on a Venn diagram. This is fine for specific instances, but it gives us no quantifiable way of comparing exactly how habitable one environment is in comparison with another, which I think is very important.”
Drake Equation
Hagermann and colleague Charles Cockell have the ambitious aim of developing a single, normalized indicator of habitability, mathematically describing all the variables of each of the four habitability criteria. Initially, they are focusing on describing all the qualities of an energy source that may help or hinder the development of life.

“Electromagnetic radiation may seem simple to quantify in terms of wavelengths and joules, but there are many things to consider in terms of habitability,” Hagermann said. “For instance, while visible and infrared wavelengths are important for life and processes such as photosynthesis, ultraviolet and X-rays are harmful. If you can imagine a planet with a thin atmosphere that lets through some of this harmful radiation, there must be a certain depth in the soil where the ‘bad’ radiation has been absorbed but the ‘good’ radiation can penetrate. We are looking to be able to define this optimal habitable region in a way that we can say that it is ‘as habitable’ or ‘less habitable’ than a desert in Morocco, for example.”

The pair will be presenting their initial study and asking for feedback from colleagues at the European Planetary Science Congress. “There may be good reasons why such a habitability index is not going to work and, with so many variables to consider, it is not going to be an easy task to develop. However, this kind of index has the potential to be an invaluable tool as we begin to understand more about the conditions needed for life to evolve and we find more locations in our Solar System and beyond that might be habitable.”

Source: Europlanet

Life on Other Planets

Mars. Credit: NASA

[/caption]
For centuries, men have pondered the possibility of life on other planets and tried to prove its existence. Even before the first shuttle or probe was launched, stories of life on other planets and life invading our own planet, were published prolifically. Whether it’s a desire to connect with others or a burning curiosity to know whether we are truly alone, the question of life on other planets fascinates people from every walk of life.

An article on extraterrestrial life would not be complete without discussing Mars. Mars has been the biggest focus of the ongoing search for life on other planets for decades. This is not just a wild assumption or fancy; there are several reasons why scientists consider Mars the best place to look for extraterrestrial life. One reason why many people, including scientists, look to Mars as a possible source of life is because they believe there may be water on the planet. Since the telescope was first invented, astronomers have been able to see the channels in the terrain that look like canals or canyons. Finding water on a planet is vitally important to proving that life exists there because it acts as a solvent in chemical reactions for carbon-based life.

Another reason astronomers consider Mars as a likely location for life is because there is a good possibility that Mars is in the habitable zone. The habitable zone is a theoretical band of space a certain distance from the Sun in which conditions are optimal for the existence of carbon-based life. Unsurprisingly, Earth is in the middle of the habitable zone. Although astronomers do not know how far this zone could extend, some think that Mars could be in it.

Most astronomers are looking for life that is carbon-based and similar to life on Earth. For instance, the habitable zone only applies to favorable conditions for supporting carbon-based life, and it is definitely possible for forms of life that do not need water to exist.

Astronomers do not limit themselves to our Solar System either, suggesting that we should look at different solar systems. Scientists are planning to use interferometry–an investigative technique that implements lasers, which is used in astronomy as well as other fields– to find planets in the habitable zones of other solar systems. Astronomers believe that there are hundreds of solar systems and thousands of planets, which means that statistically the odds are favorable for finding another planet that supports life. While NASA develops better probes, the search for life continues.

There are a number of sites with more information including life on other planets from Groninger Kapteyn Institute astronomy students and NASA predicts non-green plants on other planets from NASA.

Universe Today has a number of articles concerning life on other planets including searching for life on non-Earth like planets and single species ecosystem gives hope for life on other planets.

Take a look at this podcast from Astronomy Cast on the search for water on Mars.

The Odds of Intelligent Life in the Universe

Tropical Saturn. Image credit: Columbia University

When it comes to contemplating the state of our universe, the question likely most prevalent on people’s minds is, “Is anyone else like us out there?” The famous Drake Equation, even when worked out with fairly moderate numbers, seemingly suggests the probable amount of intelligent, communicating civilizations could be quite numerous. But a new paper published by a scientist from the University of East Anglia suggests the odds of finding new life on other Earth-like planets are low, given the time it has taken for beings such as humans to evolve combined with the remaining life span of Earth.

Professor Andrew Watson says that structurally complex and intelligent life evolved relatively late on Earth, and in looking at the probability of the difficult and critical evolutionary steps that occurred in relation to the life span of Earth, provides an improved mathematical model for the evolution of intelligent life.

According to Watson, a limit to evolution is the habitability of Earth, and any other Earth-like planets, which will end as the sun brightens. Solar models predict that the brightness of the sun is increasing, while temperature models suggest that because of this the future life span of Earth will be “only” about another billion years, a short time compared to the four billion years since life first appeared on the planet.

“The Earth’s biosphere is now in its old age and this has implications for our understanding of the likelihood of complex life and intelligence arising on any given planet,” said Watson.

Some scientists believe the extreme age of the universe and its vast number of stars suggests that if the Earth is typical, extraterrestrial life should be common. Watson, however, believes the age of the universe is working against the odds.

“At present, Earth is the only example we have of a planet with life,” he said. “If we learned the planet would be habitable for a set period and that we had evolved early in this period, then even with a sample of one, we’d suspect that evolution from simple to complex and intelligent life was quite likely to occur. By contrast, we now believe that we evolved late in the habitable period, and this suggests that our evolution is rather unlikely. In fact, the timing of events is consistent with it being very rare indeed.”

Watson, it seems, takes the Fermi Paradox to heart in his considerations. The Fermi Paradox is the apparent contradiction between high estimates of the probability of the existence of extraterrestrial civilizations and the lack of evidence for, or contact with, such civilizations.

Watson suggests the number of evolutionary steps needed to create intelligent life, in the case of humans, is four. These include the emergence of single-celled bacteria, complex cells, specialized cells allowing complex life forms, and intelligent life with an established language.

“Complex life is separated from the simplest life forms by several very unlikely steps and therefore will be much less common. Intelligence is one step further, so it is much less common still,” said Prof Watson.

Watson’s model suggests an upper limit for the probability of each step occurring is 10 per cent or less, so the chances of intelligent life emerging is low — less than 0.01 per cent over four billion years.

Each step is independent of the other and can only take place after the previous steps in the sequence have occurred. They tend to be evenly spaced through Earth’s history and this is consistent with some of the major transitions identified in the evolution of life on Earth.

Here is more about the Drake Equation.

Here is more information about the Fermi Paradox.

Original News Source: University of East Anglia Press Release