Hearing the Early Universe’s Scream: Sloan Survey Announces New Findings

A still photo from an animated flythrough of the universe using SDSS data. This image shows our Milky Way Galaxy. The galaxy shape is an artist’s conception, and each of the small white dots is one of the hundreds of thousands of stars as seen by the SDSS. Image credit: Dana Berry / SkyWorks Digital, Inc. and Jonathan Bird (Vanderbilt University)

Imagine a single mission that would allow you to explore the Milky Way and beyond, investigating cosmic chemistry, hunting planets, mapping galactic structure, probing dark energy and analyzing the expansion of the wider Universe. Enter the Sloan Digital Sky Survey, a massive scientific collaboration that enables one thousand astronomers from 51 institutions around the world to do just that.

At Tuesday’s AAS briefing in Seattle, researchers announced the public release of data collected by the project’s latest incarnation, SDSS-III. This data release, termed “DR12,” represents the survey’s largest and most detailed collection of measurements yet: 2,000 nights’ worth of brand-new information about nearly 500 million stars and galaxies.

One component of SDSS is exploring dark energy by “listening” for acoustic oscillation signals from the the acceleration of the early Universe, and the team also shared a new animated “fly-through” of the Universe that was created using SDSS data.

The SDSS-III collaboration is based at the powerful 2.5-meter Sloan Foundation Telescope at the Apache Point Observatory in New Mexico. The project itself consists of four component surveys: BOSS, APOGEE, MARVELS, and SEGUE. Each of these surveys applies different trappings to the parent telescope in order to accomplish its own, unique goal.

BOSS (the Baryon Oscillation Spectroscopic Survey) visualizes the way that sound waves produced by interacting matter in the early Universe are reflected in the large-scale structure of our cosmos. These ancient imprints, which date back to the first 500,000 years after the Big Bang, are especially evident in high-redshift objects like luminous-red galaxies and quasars. Three-dimensional models created from BOSS observations will allow astronomers to track the expansion of the Universe over a span of 9 billion years, a feat that, later this year, will pave the way for rigorous assessment of current theories regarding dark energy.

At the press briefing, Daniel Eistenstein from the Harvard-Smithsonian Center for Astrophysics explained how BOSS requires huge volumes of data and that so far 1.4 million galaxies have been mapped. He indicated the data analyzed so far strongly confirm dark energy’s existence.

This tweet from the SDSS twitter account uses a bit of humor to explain how BOSS works:

APOGEE (the Apache Point Observatory Galactic Evolution Experiment) employs a sophisticated, near-infrared spectrograph to pierce through thick dust and gather light from 100,000 distant red giants. By analyzing the spectral lines that appear in this light, scientists can identify the signatures of 15 different chemical elements that make up the faraway stars – observations that will help researchers piece together the stellar history of our galaxy.

MARVELS (the Multi-Object APO Radial Velocity Exoplanet Large-Area Survey) identifies minuscule wobbles in the orbits of stars, movements that betray the gravitational influence of orbiting planets. The technology itself is unprecedented. “MARVELS is the first large-scale survey to measure these tiny motions for dozens of stars simultaneously,” explained the project’s principal investigator Jian Ge, “which means we can probe and characterize the full population of giant planets in ways that weren’t possible before.”

At the press briefing, Ge said that MARVELS observed 5,500 stars repeatedly, looking for giant exoplanets around these stars. So far, the data has revealed 51 giant planet candidates as well as 38 brown dwarf candidates. Ge added that more will be found with better data processing.

A still photo from an animated flythrough of the universe using SDSS data. This image shows a small part of the large-scale structure of the universe as seen by the SDSS -- just a few of many millions of galaxies. The galaxies are shown in their proper positions from SDSS data. Image credit: Dana Berry / SkyWorks Digital, Inc.
A still photo from an animated flythrough of the universe using SDSS data. This image shows a small part of the large-scale structure of the universe as seen by the SDSS — just a few of many millions of galaxies. The galaxies are shown in their proper positions from SDSS data. Image credit: Dana Berry / SkyWorks Digital, Inc.

SEGUE (the Sloan Extension for Galactic Understanding and Exploration) rounds out the quartet by analyzing visible light from 250,000 stars in the outer reaches of our galaxy. Coincidentally, this survey’s observations “segue” nicely into work being done by other projects within SDSS-III. Constance Rockosi, leader of the SDSS-III domain of SEGUE, recaps the importance of her project’s observations of our outer galaxy: “In combination with the much more detailed view of the inner galaxy from APOGEE, we’re getting a truly holistic picture of the Milky Way.”

One of the most exceptional attributes of SDSS-III is its universality; that is, every byte of juicy information contained in DR12 will be made freely available to professionals, amateurs, and lay public alike. This philosophy enables interested parties from all walks of life to contribute to the advancement of astronomy in whatever capacity they are able.

As momentous as the release of DR12 is for today’s astronomers, however, there is still much more work to be done. “Crossing the DR12 finish line is a huge accomplishment by hundreds of people,” said Daniel Eisenstein, director of the SDSS-III collaboration, “But it’s a big universe out there, so there is plenty more to observe.”

DR12 includes observations made by SDSS-III between July 2008 and June 2014. The project’s successor, SDSS-IV, began its run in July 2014 and will continue observing for six more years.

Here is the video animation of the fly-through of the Universe:

Why Care About Astronomy?

Babak Tafreshi (TWAN), ESO Ultra HD Expedition

I need to get something off my chest. A month or so ago I was sitting in a classroom surrounded by 10 peers. For the first time this semester we had the opportunity to spend the entire day discussing astronomy. And I was thrilled to dive into that brilliant subject, which I have adored for most of my 26 years.

But it didn’t take long before the day turned sour. Most of my classmates touched on one common theme: why should we care about astronomy when it has no practical applications? It’s a concern I have seen time and time again from students, museum guests, and readers alike.

So dear world, here is why you should care.

It’s true that astronomy has few practical applications and yet somehow its advances benefit millions of people across the world.

Just as astronomy struggles to see increasingly faint objects, medicine struggles to see things obscured within the human body. So astronomy has developed technology used in CAT scanners and MRIs. It has also developed technology now used by FedEx to track packages, GPS satellites to determine your location, apple to develop a camera for your iPhone, to name a few.

But all of these are mere second thoughts, benefits that have occurred without the primary intention of the maker. And that is what makes astronomy beautiful. To study something — not because we’re looking to gain anything in particular, but out of sheer curiosity — is what makes us human.

Doing things for their own sake creates room for mindfulness and joy. Aristotle makes this point in his Nicomachean Ethics. He says: “the work is the maker in actuality; so he loves his work, because he loves his existence too. And this is a fact of nature; for what he is in potentiality, the work shows in actuality.”

Work itself is inherently valuable and it is somehow connected to our very existence. It stands alone and not as a path toward a paycheck or a practical application. Countless studies show just this. In one famous example, psychologists Edward Deci and Richard Ryan, both from the University of Rochester, asked two groups of college students to work on various puzzles. One group was paid for each puzzle it solved. The other group wasn’t.

Deci and Ryan found that the group that was paid to solve puzzles quit the second the experiment was over. The other group, however, found the puzzles intrinsically fascinating, and continued to solve the puzzles well after finishing the experiment. The second group found joy in the puzzles even when — and perhaps because — there was no monetary value to gain. There’s mindfulness in the act of work itself.

Then there is the sheer joy of looking up. On the darkest of nights, far from the city lights, thousands of stars are sprinkled from horizon to horizon. We now know there are over one billion stars in our galaxy and over one billion galaxies in our universe. It fills me with such wonder and humility to know our small place in the vast cosmos above us.

I firmly believe that astronomy has a spiritual dimension, maybe not in the sense of a supreme being, but in the sense of how it connects us with something bigger than ourselves. It brings us closer to nature by illuminating the ongoing mysteries in the universe.

Because of astronomy we now know that the Universe sparked into existence 13.7 billion years ago. We’ve spotted shining pinpricks of light in the early universe and know them to be supermassive black holes, with such strong gravitational fields, that matter is raining down onto them. We’ve seen distant galaxies colliding in a swirl of stars, gas and dust. And we’ve spotted thousands of planets orbiting other stars.

We’ve glimpsed the wonders of the universe — both big and small — for others to appreciate. So while astronomy doesn’t set out with the intention of changing our lives on a practical level, it does change our lives. It has explained mysteries that have confounded us for thousands of years, but more crucially, it has opened up more mysteries than any of us can study in our lifetime.

I have to wonder: what human being isn’t compelled to study a discipline that sparks such curiosity and joy?

What Does It Mean To Be ‘Star Stuff’?

This Chandra image of the Tycho supernova remnant contains new evidence for what triggered the original supernova explosion. Credit: NASA/CXC/Chinese Academy of Sciences/F. Lu et al.

At one time or another, all science enthusiasts have heard the late Carl Sagan’s infamous words: “We are made of star stuff.” But what does that mean exactly? How could colossal balls of plasma, greedily burning away their nuclear fuel in faraway time and space, play any part in spawning the vast complexity of our Earthly world? How is it that “the nitrogen in our DNA, the calcium in our teeth, the iron in our blood, the carbon in our apple pies” could have been forged so offhandedly deep in the hearts of these massive stellar giants?

Unsurprisingly, the story is both elegant and profoundly awe-inspiring.

All stars come from humble beginnings: namely, a gigantic, rotating clump of gas and dust. Gravity drives the cloud to condense as it spins, swirling into an ever more tightly packed sphere of material. Eventually, the star-to-be becomes so dense and hot that molecules of hydrogen in its core collide and fuse into new molecules of helium. These nuclear reactions release powerful bursts of energy in the form of light. The gas shines brightly; a star is born.

The ultimate fate of our fledgling star depends on its mass. Smaller, lightweight stars burn though the hydrogen in their core more slowly than heavier stars, shining somewhat more dimly but living far longer lives. Over time, however, falling hydrogen levels at the center of the star cause fewer hydrogen fusion reactions; fewer hydrogen fusion reactions mean less energy, and therefore less outward pressure.

At a certain point, the star can no longer maintain the tension its core had been sustaining against the mass of its outer layers. Gravity tips the scale, and the outer layers begin to tumble inward on the core. But their collapse heats things up, increasing the core pressure and reversing the process once again. A new hydrogen burning shell is created just outside the core, reestablishing a buffer against the gravity of the star’s surface layers.

While the core continues conducting lower-energy helium fusion reactions, the force of the new hydrogen burning shell pushes on the star’s exterior, causing the outer layers to swell more and more. The star expands and cools into a red giant. Its outer layers will ultimately escape the pull of gravity altogether, floating off into space and leaving behind a small, dead core – a white dwarf.

Lower-mass stars like our sun eventually enter a swollen, red giant phase. Ultimately, its outer layers will be thrown off altogether, leaving nothing but a small white dwarf star. Image Credit: ESO/S. Steinhofel
Lower-mass stars like our sun eventually enter a swollen, red giant phase. Ultimately, its outer layers will be thrown off altogether, leaving nothing but a small white dwarf star. Image Credit: ESO/S. Steinhofel

Heavier stars also occasionally falter in the fight between pressure and gravity, creating new shells of atoms to fuse in the process; however, unlike smaller stars, their excess mass allows them to keep forming these layers. The result is a series of concentric spheres, each shell containing heavier elements than the one surrounding it. Hydrogen in the core gives rise to helium. Helium atoms fuse together to form carbon. Carbon combines with helium to create oxygen, which fuses into neon, then magnesium, then silicon… all the way across the periodic table to iron, where the chain ends. Such massive stars act like a furnace, driving these reactions by way of sheer available energy.

But this energy is a finite resource. Once the star’s core becomes a solid ball of iron, it can no longer fuse elements to create energy. As was the case for smaller stars, fewer energetic reactions in the core of heavyweight stars mean less outward pressure against the force of gravity. The outer layers of the star will then begin to collapse, hastening the pace of heavy element fusion and further reducing the amount of energy available to hold up those outer layers. Density increases exponentially in the shrinking core, jamming together protons and electrons so tightly that it becomes an entirely new entity: a neutron star.

At this point, the core cannot get any denser. The star’s massive outer shells – still tumbling inward and still chock-full of volatile elements – no longer have anywhere to go. They slam into the core like a speeding oil rig crashing into a brick wall, and erupt into a monstrous explosion: a supernova. The extraordinary energies generated during this blast finally allow the fusion of elements even heavier than iron, from cobalt all the way to uranium.

Periodic Table of Elements
Periodic Table of Elements. Massive stars can fuse elements up to Iron (Fe), atomic number 26. Elements with atomic numbers 27 through 92 are produced in the aftermath of a massive star’s core collapse.

The energetic shock wave produced by the supernova moves out into the cosmos, disbursing heavy elements in its wake. These atoms can later be incorporated into planetary systems like our own. Given the right conditions – for instance, an appropriately stable star and a position within its Habitable Zone – these elements provide the building blocks for complex life.

Today, our everyday lives are made possible by these very atoms, forged long ago in the life and death throes of massive stars. Our ability to do anything at all – wake up from a deep sleep, enjoy a delicious meal, drive a car, write a sentence, add and subtract, solve a problem, call a friend, laugh, cry, sing, dance, run, jump, and play – is governed mostly by the behavior of tiny chains of hydrogen combined with heavier elements like carbon, nitrogen, oxygen, and phosphorus.

Other heavy elements are present in smaller quantities in the body, but are nonetheless just as vital to proper functioning. For instance, calcium, fluorine, magnesium, and silicon work alongside phosphorus to strengthen and grow our bones and teeth; ionized sodium, potassium, and chlorine play a vital role in maintaining the body’s fluid balance and electrical activity; and iron comprises the key portion of hemoglobin, the protein that equips our red blood cells with the ability to deliver the oxygen we inhale to the rest of our body.

So, the next time you are having a bad day, try this: close your eyes, take a deep breath, and contemplate the chain of events that connects your body and mind to a place billions of lightyears away, deep in the distant reaches of space and time. Recall that massive stars, many times larger than our sun, spent millions of years turning energy into matter, creating the atoms that make up every part of you, the Earth, and everyone you have ever known and loved.

We human beings are so small; and yet, the delicate dance of molecules made from this star stuff gives rise to a biology that enables us to ponder our wider Universe and how we came to exist at all. Carl Sagan himself explained it best: “Some part of our being knows this is where we came from. We long to return; and we can, because the cosmos is also within us. We’re made of star stuff. We are a way for the cosmos to know itself.”

New Signal May Be Evidence of Dark Matter, Say Researchers

Dark Matter Halo and dwarf galaxies
All galaxies are thought to have a dark matter halo. This image shows the distribution of dark matter surrounding our very own Milky Way. Image credit: J. Diemand, M. Kuhlen and P. Madau (UCSC)

Dark matter is the architect of large-scale cosmic structure and the engine behind proper rotation of galaxies. It’s an indispensable part of the physics of our Universe – and yet scientists still don’t know what it’s made of. The latest data from Planck suggest that the mysterious substance comprises 26.2% of the cosmos, making it nearly five and a half times more prevalent than normal, everyday matter. Now, four European researchers have hinted that they may have a discovery on their hands: a signal in x-ray light that has no known cause, and may be evidence of a long sought-after interaction between particles – namely, the annihilation of dark matter.

When astronomers want to study an object in the night sky, such as a star or galaxy, they begin by analyzing its light across all wavelengths. This allows them to visualize narrow dark lines in the object’s spectrum, called absorption lines. Absorption lines occur because a star’s or galaxy’s component elements soak up light at certain wavelengths, preventing most photons with those energies from reaching Earth. Similarly, interacting particles can also leave emission lines in a star’s or galaxy’s spectrum, bright lines that are created when excess photons are emitted via subatomic processes such as excitement and decay. By looking closely at these emission lines, scientists can usually paint a robust picture of the physics going on elsewhere in the cosmos.

But sometimes, scientists find an emission line that is more puzzling. Earlier this year, researchers at the Laboratory of Particle Physics and Cosmology (LPPC) in Switzerland and Leiden University in the Netherlands identified an excess bump of energy in x-ray light coming from both the Andromeda galaxy and the Perseus star cluster: an emission line with an energy around 3.5keV. No known process can account for this line; however, it is consistent with models of the theoretical sterile neutrino – a particle that many scientists believe is a prime candidate for dark matter.

The researchers believe that this strange emission line could result from the annihilation, or decay, of these dark matter particles, a process that is thought to release x-ray photons. In fact, the signal appeared to be strongest in the most dense regions of Andromeda and Perseus and increasingly more diffuse away from the center, a distribution that is also characteristic of dark matter. Additionally, the signal was absent from the team’s observations of deep, empty space, implying that it is real and not just instrumental artifact.

In a pre-print of their paper, the researchers are careful to stress that the signal itself is weak by scientific standards. That is, they can only be 99.994% sure that it is a true result and not just a rogue statistical fluctuation, a level of confidence that is known as 4σ. (The gold standard for a discovery in science is 5σ: a result that can be declared “true” with 99.9999% confidence) Other scientists are not so sure that dark matter is such a good explanation after all. According to predictions made based on measurements of the Lyman-alpha forest – that is, the spectral pattern of hydrogen absorption and photon emission within very distant, very old gas clouds – any particle purporting to be dark matter should have an energy above 10keV – more than twice the energy of this most recent signal.

As always, the study of cosmology is fraught with mysteries. Whether this particular emission line turns out to be evidence of a sterile neutrino (and thus of dark matter) or not, it does appear to be a signal of some physical process that scientists do not yet understand. If future observations can increase the certainty of this discovery to the 5σ level, astrophysicists will have yet another phenomena to account for – an exciting prospect, regardless of the final result.

The team’s research has been accepted to Physical Review Letters and will be published in an upcoming issue.

What Part of the Milky Way Can We See?

What Part of the Milky Way Can We See?

When you look up and see the Milky Way, you’re gazing into the heart of our home galaxy. What, exactly, are we looking at?

Anyone who’s ever been in truly dark skies has seen the Milky Way. The bright band across the sky is unmistakable. It’s a view of our home galaxy from within.

As you stare out into the skies and see that splash of stars, have you ever wondered, what are you looking at? Which parts are towards the inside of the galaxy and which parts are looking out? Where’s that supermassive black hole you’ve heard so much about?

In order to see the Milky Way at all, you need seriously dark skies, away from the light polluted city. As the skies darken, the Milky Way will appear as a hazy fog across the sky.

Imagine it as this vast disk of stars, with the Sun embedded right in it, about 27,000 light-years from the core. We’re seeing the galaxy edge on, from the inside, and so we see the galactic disk as a band that forms a complete circle around the sky.

Which parts you can see depend on your location on Earth and the time of year, but you can always see some part of the disk.

The galactic core of the Milky Way is located in the constellation Sagittarius, which is located to the South of me in Canada, and only really visible during the Summer. In really faint skies, the Milky Way is clearly thicker and brighter in that region.

Want to know the exact point of the galactic core? It’s right… there.

During the Winter, we’re looking away from the galactic core to the outer regions of the galaxy. It still has the same band of stars, but it’s thinner and without the darker clouds of dust that obscure our view to the galactic core.

How do astronomers even know that we’re in a spiral galaxy anyway?

There are two major types of galaxies, spiral galaxies and elliptical galaxies.

Elliptical galaxies are made up of so many galactic collisions, they’re nothing more than vast balls of trillions of stars, with no structure. Because we can see a distinct band in the sky, we know we’re in some kind of spiral.

The differences between elliptical and spiral galaxies is easy to see. M87 at left and M74, both photographed with the Hubble Space Telescope. Credit: NASA/ESA
The differences between elliptical and spiral galaxies is easy to see. M87 at left and M74, both photographed with the Hubble Space Telescope. Credit: NASA/ESA

Astronomers map the arms by looking at the distribution of gas, which pulls together in star forming spiral arms. They can tell how far the major arms are from the Sun and in which direction.

The trick is that half the Milky Way is obscured by gas and dust. So we don’t really know what structures are on the other side of the galactic disk. With more powerful infrared telescopes, we’ll eventually be able to see though the gas and dust and map out all the spiral arms.

If you’ve never seen the Milky Way with your own eyes, you need to. Get far enough away from city lights to truly see the galaxy you live in.

The best resource is “The Dark Sky Finder”, we’ll put a link in the show notes.

Have you ever seen the Milky Way? If not, why not? Let’s hear a story of a time you finally saw it.

And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!

What Would It Be Like To Fall Into A Black Hole?

This artist’s impression shows the surroundings of the supermassive black hole at the heart of the active galaxy NGC 3783 in the southern constellation of Centaurus (The Centaur). Credit: ESO/M. Kornmesser

Let’s say you happened to fall into the nearest black hole? What would you experience and see? And what would the rest of the Universe see as this was happening?

Let’s say you decided to ignore some of my previous advice. You’ve just purchased yourself a space dragon from the Market on the Centauri Ringworld, strapped on your favorite chainmail codpiece and sonic sword and now you’re going ride head first into the nearest black hole.

We know it won’t take you to another world or galaxy, but what would you experience and see on your way to your inevitable demise? And what would the rest of the Universe see as this was happening, and would they point and say “eewwwwww”?

If you were falling toward a black hole, most of the time you would simply feel weightless, just as if you were playing Bowie songs and floating in a most peculiar way in the International Space Station. The gravity of a black hole is just like the gravity of any other large mass, as long as you don’t get too close. But, as we’ve agreed, you’re ignoring my advice and flying dragon first into this physics nightmare. As you get closer, the gravitational forces on various parts of your and your dragon’s body would be different. Technically this is always true, but you wouldn’t notice it… at least at first.

Suppose you were falling feet first toward a black hole. As you got closer, your feet would feel a stronger force than your head, for example. These differences in forces are called tidal forces. Because of the tidal forces it would feel as if you are being stretched head to toe, while your sides would feel like they are being pushed inward. Eventually the tidal forces would become so strong that they would rip you apart. This effect of tidal stretching is sometimes boringly referred to as spaghettification.

I’ve made up some other names for it, such as My Own Private String Cheese Incident, “the soft-serve effect” and “AAAHHHHH AHHHH MY LEGS MY LEGS!!!”.

So, let’s summarize. You wouldn’t survive falling toward a black hole because you wouldn’t listen. Why won’t you ever listen?

A friend watching you fall toward a black hole would never see you reach the black hole. As you fall towards it, gravity would cause any light coming from you to be redshifted. So as you approached the black hole you would appear more and more reddish, and your image would appear dimmer and dimmer. Your friend would see you redden and dim as you approach, but never quite reach, the event horizon of the black hole. If they could still see you past this point, there would be additional red from the inside of you clouding up the view.

Artist's conception of the event horizon of a black hole. Credit: Victor de Schwanberg/Science Photo Library
Artist’s conception of the event horizon of a black hole. Credit: Victor de Schwanberg/Science Photo Library

Hypothetically, if you could survive crossing the event horizon of a black hole, what
would you see then? Contrary to popular belief, you would not see the entire future of the universe flash before you.

What you would see is the darkness of the black hole fill your view and as you approached the event horizon you would see stars and galaxies on the edge of your view being gravitationally lensed by the black hole. The sky would simply appear more and more black until you reach the event horizon.

Many people think that it is at the event horizon where you would be ripped apart, and at the event horizon all sorts of strange things occur. Unfortunately, this goes along with those who suspect black holes are actually some sort of portal. For a solar mass black hole, the tidal forces near the event horizon can be quite large, but for a supermassive black hole they aren’t very large at all.

In fact, the larger the black hole, the weaker the tidal forces near its event horizon. So if you happened to be near a supermassive black hole, you could cross the event horizon without really noticing. Would you still be totally screwed? YOU BETCHA!

What do you think? If you could drop anything into a black hole, what would it be? Tell us in the comments below.

Parallel Universes and the Many-Worlds Theory

Credit: Glenn Loos-Austin

Are you unique? In your perception of the world, the answer is simple: you are different than every other person on this planet. But is our universe unique? The concept of multiple realities — or parallel universes — complicates this answer and challenges what we know about the world and ourselves. One model of potential multiple universes called the Many-Worlds Theory might sound so bizarre and unrealistic that it should be in science fiction movies and not in real life. However, there is no experiment that can irrefutably discredit its validity.

The origin of the parallel universe conjecture is closely connected with introduction of the idea of quantum mechanics in the early 1900s. Quantum mechanics, a branch of physics that studies the infinitesimal world, predicts the behavior of nanoscopic objects. Physicists had difficulties fitting a mathematical model to the behavior of quantum matter because some matter exhibited signs of both particle-like and wave-like movements. For example, the photon, a tiny bundle of light, can travel vertically up and down while moving horizontally forward or backward.

Such behavior starkly contrasts with that of objects visible to the naked eye; everything we see moves like either a wave or a particle. This theory of matter duality has been called the Heisenberg Uncertainty Principle (HUP), which states that the act of observation disturbs quantities like momentum and position.

In relation to quantum mechanics, this observer effect can impact the form – particle or wave – of quantum objects during measurements. Future quantum theories, like Niels Bohr’s Copenhagen interpretation, use HUP to state that an observed object does not retain its dual nature and can only behave in one state.

Multiverse Theory
Artist concept of the multiverse. Credit: Florida State University

In 1954, a young student at Princeton University named Hugh Everett proposed a radical supposition that differed from the popular models of quantum mechanics. Everett did not believe that observation causes quantum matter to stop behaving in multiple forms.

Instead, he argued that observation of quantum matter creates a split in the universe. In other words, the universe makes copies of itself to account for all the possibilities and these duplicates will proceed independently. Every time a photon is measured, for instance, a scientist in one universe will analyze it in wave form and the same scientist in another universe will analyze it in particle form. Each of these universes offers a unique and independent reality that coexists with other parallel universes.

If Everett’s Many-Worlds Theory (MWT) is true, it holds many ramifications that completely transform our perceptions on life. Any action that has more than one possible result produces a split in the universe. Thus, there are an infinite number of parallel universes and infinite copies of each person.

These copies have identical facial and body features, but do not have identical personalities (one may be aggressive and another may be passive) because each one experiences a separate outcome. The infinite number of alternate realities also suggests that nobody can achieve unique accomplishments. Every person – or some version of that person in a parallel universe – has done or will do everything.

Moreover, the MWT implies that everybody is immortal. Old age will no longer be a surefire killer, as some alternate realities could be so scientifically and technologically advanced that they have developed an anti-aging medicine. If you do die in one world, another version of you in another world will survive.

The most troubling implication of parallel universes is that your perception of the world is never real. Our “reality” at an exact moment in one parallel universe will be completely unlike that of another world; it is only a tiny figment of an infinite and absolute truth. You might believe you are reading this article at this instance, but there are many copies of you that are not reading. In fact, you are even the author of this article in some distant reality. Thus, do winning prizes and making decisions matter if we might lose those awards and make different choices? Is living important if we might actually be dead somewhere else?

Some scientists, like Austrian mathematician Hans Moravec, have tried to debunk the possibility of parallel universes. Moravec developed a famous experiment called quantum suicide in 1987 that connects a person to a fatal weapon and a machine that determines the spin value, or angular momentum, of protons. Every 10 seconds, the spin value, or quark, of a new proton is recorded.

Based on this measurement, the machine will cause the weapon to kill or spare the person with a 50 percent chance for each scenario. If the Many-World’s Theory is not true, then the experimenter’s survival probability decreases after every quark measurement until it essentially becomes zero (a fraction raised to a large exponent is a very small value). On the other hand, MWT argues that the experimenter always has a 100% chance of living in some parallel universe and he/she has encountered quantum immortality.

When the quark measurement is processed, there are two possibilities: the weapon can either fire or not fire. At this moment, MWT claims that the universe splits into two different universes to account for the two endings. The weapon will discharge in one reality, but not discharge in the other. For moral reasons, scientists cannot use Moravec’s experiment to disprove or corroborate the existence of parallel worlds, as the test subjects may only be dead in that particular reality and still alive in another parallel universe. In any case, the peculiar Many-World’s Theory and its startling implications challenges everything we know about the world.

Sources: Scientific American

James Webb Space Telescope’s Pathfinder Mirror Backplane Arrives at NASA Goddard for Critical Assembly Testing

Center section of the "pathfinder" (test) backplane of NASA's James Webb Space Telescope is hoisted into place in the assembly stand in NASA Goddard's giant cleanroom. Engineers will practice mirror installations over the next several months. Credit: NASA/Chris Gunn

The central piece of the “pathfinder” backplane that will hold all the mirrors for NASA’s James Webb Space Telescope (JWST) has arrived at the agency’s Goddard Space Flight Center in Maryland for critical assembly testing on vital parts of the mammoth telescope.

The pathfinder backplane arrived at Goddard in July and has now been hoisted in place onto a huge assembly stand inside Goddard’s giant cleanroom where many key elements of JWST are being assembled and tested ahead of the launch scheduled for October 2018.

The absolutely essential task of JWST’s backplane is to hold the telescopes 18 segment, 21-foot-diameter primary mirror nearly motionless while floating in the utterly frigid space environment, thereby enabling the telescope to peer out into deep space for precise science gathering measurements never before possible.

Over the next several months, engineers will practice installing two spare primary mirror segments and one spare secondary mirror onto the center part of the backplane.

JWST is being assembled here inside the world’s largest clean room at NASA Goddard Space Flight Center, Greenbelt, Md. Primary mirror segments stored in silver colored containers at top left. Technicians practice mirror installation on test piece of backplane (known as the BSTA or Backplane Stability Test Article) at center, 3 hexagonals.  Telescope assembly bays at right.  Credit: Ken Kremer- kenkremer.com
JWST pathfinder backplane has arrived here at NASA Goddard clean room.
JWST is being assembled here inside the world’s largest clean room at NASA Goddard Space Flight Center, Greenbelt, Md. Primary mirror segments stored in silver colored containers at top left. Technicians practice mirror installation on test piece of backplane (known as the BSTA or Backplane Stability Test Article) at center, 3 hexagonals. Pathfinder backplane has been hoisted into telescope assembly bays at right. Credit: Ken Kremer- kenkremer.com

The purpose is to gain invaluable experience practicing the delicate procedures required to precisely install the hexagonal shaped mirrors onto the actual flight backplane unit after it arrives.

The telescopes primary and secondary flight mirrors have already arrived at Goddard.

The mirrors must remained precisely aligned in space in order for JWST to successfully carry out science investigations. While operating at extraordinarily cold temperatures between -406 and -343 degrees Fahrenheit the backplane must not move more than 38 nanometers, approximately 1/1,000 the diameter of a human hair.

The backplane and every other component must function and unfold perfectly and to precise tolerances in space because JWST has not been designed for servicing or repairs by astronaut crews voyaging beyond low-Earth orbit into deep space, William Ochs, Associate Director for JWST at NASA Goddard told me in an interview during a visit to JWST at Goddard.

Watch this video showing movement of the pathfinder backplane into the Goddard cleanroom.

Video Caption: This is a time-lapse video of the center section of the ‘pathfinder’ backplane for NASA’s James Webb Space Telescope being moved into the clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Credit: NASA/Chris Gunn

The actual flight backplane is comprised of three segments – the main central segment and a pair of outer wing-like parts which will be folded over into launch configuration inside the payload fairing of the Ariane V ECA booster rocket. The telescope will launch from the Guiana Space Center in Kourou, French Guiana in 2018.

Both the backplane flight unit and the pathfinder unit, which consists only of the center part, are being assembled and tested by prime contractor Northrop Grumman in Redondo Beach, California.

Gold coated flight spare of a JWST primary mirror segment made of beryllium and used for test operations inside the NASA Goddard clean room.  Credit: Ken Kremer- kenkremer.com
Gold coated flight spare of a JWST primary mirror segment made of beryllium and used for test operations inside the NASA Goddard clean room. Credit: Ken Kremer- kenkremer.com

The test unit was then loaded into a C-5, flown to the U.S. Air Force’s Joint Base Andrews in Maryland and unloaded for transport by trailer truck to NASA Goddard in Greenbelt, Maryland.

JWST is the successor to the 24 year old Hubble Space Telescope and will become the most powerful telescope ever sent to space.

Webb is designed to look at the first light of the Universe and will be able to peer back in time to when the first stars and first galaxies were forming.

A comparison of the primary mirror used by Hubble and the primary mirror array used by the James Webb Space Telescope. Photo Credit: NASA
A comparison of the primary mirror used by Hubble and the primary mirror array used by the James Webb Space Telescope. Photo Credit: NASA

The Webb Telescope is a joint international collaborative project between NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA).

NASA has overall responsibility and Northrop Grumman is the prime contractor for JWST.

Read my story about the recent unfurling test of JWST’s sunshade – here.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

The Webb telescope backplane "pathfinder" or practice-model was unloaded from a C-5 aircraft at the U.S. Air Force's Joint Base Andrews in Maryland.   Image Credit:   NASA/Desiree Stover
The Webb telescope backplane “pathfinder” or practice-model was unloaded from a C-5 aircraft at the U.S. Air Force’s Joint Base Andrews in Maryland. Image Credit: NASA/Desiree Stover

Artist’s concept of the James Webb Space Telescope (JWST) with Sunshield at bottom.  Credit: NASA/ESA
Artist’s concept of the James Webb Space Telescope (JWST) with Sunshield at bottom. Credit: NASA/ESA

What Is The Great Attractor?

What is at the Center of the Milky Way
Examining the Center of the Milky Way

There’s a strange place in the sky where everything is attracted. And unfortunately, it’s on the other side of the Milky Way, so we can’t see it. What could be doing all this attracting?

Just where the heck are we going? We’re snuggled in our little Solar System, hurtling through the cosmos at a blindingly fast of 2.2 million kilometers per hour. We’re always orbiting this, and drifting through that, and it’s somewhere out in the region that’s not as horrifically terrifying as what some of our celestial neighbors go through. But where are we going? Just around in a great big circle? Or an ellipse? Which is going around in another circle… and it’s great big circles all the way up?

Not exactly… Our galaxy and other nearby galaxies are being pulled toward a specific region of space. It’s about 150 million light years away, and here is the best part. We’re not exactly sure what it is. We call it the Great Attractor.

Part of the reason the Great Attractor is so mysterious is that it happens to lie in a direction of the sky known as the “Zone of Avoidance”. This is in the general direction of the center of our galaxy, where there is so much gas and dust that we can’t see very far in the visible spectrum. We can see how our galaxy and other nearby galaxies are moving toward the great attractor, so something must be causing things to go in that direction. That means either there must be something massive over there, or it’s due to something even more strange and fantastic.

When evidence of the Great Attractor was first discovered in the 1970s, we had no way to see through the Zone of Avoidance. But while that region blocks much of the visible light from beyond, the gas and dust doesn’t block as much infrared and x-ray light. As x-ray astronomy became more powerful, we could start to see objects within that region. What we found was a large supercluster of galaxies in the area of the Great Attractor, known as the Norma Cluster. It has a mass of about 1,000 trillion Suns. That’s thousands of galaxies.

A March 2013 picture of the Shapley Supercluster from the European Space Agency's Planck observatory. ESA describes it as "the largest cosmic structure in the local Universe." Credit: ESA & Planck Collaboration / Rosat/ Digitised Sky Survey
A March 2013 picture of the Shapley Supercluster from the European Space Agency’s Planck observatory. ESA describes it as “the largest cosmic structure in the local Universe.” Credit: ESA & Planck Collaboration / Rosat/ Digitised Sky Survey

While the Norma Cluster is massive, and local galaxies are moving toward it, it doesn’t explain the full motion of local galaxies. The mass of the Great Attractor isn’t large enough to account for the pull. When we look at an even larger region of galaxies, we find that the local galaxies and the Great Attractor are moving toward something even larger. It’s known as the Shapley Supercluster. It contains more than 8000 galaxies and has a mass of more than ten million billion Suns. The Shapley Supercluster is, in fact, the most massive galaxy cluster within a billion light years, and we and every galaxy in our corner of the Universe are moving toward it.

So as we hurtle through the cosmos, gravity shapes the path we travel. We’re pulled towards the Great Attractor, and despite its glorious title, it appears, in fact to be a perfectly normal collection of galaxies, which just happens to be hidden.

What do you think? What are you hoping we’ll discover over in the region of space we’re drifting towards?

And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!

What’s Inside Jupiter?

What's Inside Jupiter?

Jupiter is like a jawbreaker. Dig down beneath the swirling clouds and you’ll pass through layer after layer of exotic forms of hydrogen. What’s down there, deep within Jupiter?

What’s inside Jupiter? Is it chameleons? Candy? Cake? Cheddar? Chemtrails? No one knows. No one can ever know.

Well, that’s not entirely true… or even remotely true. Jupiter is the largest planet in the Solar System and two and a half times the mass of the other planets combined. It’s a gas giant, like Saturn, Uranus, and Neptune. It’s almost 90% hydrogen and 10% helium, and then other trace materials, like methane, ammonia, water and some other stuff. What would be a gas on Earth behaves in very strange ways under Jupiter’s massive pressure and temperatures.

So what’s deep down inside Jupiter? What are the various layers and levels, and can I keep thinking of it like a jawbreaker? At the very center of Jupiter is its dense core. Astronomers aren’t sure if there’s a rocky region deep down inside. It’s actually possible that there’s twelve to forty five Earth masses of rocky material within the planet’s core. Now this could be rock, or hydrogen and helium under such enormous forces that it just acts that way. But you couldn’t stand on it. The temperatures are 35,000 degrees C. The pressures are incomprehensible.

Surrounding the core is a vast region made up of hydrogen. But it’s not a gas. The pressure and temperature transforms the hydrogen into an exotic form of liquid metallic hydrogen, similar to the liquid mercury you’d see in a thermometer. This metallic hydrogen region turns inside the planet, and acts like an electric dynamo. Similar to our planet’s own iron core, this gives the planet a powerful magnetic field.

The next level up is still liquid hydrogen, but the pressure’s lower, so it’s not metallic any more. And then above this is the planet’s atmosphere. The upper layers of Jupiter’s atmosphere is the only part we can see. Those bands on the planet are clouds of ammonia that rotate around the planet in alternating directions. The lighter color zones are colder ammonia ice upwelling from below. Here’s the exciting part. Astronomers aren’t sure what the darker regions are.

This animated gif shows Voyager 1's approach to Jupiter during a period of over 60 Jupiter days in 1979.  Credit: NASA.
This animated gif shows Voyager 1’s approach to Jupiter during a period of over 60 Jupiter days in 1979. Credit: NASA.

Still think you want to descend into Jupiter, to try and walk on its rocky interior? NASA tried that. In order to protect Jupiter’s moons from contamination, NASA decided to crash the Galileo spacecraft into the planet at the end of its mission. It only got point two percent of the way down through Jupiter’s radius before it was completely destroyed.

Jupiter is a remarkably different world from our own. With all that gravity, normally lightweight hydrogen behaves in completely exotic ways. Hopefully in the future we’ll learn more about this amazing planet we share our Solar System with.

What do you think? Is there a rocky core deep down inside Jupiter?

And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!