At the heart of the Milky Way Galaxy lurks a Supermassive Black Hole (SMBH) named Sagittarius A* (Sag. A-star). Sag. A* is an object of intense study, even though you can’t actually see it. But new images from the Atacama Large Millimetre/sub-millimetre Array (ALMA) reveal swirling high-speed clouds of gas and dust orbiting the black hole, the next best thing to seeing the hole itself.
As engineers and technicians work diligently to diagnose and develop a solution (at best) or work around (at worst) the recent gyroscope issues in the Hubble Space Telescope, it gives us a moment to check in and reflect on some of its greatest feats of science. Don’t worry, that great observatory in the sky isn’t going anywhere anytime soon (as much as we would like an upgrade or replacement), so we can confidently look forward to many more years of astronomical greatness. But the Hubble has been running for almost three decades now; what has it contributed to the sum total of human knowledge of the universe?
The most common type of star in the galaxy is the red dwarf star. None of these small, dim stars can be seen from Earth with the naked eye, but they can emit flares far more powerful than anything our Sun emits. Two astronomers using the Hubble space telescope saw a red dwarf star give off a powerful type of flare called a superflare. That’s bad news for any planets in these stars’ so-called habitable zones.
Red dwarfs make up about 75% of the stars in the Milky Way, so they probably host many exoplanets. In fact, scientists think most of the planets that are in habitable zones are orbiting red dwarfs. But the more astronomers observe these stars, the more they’re becoming aware of just how chaotic and energetic it can be in their neighbourhoods. That means we might have to re-think what habitable zone means.
“When I realized the sheer amount of light the superflare emitted, I sat looking at my computer screen for quite some time just thinking, ‘Whoa.'” – Parke Loyd, Arizona State University.
Back in Ye Olden Times, the job of astronomer was a pretty exclusive club. Either you needed to be so rich and so bored that you could design, build, and operate your own private observatory, or you needed to have a rich and bored friend who could finance your cosmic curiosity for you. By contrast, today’s modern observatories are much more democratic, offering of a wealth of juicy scientific info for researchers across the globe. But that ease of access comes with its own price: you don’t get the instrument all to yourself, and that’s a challenge for young scientists and their research.
What exactly is a “normal” solar system? If we thought we had some idea in the past, we definitely don’t now. And a new study led by astronomers at Cambridge University has reinforced this fact. The new study found four gas giant planets, similar to our own Jupiter and Saturn, orbiting a very young star called CI Tau. And one of the planets has an extreme orbit that takes it more than a thousand times more distant from the star than the innermost planet.
Ganymede was shaped by pronounced periods of tectonic activity in the past, according to a new paper. It’s no longer active and its surface is more-or-less frozen in place now. But this discovery opens the door to better planning for future missions to Jupiter’s other frozen moon Europa. Unlike Ganymede, Europa is still tectonically active, and understanding past geological activity on Ganymede helps us understand present-day Europa.
There’s something poignant and haunting about ancient astronomers documenting things in the sky whose nature they could only guess at. It’s true in the case of Père Dom Anthelme, who in 1670 saw a star suddenly burst into view near the head of the constellation Cygnus, the Swan. The object was visible with the naked eye for two years, as it flared in the sky repeatedly. Then it went dark. We call that object CK Vulpeculae.
A pair of astronomers combing through data from the Kepler spacecraft have discovered the first exomoon. The moon is in the Kepler 1625 system about 8,000 light years away, in the constellation Cygnus. It orbits the gas giant Kepler 1625b, and, unlike all the moons in our Solar System, this one is a “gas moon.”
It was only a matter of time before we found an exomoon. We’ve found thousands of exoplanets, thanks mostly to the Kepler spacecraft. And where there are planets, we can expect moons. But even though it seemed inevitable, the first confirmed exomoon is still exciting.
Astronomers have found a new dwarf planet way out beyond Pluto that never gets closer than 65 AUs to the Sun. It’s nicknamed “The Goblin” which is much more interesting than its science name, 2015 TG387. The Goblin’s orbit is consistent with the much-talked-about but yet-to-be-proven Planet 9.
The European Southern Observatory (ESO) has released a stunning collection of images of the circumstellar discs that surround young stars. The images were captured with the SPHERE (Spectro-Polarimetric High-contrast Exoplanet REsearch) instrument on the ESO’s Very Large Telescope (VLT) in Chile. We’ve been looking at images of circumstellar disks for quite some time, but this collection reveals the fascinating variety of shapes an sizes that these disks can take.
We have a widely-accepted model of star formation supported by ample evidence, including images like these ones from the ESO. The model starts with a cloud of gas and dust called a giant molecular cloud. Within that cloud, a pocket of gas and dust begins to coalesce. Eventually, as gravity causes material to fall inward, the pocket becomes more massive, and exerts even more gravitational pull. More gas and dust continues to be drawn in.
The material that falls in also gives some angular momentum to the pocket, which causes rotation. Once enough material is accumulated, fusion ignites and a star is born. At that point, there is a proto-star inside the cloud, with unused gas and dust remaining in a rotating ring around the proto-star. That left over rotating ring is called a circumstellar disc, out of which planets eventually form.
There are other images of circumstellar discs, but they’ve been challenging to capture. To image any amount of detail in the disks requires blocking out the light of the star at the center of the disk. That’s where SPHERE comes in.
SPHERE was added to the ESO’s Very Large Telescope in 2014. It’s primary job is to directly image exoplanets, but it also has the ability to capture images of circumstellar discs. To do that, it separates two types of light: polarized, and non-polarized.
Light coming directly from a star—in these images, a young star still surrounded by a circumstellar disc—is non-polarized. But once that starlight is scattered by the material in the disk itself, the light becomes polarized. SPHERE, as its name suggests, is able to separate the two types of light and isolate just the light from the disk. That is how the instrument captures such fascinating images of the disks.
Ever since it became clear that exoplanets are not rare, and that most stars—maybe all stars—have planets orbiting them, understanding solar system formation has become a hot topic. The problem has been that we can’t really see it happening in real time. We can look at our own Solar System, and other fully formed ones, and make guesses about how they formed. But planet formation is hidden inside those circumstellar disss. Seeing into those disks is crucial to understanding the link between the properties of the disk itself and the planets that form in the system.
The discs imaged in this collection are mostly from a study called the DARTTS-S (Discs ARound T Tauri Stars with SPHERE) survey. T Tauri stars are young stars less than 10 million years old. At that age, planets are still in the process of forming. The stars range from 230 to 550 light-years away from Earth. In astronomical terms, that’s pretty close. But the blinding bright light of the stars still makes it very difficult to capture the faint light of the discs.
One of the images is not a T Tauri star and is not from the DARTTS-S study. The disc around the star GSC 07396-00759, in the image above, is actually from the SHINE (SpHere INfrared survey for Exoplanets) survey, though the images itself was captured with SPHERE. GSC 07396-00759 is a red star that’s part of a multiple star system that was part of the DARTTS-S study. The puzzling thing is that red star is the same age as the T TAURI star in the same system, but the ring around the red star is much more evolved. Why the two discs around two stars the same age are so different from each other in terms of time-scale and evolution is a puzzle, and is one of the reasons why astronomers want to study these discs much more closely.
We can study our own Solar System, and look at the positions and characteristics of the planets and the asteroid belt and Kuiper Belt. From that we can try to guess how it all formed, but our only chance to understand how it all came together is to look at other younger solar systems as they form.
The SPHERE instrument, and other future instruments like the James Webb Space Telescope, will allow us to look into the circumstellar discs around other stars, and to tease out the details of planetary formation. These new images from SPHERE are a tantalizing taste of the detail and variety we can expect to see.